1. Applying partiality to our functional logic TY_{2}

TY Y_{2}

- a four-valued variant of TY_{2}

First simple tweak: let the domain of t include four values instead of two

$$
\mathrm{D}_{\mathrm{t}}=\{\mathrm{T}, \mathrm{~F}, \mathrm{~N}, \mathrm{~B}\}
$$

$\overline{\text { Definition 1 }}\left(\mathrm{TY}_{2}{ }^{4}\right.$ frames)

A (standard) $\mathrm{TY}_{2}{ }^{4}$ frame is a set of sets $\left\{\mathrm{D}_{\alpha} \mid \alpha\right.$ is a functional type $\}$ such that...
$\mathrm{D}_{\mathrm{e}} \neq \varnothing$,
$\mathrm{D}_{\mathrm{s}} \neq \varnothing$,
$\mathbf{D}_{\mathrm{t}}=\{\mathbf{T}, \mathbf{F}, \mathbf{N}, \mathbf{B}\}$ and
$D_{\alpha \beta}$ is the set of (total) functions from D_{α} to D_{β}.
Next, \# and \star are stipulated to be $\mathrm{TY}_{2}{ }^{4}$ formulae (type t terms). We use Strong Kleene operations (from LK4) ${ }^{1}-, \cap, \cap$, and \cup to help with evaluation. And \subseteq is the ordering relation on L4.
$\overline{\text { Definition } 2}$ (Tarski truth definition for $\mathrm{TY}_{2}{ }^{4}$)
The value $|\mathrm{A}|^{\mathrm{M}, \mathrm{a}}$ of a term A on a TY${ }_{2}{ }^{4}$ standard model $M=<\left\{\mathrm{D}_{a}\right\}_{a}, I>$ under an assignment a is defined as follows:

$$
\text { i. } \begin{aligned}
|\mathrm{c}| & =I(\mathrm{c}) \text { if } \mathrm{c} \text { is a constant; } \\
|\mathrm{x}| & =a(\mathrm{x}) \text { if } \mathrm{x} \text { is a variable; }
\end{aligned}
$$

ii. $\begin{array}{r}|\neg \varphi|=-|\varphi| \\ \text { (negation); }\end{array}$
$|\varphi \wedge \psi|=|\varphi| \cap|\psi|=\min (\{|\varphi|,|\psi|\})$
(conjunction);
$|\#|=B ;$
$|\star|=N ;$
(for Completeness)
iii. $\begin{aligned}\left|\forall \mathrm{x}_{\alpha} \varphi\right|^{\mathrm{M}, \mathrm{a}} & =\bigcap_{\mathrm{d} \in \mathrm{D} \alpha}|\varphi|^{\mathrm{M}, \mathrm{a}[\mathrm{d} \mathrm{dx]}} \\ & =\min \left(\left\{|\varphi|^{\mathrm{M},[\mathrm{d} / \mathrm{x}]}: \mathrm{d} \in \mathrm{D}_{\alpha}\right\}\right)\end{aligned}$
(universal quantification);
iv. $\left|\mathrm{A}_{\alpha \beta} \mathrm{B}_{\alpha}\right|=|\mathrm{A}|(|\mathrm{B}|)$ (function application);
v. $\left|\lambda \mathrm{x}_{\alpha} \mathrm{A}_{\beta}\right|^{\mathrm{M}, \mathrm{a}}=$ the $\mathrm{F} \in \mathrm{D}_{\alpha \beta}$ such that for all $\mathrm{d} \in \mathrm{D}_{\alpha}: \mathrm{F}(\mathrm{d})=|\mathrm{A}|^{\mathrm{M},[\mathrm{a}[\mathrm{dx]}}$ (lambda abstraction);
vi. $\begin{aligned}|\mathrm{A}=\mathrm{B}| & =\mathrm{T} \text { if }|\mathrm{A}|=|\mathrm{B}| \\ & =\mathrm{F} \text { if }|\mathrm{A}| \neq|\mathrm{B}|\end{aligned}$
(identity).

