Handout 5: Going Partial II: Type Theory (Muskens 1995, Ch.6) Semantics C Spring 2010

1. Applying partiality to our functional logic TY₂

 TY_2^4

(for

• a four-valued variant of TY_2

First simple tweak: let the domain of t include four values instead of two $D_t = \{T, F, N, B\}$

 $\begin{array}{l} \overline{Definition \ 1} \ (TY_2^4 \ frames) \\ A \ (standard) \ TY_2^4 \ frame \ is \ a \ set \ of \ sets \ \{D_{\alpha} \mid \alpha \ is \ a \ functional \ type\} \ such \ that... \\ D_e \neq \varnothing, \\ D_s \neq \varnothing, \\ D_t = \{T, F, N, B\} \ and \\ D_{\alpha\beta} \ is \ the \ set \ of \ (total) \ functions \ from \ D_{\alpha} \ to \ D_{\beta}. \end{array}$

Next, # and \star are stipulated to be TY₂⁴ formulae (type *t* terms). We use Strong Kleene operations (from LK4)¹ –, \cap , \bigcap , and \cup to help with evaluation. And \subseteq is the ordering relation on L4.

 $\overline{\text{Definition 2}}$ (Tarski truth definition for TY₂⁴)

The value $|A|^{M,a}$ of a term A on a TY₂⁴ standard model $M = \langle \{D_{\alpha}\}_{\alpha}, I \rangle$ under an assignment *a* is defined as follows:

i. $ c = I(c)$ if c is a constant; x = a(x) if x is a variable;	$\begin{aligned} \textbf{iii.} & \forall x_{\alpha} \phi ^{M,a} = \bigcap_{d \in D\alpha} \phi ^{M,a[d/x]} \\ &= \min(\{ \phi ^{M,a[d/x]}: d \in D_{\alpha}\}) \\ &(\text{universal quantification}); \end{aligned}$
ii. $ \neg \phi = - \phi $ (negation);	iv. $ A_{\alpha\beta}B_{\alpha} = A (B)$ (function application);
$ \phi \land \psi = \phi \cap \psi = \min(\{ \phi , \psi \})$ (conjunction); # = B;	v. $ \lambda x_{\alpha} A_{\beta} ^{M,a} = \text{the } F \in D_{\alpha\beta} \text{ such that}$ for all $d \in D_{\alpha}$: $F(d) = A ^{M,a[d/x]}$ (lambda abstraction);
$ \# = \mathbf{D},$ $ \bigstar = \mathbf{N};$ r Completeness)	vi. $ \mathbf{A} = \mathbf{B} = T$ if $ \mathbf{A} = \mathbf{B} $ = F if $ \mathbf{A} \neq \mathbf{B} $ (identity).
finition 3 (Entailment in TY_2^4)	

Definition 3 (Entailment in TY₂⁴) Let Γ and Δ be sets of TY₂⁴ formulae. The relation $\Gamma \models_{s} \Delta$ holds in TY₂⁴ if $\bigcap_{\varphi \in \Gamma} |\varphi|^{M,a} \subseteq \bigcup_{\psi \in \Delta} |\psi|^{M,a}$ or, in other words... $\min(\{|\varphi|^{M,a} : \varphi \in \Gamma\}) \subseteq \max(\{|\psi|^{M,a} : \psi \in \Delta\})$ for all TY₂⁴ standard models *M* and assignments *a* to *M*.

¹ Refer to Extended Strong Kleene tables p.2 Handout4.

Question: Is this really a *partial* theory of types?
Answer: Yes- we have given up the classical connection between truth and falsity and are now using truth combinations to replace truth values.
Doubt: All of our functions in TY₂⁴ are still *total* functions. Worse, while some functions can be considered partial sets (ex: type *et*), others remain total objects no matter what way we look at them (ex: type *ee*).

2. Applying partiality to our relational logic TT₂

Recall the types of TT₂: The set of types is the smallest set of strings such that...

