
Handout 5: Going Partial II: Type Theory (Muskens 1995, Ch.6)
Semantics C Spring 2010

1. Applying partiality to our functional logic TY2 
 

• a four-valued variant of TY2

First simple tweak: let the domain of t include four values instead of two
Dt = {T, F, N, B}

Definition 1 (TY2
4 frames)

A (standard) TY2
4 frame is a set of sets {Dα | α is a functional type} such that... 

De ≠ , ∅
Ds ≠ , ∅
Dt  = {T, F, N, B} and
Dαβ is the set of (total) functions from Dα to Dβ.

Next, # and are stipulated to be  TY2
4 formulae (type t terms). We use Strong Kleene operations 

(from LK4)1 −, ∩, ∩, and∪to help with evaluation. And  is the ordering relation on L4.⊆

Definition 2 (Tarski truth definition for TY2
4 ) 

The value |A|M,a of a term A on a TY2
4  standard model M = <{Dα}α , I> under an assignment a

is defined as follows:

i. |c| = I(c) if c is a constant;
   |x| = a(x) if x is a variable;

 ii. |¬φ| = −|φ|
    (negation); 

     | φ  ψ| = |∧ φ| ∩ |ψ| = min({|φ|, |ψ|}) 
    (conjunction);

    |#| = B;
    || = N;

(for Completeness)

iii. | x∀ α φ |M,a  = ∩d Dα  ∈ |φ|M,a[d/x]

= min({|φ|M,a[d/x]: d D∈ α})  
     (universal quantification);

iv. |AαβBα| = |A|(|B|)
    (function application);

v. |λxα Aβ|M,a = the F  D∈ αβ such that 
   for all d  D∈ α: F(d) = |A|M,a[d/x]

               (lambda abstraction);

vi. |A = B| = T if |A| = |B|  
     = F if |A| ≠ |B|

     (identity).
Definition 3 (Entailment in TY2

4) 
Let Γ and ∆ be sets of  TY2

4 formulae. The relation Γ |=s ∆ holds in TY2
4  if

 ∩  |φ| M,a   ⊆  ∪ |ψ|M,a or, in other words... min({|φ|M,a : φ  Γ}) ∈   max({|ψ|⊆ M,a : ψ ∆})∈
φ Γ∈  ψ ∆∈

for all TY2
4  standard models M and assignments a to M.

1 Refer to Extended Strong Kleene tables p.2 Handout4. 
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Question: Is this really a partial theory of types?

Answer: Yes- we have given up the classical connection between truth and falsity and are now 
using truth combinations to replace truth values. 

Doubt: All of our functions in TY2
4 are still total functions.

Worse, while some functions can be considered partial sets (ex: type et), others remain 
total objects no matter what way we look at them (ex: type ee). 

2. Applying partiality to our relational logic TT2  

Recall the types of TT2: The set of types is the smallest set of strings such that...
i. e (individuals) and s (world-time pairs) are types;
ii. if α1,...,αn are types (n ≥ 0), then <α1...αn> is a type.

Since t is not a basic type in TT2, we cannot simply replace the domain of truth values with the set of 
truth combinations and leave everything else as it was before, like we did to create TY2

4. 

Instead, we will partialize the objects that all non-basic domains consist of: relations! Below is the 
definition of a partial relation along with other relevant vocabulary. 

Definition 4 (Partial relations)2 
Let D1, . . . , Dn be sets. 
  An n-ary partial relation R on D1, . . . , Dn  is a tuple of relations <R+, R− > such that 

R+, R−  D⊆ 1 × . . . × Dn.           
  denotation: the relation R+ is called R’s denotation;
  antidenotation: the relation R− is called R’s antidenotation;
  gap: the relation (D1 × . . . × Dn) − (R+  R∪ −) 

  written as (R+  R∪ −)c ) 
 glut: the relation R+ ∩ R− 

A partial relation is...
  coherent if its glut is empty.

  total if its gap is empty, 
 incoherent if it is not coherent 
 classical if it is both coherent and total. 

  A unary partial relation is called a partial set. 
  If D is some set then the partial power set of D, PPow(D), is 

Pow(D)×Pow(D), 
that is, the set of all partial sets over D: 

{<R+, R− >  | R+, R−   D}⊆ .

Notice, in the relational theory a partialization of the relations in all non-basic domains leads to the 
desired shape of D< >.

2 Note that the set notation used in Definition 4 corresponds to actual set notation– not the similar-looking Strong Kleene 
operations from LK4, which we used in Definitions 1-2.
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Main Ideas: 
For a tuple of objects and a partial relation R,

 it is true that they stand in R if they are in R’s denotation;  
  it is false that they stand in R if they are in R’s antidenotation. 
This leaves open the possibility that 

 it is neither true nor false that a given tuple stand in R (they are in the gap) 
or

 that it is both true and false that they do (they are in the glut).

We now extend the Strong Kleene operations, used on the set of truth combinations {T, F, N, B}, to the 
class of partial relations.   

Definition 5 (Operations on partial relations)
Let R1 = <R1 

+,R1
− > and R2 = <R2 

+,R2
− > be partial relations. 

Define:
               truth conditions  |  false conditions

–R1 :=           <R1
– ,  R1

+ >  (partial complementation)
R1 ∩ R2

    := <R1
+ ∩ R2

+ ,  R1
– ∪ R2

–   > (partial intersection)
R1 ∪ R2 := <R1

+ ∪ R2
+,  R1

–  ∩ R2
–   > (partial union)

R1 ⊆ R2
  iff  R1

+ ⊆ R2
+ and R2

–  ⊆ R1
− (partial inclusion) 

                                                            For ⊆, think material implication.
Let A be some set of partial relations. 
Define:

  truth conditions  |  false conditions

 ∩A := < ∩{R+ | R A∈ },  ∪{R–  | R A∈ }>
∪A := <∪{R+ | R A∈ },  ∩{R–  | R A∈ }>
(Basically, generalized conjunction and disjunction over higher order types.)