$\overline{\text { Definition } 3}$ (Entailment in $\mathrm{TY}_{2}{ }^{4}$)

Let Γ and Δ be sets of $\mathrm{TY}_{2}{ }^{4}$ formulae. The relation $\Gamma \mid={ }_{\mathrm{s}} \Delta$ holds in $\mathrm{TY}_{2}{ }^{4}$ if
$\bigcap_{\varphi \in \Gamma}|\varphi|^{\mathrm{M}, \mathrm{a}} \subseteq \bigcup_{\psi \in \Delta}|\psi|^{\mathrm{M}, \mathrm{a}} \quad$ or, in other words... $\quad \min \left(\left\{|\varphi|^{\mathrm{M,a}}: \varphi \in \Gamma\right\}\right) \subseteq \max \left(\left\{|\psi|^{\mathrm{M}, \mathrm{a}}: \psi \in \Delta\right\}\right)$ for all TY ${ }_{2}{ }^{4}$ standard models M and assignments a to M.

[^0]Question: Is this really a partial theory of types?
Answer: Yes- we have given up the classical connection between truth and falsity and are now using truth combinations to replace truth values.

Doubt: \quad All of our functions in $\mathrm{TY}_{2}{ }^{4}$ are still total functions.
Worse, while some functions can be considered partial sets (ex: type et), others remain total objects no matter what way we look at them (ex: type ee).

2. Applying partiality to our relational logic TT_{2}

Recall the types of TT_{2} : The set of types is the smallest set of strings such that...
i. $\quad e$ (individuals) and s (world-time pairs) are types;
ii. if $\alpha_{1}, \ldots, \alpha_{n}$ are types ($n \geq 0$), then $<\alpha_{1} \ldots \alpha_{n}>$ is a type.

Since t is not a basic type in TT_{2}, we cannot simply replace the domain of truth values with the set of truth combinations and leave everything else as it was before, like we did to create $\mathrm{TY}_{2}{ }^{4}$.

Instead, we will partialize the objects that all non-basic domains consist of: relations! Below is the definition of a partial relation along with other relevant vocabulary.

$\overline{\text { Definition } 4}$ (Partial relations) ${ }^{2}$

Let $\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}$ be sets.
$>$ An \boldsymbol{n}-ary partial relation R on $\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}$ is a tuple of relations $<\mathrm{R}^{+}, \mathrm{R}^{-}>$such that $\mathrm{R}+, \mathrm{R}-\subseteq \mathrm{D}_{1} \times \ldots \times \mathrm{D}_{\mathrm{n}}$.
$>$ denotation: the relation R^{+}is called R 's denotation;
$>$ antidenotation: the relation R^{-}is called R 's antidenotation;
$>\boldsymbol{g a p}$: the relation $\left(\mathrm{D}_{1} \times \ldots \times \mathrm{D}_{\mathrm{n}}\right)-\left(\mathrm{R}^{+} \cup \mathrm{R}^{-}\right)$
written as $\left.\left(\mathrm{R}^{+} \cup \mathrm{R}^{-}\right)^{\mathrm{c}}\right)$
$>$ glut: the relation $\mathrm{R}^{+} \cap \mathrm{R}^{-}$
A partial relation is...
>coherent if its glut is empty.
$>$ total if its gap is empty,
$>$ incoherent if it is not coherent

$>$ classical if it is both coherent and total.
$>$ A unary partial relation is called a partial set.
$>$ If D is some set then the partial power set of $\mathrm{D}, \operatorname{PPow}(\mathrm{D})$, is
$\operatorname{Pow}(\mathrm{D}) \times \operatorname{Pow}(\mathrm{D})$, that is, the set of all partial sets over D:

$$
\left\{<\mathbf{R}^{+}, \mathbf{R}^{-}>\mid \mathbf{R}^{+}, \mathbf{R}^{-} \subseteq \mathbf{D}\right\} .
$$

Notice, in the relational theory a partialization of the relations in all non-basic domains leads to the desired shape of $\mathrm{D}_{<>}$.

[^1]Main Ideas:
For a tuple of objects and a partial relation R,
$>$ it is true that they stand in R if they are in R's denotation;
$>$ it is false that they stand in R if they are in R's antidenotation.
This leaves open the possibility that
$>$ it is neither true nor false that a given tuple stand in R (they are in the gap)
or
$>$ that it is both true and false that they do (they are in the glut).
We now extend the Strong Kleene operations, used on the set of truth combinations $\{\mathbf{T}, \mathbf{F}, \mathbf{N}, \mathbf{B}\}$, to the class of partial relations.