- i. *e* (individuals) and *s* (world-time pairs) are types;
- ii. if $\alpha_1,...,\alpha_n$ are types $(n \ge 0)$, then $<\alpha_1...\alpha_n >$ is a type.

Since *t* is not a basic type in TT_2 , we cannot simply replace the domain of truth values with the set of truth combinations and leave everything else as it was before, like we did to create TY_2^4 .

Instead, we will partialize the objects that all non-basic domains consist of: relations! Below is the definition of a partial relation along with other relevant vocabulary.

 $\overline{\text{Definition 4}}$ (Partial relations)²

Let D_1, \ldots, D_n be sets.

> An *n-ary partial relation* R on D_1, \ldots, D_n is a tuple of relations $\langle R^+, R^- \rangle$ such that

 $R+, R- \subseteq D_1 \times \ldots \times D_n.$

 \blacktriangleright *denotation*: the relation R⁺ is called R's *denotation*;

 > antidenotation: the relation R⁻ is called R's antidenotation;
 > gap: the relation (D₁ × . . . × D_n) - (R⁺ ∪ R⁻) written as (R⁺ ∪ R⁻)^c)
 > glut: the relation R⁺ ∩ R⁻

A partial relation is...

coherent if its glut is empty. *total* if its gap is empty, *incoherent* if it is not coherent *classical* if it is both coherent and total.

A unary partial relation is called a *partial set*.
> If D is some set then the *partial power set* of D, PPow(D), is Pow(D)×Pow(D), that is, the set of all partial sets over D: {<R⁺, R⁻> | R⁺, R⁻ ⊆ D}.

Notice, in the relational theory a partialization of the relations in all non-basic domains leads to the desired shape of $D_{<>}$.

² Note that the set notation used in Definition 4 corresponds to *actual* set notation–*not* the similar-looking Strong Kleene operations from LK4, which we used in Definitions 1-2.

Main Ideas:

For a tuple of objects and a partial relation R,

- \triangleright it is true that they stand in R if they are in R's denotation;
- \succ it is false that they stand in R if they are in R's antidenotation.

This leaves open the possibility that

- ➤ it is neither true nor false that a given tuple stand in R (they are in the gap) or
- \triangleright that it is both true and false that they do (they are in the <u>glut</u>).

We now extend the Strong Kleene operations, used on the set of truth combinations $\{T, F, N, B\}$, to the class of partial relations.

<u>Definition 5</u> (Operations on partial relations) Let $\mathbf{R}_1 = \langle \mathbf{R}_1^+, \mathbf{R}_1^- \rangle$ and $\mathbf{R}_2 = \langle \mathbf{R}_2^+, \mathbf{R}_2^- \rangle$ be partial relations. Define:

truth conditions | false conditions

$-\mathbf{R}_1$	$:= < R_1^-, R_1^+ >$	(partial complementation)
$\mathbf{R_1}\cap\mathbf{R_2}$	$:= \langle R_1^+ \cap R_2^+, R_1^- \cup R_2^- \rangle$	(partial intersection)
$\mathbf{R_1} \cup \mathbf{R_2}$	$:= \langle R_1^+ \cup R_2^+, R_1^- \cap R_2^- \rangle$	(partial union)
$\mathbf{R}_1 \subseteq \mathbf{R}_2$	iff $R_1^+ \subseteq R_2^+$ and $R_2^- \subseteq R_1^-$	(partial inclusion)
		For \subseteq , think material implication.

Let A be some <u>set</u> of partial relations. Define:

truth conditions | false conditions

 $\begin{array}{l} \bigcap A := < \bigcap \{R^+ \mid R \in A\}, & \bigcup \{R^- \mid R \in A\} > \\ \bigcup A := < \bigcup \{R^+ \mid R \in A\}, & \bigcap \{R^- \mid R \in A\} > \end{array}$

(Basically, generalized conjunction and disjunction over higher order types.)

Now that we've defined our tools, we can begin constructing a TT_2^4 logic.