Definition 5 (Operations on partial relations)
Let $\mathbf{R}_{1}=\left\langle\mathbf{R}_{1}{ }^{+}, \mathbf{R}_{1}{ }^{-}\right\rangle$and $\mathbf{R}_{2}=\left\langle\mathbf{R}_{2}{ }^{+}, \mathbf{R}_{2}{ }^{-}\right\rangle$be partial relations.
Define:

	truth conditions \mid false conditions			
$-\mathbf{R}_{1}$	$:=\quad<\mathbf{R}_{1}^{-}, \mathbf{R}_{1}^{+}>$	(partial complementation)		
$\mathbf{R}_{1} \cap \mathbf{R}_{\mathbf{2}}$	$:=<\mathbf{R}_{1}^{+} \cap \mathbf{R}_{2}^{+}, \mathbf{R}_{1}^{-} \cup \mathbf{R}_{2}^{-}>$	(partial intersection)		
$\mathbf{R}_{\mathbf{1}} \cup \mathbf{R}_{\mathbf{2}}$	$:=<\mathbf{R}_{1}^{+} \cup \mathbf{R}_{2}^{+}, \mathrm{R}_{1}^{-} \cap \mathbf{R}_{2}^{-}>$	(partial union)		
$\mathbf{R}_{\mathbf{1}} \subseteq \mathbf{R}_{\mathbf{2}}$	iff $\mathbf{R}_{1}^{+} \subseteq \mathbf{R}_{2}^{+}$and $\mathbf{R}_{2}^{-} \subseteq \mathrm{R}_{1}^{-}$(partial inclusion)			

$>$ For \subseteq, think material implication.
Let A be some set of partial relations.
Define:

$$
\text { truth conditions } \mid \text { false conditions }
$$

$\bigcap \mathrm{A}:=<\bigcap\left\{\mathrm{R}^{+} \mid \mathrm{R} \in \mathrm{A}\right\}, \quad \cup\left\{\mathrm{R}^{-} \mid \mathrm{R} \in \mathrm{A}\right\}>$
$\cup \mathrm{A}:=<\bigcup\left\{\mathrm{R}^{+} \mid \mathrm{R} \in \mathrm{A}\right\}, \cap\left\{\mathrm{R}^{-} \mid \mathrm{R} \in \mathrm{A}\right\}>$
(Basically, generalized conjunction and disjunction over higher order types.)
Now that we've defined our tools, we can begin constructing a $\mathrm{TT}_{2}{ }^{4}$ logic.
$\overline{\text { Definition } 6}$ (Frames) A frame is a set $\left\{D_{\alpha} \mid \alpha\right.$ is a type $\}$ such that
$D_{\mathrm{e}} \neq \varnothing$,
$\mathrm{D}_{\mathrm{s}} \neq \varnothing$ and
$\mathrm{D}_{\langle\alpha 1 \ldots a n\rangle} \subseteq \operatorname{PPow}\left(\mathrm{D}_{\alpha 1} \times \ldots \times \mathrm{D}_{\mathrm{an}}\right)$.
A frame is standard if $\mathrm{D}_{\langle\alpha 1 \ldots \alpha>}=\operatorname{PPow}\left(\mathrm{D}_{\alpha 1} \times \ldots \times \mathrm{D}_{\alpha \mathrm{n}}\right)$ for all $\alpha_{1}, \ldots, \alpha_{n}$.
$>$ That is, each domain $\mathrm{D}_{<\alpha 1 \ldots \text { an> }}$ consists of all the partial relations on domains $\mathrm{D}_{\alpha 1}, \ldots, \mathrm{D}_{\alpha \mathrm{n}}$.
(We will only be working with standard frames.)
To get the set of truth-combinations $\{\mathbf{T}, \mathbf{F}, \mathbf{N}, \mathbf{B}\}$ we need only to check the set $\operatorname{PPow}(\{\varnothing\})$.

$$
\begin{aligned}
\operatorname{PPow}(\{\varnothing\}) & =\operatorname{Pow}(\{\varnothing\}) \times \operatorname{Pow}(\{\varnothing\}) \\
& =\{<\{\varnothing\}, \varnothing>,<\varnothing,\{\varnothing\}>,<\varnothing, \varnothing>,<\{\varnothing\},\{\varnothing\}>\} \\
& =\{<\mathbf{1}, \mathbf{0}>,<\mathbf{0}, \mathbf{1}>,<\mathbf{0}, \mathbf{0}>,<\mathbf{1}, \mathbf{1}>\} \\
& =\{\mathbf{T}, \quad \mathbf{F}, \quad \mathbf{N}, \quad \mathbf{B}\}
\end{aligned}
$$

$>$ If a value's first element is 1 , it includes truth.
$>$ If its second element is 1 , it includes falsity.

In TT_{2}, we decided to use only relational types rather than functional ones. To do this we relied on the existence of slice functions, which allow us to view any relation as a function. Now that we are going partial, we need to redefine our slice functions appropriately.

$\overline{\text { Definition } 7}$ (Slice Functions)

Let R be an n-ary partial relation and let $0<k \leq n$.
The k-th slice function of $R, \boldsymbol{F}_{\boldsymbol{R}}$, is defined by $\boldsymbol{F}_{\boldsymbol{R}}(\boldsymbol{d})=\left\langle\boldsymbol{F}_{\boldsymbol{R}}{ }^{+}(\boldsymbol{d}), \boldsymbol{F}_{\boldsymbol{R}}{ }^{-}(\boldsymbol{d})\right\rangle$.
Below is an example of the slice function of a binary partial relation.

A binary partial relation on the reals is now identified as a pair of sets (a partial set) in the Euclidean plane. This pair can be seen as a (total) function: for any point in the Y-axis, it returns a pair of sets of points on the X -axis. It is a function from points on the Y -axis to partial sets of points on the X -axis.

2.1 The logic of TT24

Finally, we are ready to give a Tarski definition evaluating the syntax of TT_{2} on partial frames. The first order of business is to define our model.

A very general model is a tuple $<F, I>$ where
$>F=\left\{\mathrm{D}_{\alpha}\right\}_{\alpha}$ is a partial frame and
$>I$ is an interpretation function for F.
We assume a standard frame (see Definition 6), and hence a standard very general model.

Next, we add logical constants \# and \star as type $<>$ formulae. Again, we use Strong Kleene operations (from LK4) - \cap, \cap, and \cup to help with evaluation. And \subseteq is the ordering relation on L4.
$\overline{\text { Definition } 8}$ (Tarski truth definitions)
The value $\|\mathrm{A}\|^{\mathrm{M}, \mathrm{a}}$ of a term A on a very general model M under an assignment a is defined as follows:
i. $\|\mathrm{c}\|=I(\mathrm{c})$ if c is a constant;
$\|\mathrm{x}\|=a(\mathrm{x})$ if x is a variable;
iii. $\left\|\forall \mathrm{x}_{\alpha} \varphi\right\|^{\mathrm{M}, \mathrm{a}}=\bigcap_{\mathrm{d} \in \mathrm{D} \alpha}\|\varphi\|^{\mathrm{M}, \mathrm{a}[\mathrm{d} \mathrm{x}]}$
$=<\bigcap_{\mathrm{d} \in \mathrm{D} \alpha}\left\|\varphi^{+}\right\|^{\mathrm{M},[\mathrm{a}[\mathrm{d}]}, \cap_{\mathrm{d} \in \mathrm{D} \alpha}\left\|\varphi^{-}\right\|^{\mathrm{M}, \mathrm{a}[\mathrm{d} x]}>$
ii. $\|\neg \varphi\|=-\|\varphi\|$
(negation);

$$
\begin{aligned}
\|\varphi \wedge \psi\| & =\|\varphi\| \cap\|\psi\| \\
& =<\left\|\varphi^{+}\right\| \cap\left\|\psi^{+}\right\|,\left\|\varphi^{-}\right\| \cup\left\|\psi^{-}\right\|>
\end{aligned}
$$