 $\begin{array}{l} \overline{Definition \ 6} \ (Frames) \ A \ frame \ is \ a \ set \ \{D_{\alpha} \mid \alpha \ is \ a \ type\} \ such \ that \\ D_e \neq \ \varnothing, \\ D_s \neq \ \varnothing \ and \\ D_{<\alpha 1 \dots \alpha n >} \subseteq \ PPow(D_{\alpha 1} \times \ldots \times D_{\alpha n}). \end{array}$

A frame is *standard* if $D_{<\alpha_1...\alpha_n>} = PPow(D_{\alpha_1} \times ... \times D_{\alpha_n})$ for all $\alpha_1, \ldots, \alpha_n$. > That is, each domain $D_{<\alpha_1...\alpha_n>}$ consists of <u>all</u> the partial relations on domains $D_{\alpha_1}, \ldots, D_{\alpha_n}$. (We will only be working with standard frames.)

To get the set of truth-combinations $\{T, F, N, B\}$ we need only to check the set $PPow(\{\emptyset\})$.

 $PPow(\{\emptyset\}) = Pow(\{\emptyset\}) \times Pow(\{\emptyset\}) \\ = \{<\!\{\emptyset\}, \emptyset>, <\emptyset, \{\emptyset\}>, <\emptyset, \emptyset>, <\{\emptyset\}, \{\emptyset\}> \} \\ = \{<\!1, 0>, <\!0, 1>, <\!0, 0>, <\!1, 1> \} \\ = \{ T, F, N, B \}$

If a value's first element is 1, it *includes truth*.If its second element is 1, it *includes falsity*.

In TT_2 , we decided to use only relational types rather than functional ones. To do this we relied on the existence of slice functions, which allow us to view any relation as a function. Now that we are going partial, we need to redefine our slice functions appropriately.

<u>Definition 7</u> (Slice Functions) Let *R* be an *n*-ary partial relation and let $0 < k \le n$. The *k*-th slice function of *R*, F_{R}^{k} , is defined by $F_{R}^{k}(d) = \langle F_{R}^{k}(d), F_{R}^{k-1}(d) \rangle$.

Below is an example of the slice function of a binary partial relation.

A binary partial relation on the reals is now identified as a <u>pair of sets</u> (a partial set) in the Euclidean plane. This pair can be seen as a (total) function: for any point in the Y-axis, it returns a pair of sets of points on the X-axis. It is a function from points on the Y-axis to partial sets of points on the X-axis.

2.1 The logic of TT24

Finally, we are ready to give a Tarski definition evaluating the syntax of TT_2 on partial frames. The first order of business is to define our model.

A very general model is a tuple $\langle F, I \rangle$ where $\gg F = \{D_{\alpha}\}_{\alpha}$ is a partial frame and $\gg I$ is an interpretation function for *F*. We assume a *standard* frame (see Definition 6), and hence a *standard* very general model. Next, we add logical constants # and \star as type <> formulae. Again, we use Strong Kleene operations (from LK4) –, \cap , \bigcap , and \cup to help with evaluation. And \subseteq is the ordering relation on L4.

Definition 8 (Tarski truth definitions)

The value $||A||^{M,a}$ of a term A on a very general model M under an assignment a is defined as follows:

i. $ \mathbf{c} = I(\mathbf{c})$ if c is a constant; $ \mathbf{x} = a(\mathbf{x})$ if x is a variable;	iii. $\ \forall x_{\alpha} \phi \ ^{M,a} = \bigcap_{d \in D\alpha} \ \phi \ ^{M,a[d/x]}$
ii. $ \neg \phi = - \phi $	$= < \bigcap_{d \in D\alpha} \phi^+ ^{M,a[d/x]}, \ \bigcap_{d \in D\alpha} \phi^- ^{M,a[d/x]} > $ (universal quantification);
(negation); $\ \phi \land \psi\ = \ \phi\ \cap \ \psi\ $	iv. $ \mathbf{A}_{\alpha\beta}\mathbf{B}_{\alpha} = F^{1}_{ A }(\mathbf{B})$ (function application);
$ \psi''(\psi) = \psi + \psi = < \phi^+ \cap \psi^+ , \phi^- \cup \psi^- > (conjunction);$	v. $\ \lambda \mathbf{x}_{\alpha} \mathbf{A}_{\beta}\ ^{M,a} = \text{the } \mathbf{R} \text{ such that}$ $F^{1}_{\mathbf{R}}(\mathbf{d}) = \ \mathbf{A}\ ^{M,a[d/x]} \text{ for all } \mathbf{d} \subseteq \mathbf{D}_{\alpha}$
# = <1,1>;	(lambda abstraction);
$\ \star\ = \langle 0, 0 \rangle;$ (for Completeness)	vi. $ A = B = <1,0>$ if $ A = B $ = $<0,1>$ if $ A \neq B $ (identity).

(Recall from our original version of TT_2 , that F^1 is simply the first slice function of some relation.)

 $\begin{array}{l} \overline{\text{Definition 9}} \ (\text{Entailment in } TT_2^4) \\ \text{Let } \Gamma \ \text{and } \Delta \ \text{be sets of terms of some type } \alpha = <\alpha_1 \dots \alpha_n >. \\ \Gamma \mid =_s \Delta \ , \ \text{if} \qquad \qquad \text{or, in other words...} \\ \bigcap_{A \in \Gamma} \|A\|^{M,a} \ \subseteq \bigcup_{B \in \Delta} \|B\|^{M,a} \qquad \qquad < \cap \{\|A^+\| \mid A \in \Gamma\}, \cup \{\|A^-\| \mid A \in \Gamma\} > \subseteq < \cup \{\|B^+\| \mid B \in \Delta\}, \cap \{\|B^-\| \mid B \in \Delta\} > \|B^+\| \mid B \in \Delta\}. \end{array}$

for all standard models M and assignments a to M.

 $\begin{array}{l} \underline{2.2 \text{ Working through some examples}} \\ \hline \text{Non-basic Domains:} \\ \hline \textbf{Ex.1:} \\ \hline \text{Getting the domain } <e> \text{ in } \text{TT}_2 \\ \hline \textbf{D}_{<e>} = \text{Pow}(\textbf{D}_e) \\ &= \{X \mid X \subseteq \textbf{D}_e\} \\ &= \text{GREEN}_{<e>}, \text{ GHOST}_{<e>}, \text{ IDEA}_{<e>}, \text{ SHOE}_{<e>}... \\ \end{array}$

Slice Functions: $\|\lambda x_{\alpha} A_{\beta}\|^{M,a} = \text{the } R \text{ such that } F^{1}{}_{R}(d) = \|A\|^{M,a[d/x]} \text{ for all } d \in D_{\alpha} \qquad (\text{c.f. Definition } 8)$

Ex.2: $\|\lambda x_{e}GREEN(x)\|^{M,a}$ = the R such that $F^{1}_{R}(d) = \|GREEN\|^{M,a[d/x]}$ for all $d \in D_{e}$

in
$$TT_2$$

 $F^1_{||GREEN||}(d) = \langle F^1_{||GREEN||+}(d), F^1_{||GREEN||-}(d) \rangle$

Function application: $||\mathbf{A}_{\alpha\beta}\mathbf{B}_{\alpha}|| = F^{1}_{||\mathbf{A}||}(||\mathbf{B}||)$ Remember: Here, 0 is just \emptyset and 1 is just $\{\emptyset\}$.

Ex.2: "John is green."

 $GREEN_{e>}(JOHN_e) = F^1_{||GREEN||}(||JOHN||) = F^1_{I(GREEN)}(I(JOHN)) = F^1_{GREEN}(\dagger)$

Ex.3: "Abe is furious."

 $\text{FURIOUS}_{<e>}(\text{ABE}_{e}) = F^{1}_{||\text{FURIOUS}||}(||\text{ABE}||) = F^{1}_{I(\text{FURIOUS})}(I(\text{ABE})) = F^{1}_{\text{FURIOUS}}(\bigcirc)$

Conjunction: $\|\phi \land \psi\| = \|\phi\| \cap \|\psi\|$

Ex.4: "John is green and Abe is furious."