(conjunction);
$\|\#\|=<1,1>$;
$\| \star| |=<0,0>;$
(for Completeness)
(universal quantification);
iv. $\left\|\mathrm{A}_{\alpha \beta} \mathrm{B}_{\alpha}\right\|=\mathrm{F}_{\|\mid A\|}^{1}(\|\mathrm{~B}\|)$
(function application);
v. $\left\|\lambda \mathrm{x}_{\alpha} \mathrm{A}_{\beta}\right\|^{\mathrm{M}, \mathrm{a}}=$ the R such that $\mathrm{F}^{1}{ }_{\mathrm{R}}(\mathrm{d})=\|\mathrm{A}\|^{\mathrm{M}, \mathrm{a}[\mathrm{d} x]}$ for all $\mathrm{d} \in \mathrm{D}_{\alpha}$ (lambda abstraction);
vi. $\begin{aligned}\|\mathrm{A}=\mathrm{B}\| & =<1,0>\text { if }\|\mathrm{A}\|=\|\mathrm{B}\| \\ & =<0,1>\text { if }\|\mathrm{A}\| \neq\|\mathrm{B}\|\end{aligned}$ (identity).
(Recall from our original version of TT_{2}, that F^{1} is simply the first slice function of some relation.)

$\overline{\text { Definition } 9}$ (Entailment in $\mathrm{TT}_{2}{ }^{4}$)

Let Γ and Δ be sets of terms of some type $\left.\alpha=<\alpha_{1} \ldots \alpha_{n}\right\rangle$.
$\Gamma \mid={ }_{s} \Delta$, if or, in other words...
$\bigcap_{\mathrm{A} \in \Gamma}\|\mathrm{A}\|^{\mathrm{M}, \mathrm{a}} \subseteq \bigcup_{\mathrm{B} \in \Delta}\|\mathrm{B}\|^{\mathrm{M}, \mathrm{a}} \quad<\cap\left\{\left\|\mathrm{A}^{+}\right\| \mid \mathrm{A} \in \Gamma\right\}, \cup\left\{\left\|\mathrm{A}^{-}\right\| \mid \mathrm{A} \in \Gamma\right\}>\subseteq<\cup\left\{| | \mathrm{B}^{+} \| \mid \mathrm{B} \in \Delta\right\}, \cap\left\{\left\|\mathrm{B}^{-}\right\| \mid \mathrm{B} \in \Delta\right\}>$
for all standard models M and assignments a to M.

2.2 Working through some examples

Non-basic Domains:

Ex.1:

Getting the domain $<\mathrm{e}>$ in TT_{2}

$$
\begin{aligned}
& \mathrm{D}_{<\mathrm{e}}=\operatorname{Pow}\left(\mathrm{D}_{\mathrm{e}}\right) \\
& =\left\{X \mid X \subseteq D_{e}\right\} \\
& =\text { GREEN<<>, GHOST } \ll>\text {, IDEA<e> } \text {, SHOE<<>... }
\end{aligned}
$$

Getting the domain $<\mathrm{e}>$ in $\mathrm{TT}_{2}{ }^{4} \quad$ (c.f. Definition 6)

$$
\begin{aligned}
& \mathrm{D}_{<\mathrm{e}\rangle}=\operatorname{PPow}\left(\mathrm{D}_{\mathrm{e}}\right) \\
& =\left\{<X, Y>\mid X, Y \subseteq D_{e}\right\} \\
& \left.\left.=<\text { GREEN }^{+}<\mathrm{e}\right\rangle, \text { GREEN }^{-}<\mathrm{e}\right\rangle>\text {, } \\
& <\text { GHOST }^{+}<\mathrm{e}, \text { GHOST }^{-}<{ }^{<} \gg \text {, } \\
& <\text { IDEA }^{+}<>, \text {IDEA }^{-}<\gg, \ldots
\end{aligned}
$$

Slice Functions:
(c.f. Definition 8)

Ex.2: $\left\|\lambda \mathbf{x}_{\text {e }} \operatorname{Green}(\mathbf{x})\right\|^{\mathbf{M}, \mathbf{a}}=$ the \mathbf{R} such that $\mathbf{F}^{1} \mathbf{R}(\mathbf{d})=\|\operatorname{Green}\|^{\mathbf{M}, \mathbf{a}[\mathrm{d} x]}$ for all $\mathbf{d} \in \mathbf{D}_{\text {e }}$
in TT_{2}

$$
\mathrm{F}_{\| \text {|grean|| }}^{1}(\mathrm{~d})
$$

in $\mathrm{TT}_{2}{ }^{4}$
$\mathrm{F}_{\| \text {green } \mid}^{1}(\mathrm{~d})=<\mathrm{F}_{\| \text {|grean|+ }}^{1}(\mathrm{~d}), \mathrm{F}_{\| \text {|grean } \mid-}(\mathrm{d})>$

Function application:
$\left\|\mathrm{A}_{\alpha \beta} \mathrm{B}_{\alpha}\right\|=\mathrm{F}_{\|A\|}^{1}(\|\mathrm{~B}\|)$

Remember: Here, 0 is just \varnothing and
1 is just $\{\varnothing\}$.

Ex.2: "John is green."

in TT_{2}

Ex.3: "Abe is furious."

in TT_{2}

$$
\mathrm{F}_{\text {rukious }}^{1}(\boldsymbol{\theta})=1
$$

$F_{\text {furous }}^{1}$

$$
\left|\begin{array}{cc}
\rightarrow 1 \\
0 & \rightarrow 1 \\
0 & \rightarrow 0 \\
& \cdots
\end{array}\right|
$$

in $\mathrm{TT}_{2}{ }^{4}$

$$
\begin{aligned}
& \mathrm{F}_{\text {green }}^{1}(\mathbb{N})=0 \\
& \mathrm{~F}_{\text {green }}^{1} \\
& \left|\begin{array}{cc}
\boldsymbol{n} & \rightarrow 0 \\
0 & \rightarrow 1 \\
\boldsymbol{m} & \rightarrow 0 \\
& \cdots
\end{array}\right|
\end{aligned}
$$

in $\mathrm{TT}_{2}{ }^{4}$

$$
=<0,1>
$$

$\mathrm{F}_{\text {Greix- }}^{1}\left|\begin{array}{c} \\ \rightarrow 1 \\ 0 \\ \rightarrow 0 \\ \cdots\end{array}\right|$
(antidenotation)

Conjunction:
$\|\varphi \wedge \psi\|=\|\varphi\| \cap\|\psi\|$

Ex.4: "John is green and Abe is furious."

$\operatorname{GREEN}\left(\text { John }_{\mathrm{e}}\right)^{\wedge}$ FURIOUS($\left.\mathrm{ABE}_{\mathrm{e}}\right)$

```
in TT
|GREEN(JOHN () ^ FURIOUS(ABE (A)|
= ||GREEN(JOHNe)| \cap | FURIOUS(ABE ( ) |
=\varnothing\cap{\varnothing}
=\varnothing
=0
```

```
in \(\mathrm{TT}_{2}{ }^{4}\)
\(\| \operatorname{GreEn}\left(\mathrm{JOHN}_{\mathrm{e}}\right)^{\wedge}\) Furious \(\left(\mathrm{ABE}_{\mathrm{E}}\right) \|\)
\(=\| \operatorname{Green}\left(\right.\) John \(\left._{\mathrm{e}}\right)\|\cap\| \operatorname{FURIOUS}\left(\right.\) AbE \(\left._{e}\right) \|\)
```



```
\(=<\varnothing \cap\{\varnothing\},\{\varnothing\} \cup\{\varnothing\}>\)
\(=<\varnothing,\{\varnothing\}>\)
\(=<0,1>\)
```

$$
\begin{aligned}
& \quad \mathrm{F}_{\text {furious }}^{1}(\boldsymbol{\bullet})=<\mathrm{F}_{\text {furkous }}^{1}(\boldsymbol{\bullet}), \mathrm{F}_{\text {furoits- }}^{1}(\boldsymbol{\bullet})> \\
& =<1,1\rangle
\end{aligned}
$$

[^0]: 1 Refer to Extended Strong Kleene tables p. 2 Handout4.

[^1]: 2 Note that the set notation used in Definition 4 corresponds to actual set notation- not the similar-looking Strong Kleene operations from LK4, which we used in Definitions 1-2.