Now that we've defined our tools, we can begin constructing a TT2
4  logic.

Definition 6 (Frames) A frame is a set {Dα | α is a type} such that
De ≠  , ∅
Ds ≠    and∅
D<α1...αn>  PPow(D⊆ α1 × . . . × Dαn).

A frame is standard if D<α1...αn> = PPow(Dα1 ×. . .×Dαn) for all α1, . . . ,αn.
 That is, each domain D<α1...αn> consists of all the partial relations on domains Dα1 , . . . , Dαn. 
(We will only be working with standard frames.)            

To get the set of truth-combinations {T, F, N, B} we need only to check the 
set PPow({ }).∅
 
PPow({ })∅  = Pow({ }) ×Pow({ }) ∅ ∅

       = {<{ }, >∅ ∅ , < ,{ }>∅ ∅ , < , >∅ ∅ , <{ },{ }>∅ ∅  }
       = {<1, 0>,     <0, 1>,  <0, 0>, <1, 1> }
       = {    T,             F,           N,        B    } 
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 If a value’s first element is 1, it includes truth.
 If its second element is 1, it includes falsity.

In TT2, we decided to use only relational types rather than functional ones. To do this we relied on the 
existence of slice functions, which allow us to view any relation as a function. Now that we are going 
partial, we need to redefine our slice functions appropriately.

Definition 7 (Slice Functions) 
Let R be an n-ary partial relation and let 0 < k ≤ n. 
The k-th slice function of R, Fk

R , is defined by Fk
R(d) = <Fk

R
+(d), Fk

R
−(d)>.

Below is an example of the slice function of a binary partial relation. 

A binary partial relation on the reals is now identified as a pair of sets (a partial set) in the Euclidean 
plane. This pair can be seen as a (total) function: for any point in the Y-axis, it returns a pair of sets of 
points on the X-axis. It is a function from points on the Y-axis to partial sets of points on the X-axis.  

2.1 The logic of TT24
Finally, we are ready to give a Tarski definition evaluating the syntax of TT2 on partial frames. 
The first order of business is to define our model.

A very general model is a tuple <F, I> where
 F = {Dα}α  is a partial frame and
 I is an interpretation function for F.
We assume a standard frame (see Definition 6), and hence a standard very general model.
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Next, we add logical constants # and  as type < > formulae. Again, we use Strong Kleene operations 
(from LK4) −, ∩, ∩, and∪to help with evaluation. And  is the ordering relation on L4.⊆

Definition 8  (Tarski truth definitions)
The value ||A||M,a of a term A on a very general model M under an assignment a is defined as follows:

i. ||c|| = I(c) if c is a constant;
   ||x|| = a(x) if x is a variable;

 ii. ||¬φ|| = −||φ||
    (negation); 

     ||φ  ψ|| = ||∧ φ|| ∩ ||ψ|| 
       = <||φ+||∩ ||ψ+|| ,  ||φ–||∪||ψ–||  > 

    (conjunction);

    ||#|| = <1,1>;
    |||| = <0,0>;
(for Completeness)

iii. || x∀ α φ||M,a  = ∩d Dα  ∈ ||φ||M,a[d/x]

 = < ∩d Dα  ∈ ||φ+||M,a[d/x],  ∩d Dα  ∈ ||φ–||M,a[d/x]>  
     (universal quantification);

iv. ||AαβBα|| = F1
||A|| (||B||)

    (function application);

v. ||λxα Aβ||M,a = the R such that 
    F1

R(d) = ||A||M,a[d/x]  for all d  D∈ α 
               (lambda abstraction);

vi. ||A = B|| = <1,0> if ||A|| = ||B||  
       = <0,1> if ||A|| ≠ ||B||

     (identity).
(Recall from our original version of TT2, that F1 is simply the first slice function of some relation.) 

Definition 9 (Entailment in TT2
4) 

Let Γ and ∆ be sets of  terms of some type α = <α1...αn>. 
Γ |=s ∆ ,  if or, in other words...
 ∩  ||A|| M,a   ⊆  ∪ ||B||M,a < ∩{||A+|| | A Γ},∈ {||∪ A– || | A Γ }∈ >  ⊆ < {||∪ B+|| | B ∆}, ∩{||B∈ – || | B ∆}>∈
  A Γ∈     B ∆∈

for all standard models M and assignments a to M.

            2.2 Working through some examples  
Non-basic Domains:
Ex.1:
Getting the domain <e> in TT2

D<e> = Pow(De) 
        = {X | X ⊆ De}
        = GREEN<e>, GHOST<e>, IDEA<e>, SHOE<e> ...

Getting the domain <e> in TT2
4       (c.f. Definition 6)

D<e> = PPow(De) 
        = {<X,Y> | X,Y ⊆ De}
        = < GREEN+

<e>, GREEN– 
<e> >, 

< GHOST+
<e>, GHOST– 

<e> >,
< IDEA+

<e>, IDEA– 
<e> >, ...

Slice Functions:
||λxα Aβ||M,a = the R such that F1

R(d) = ||A||M,a[d/x]  for all d  D∈ α (c.f. Definition 8)

Ex.2: ||λxeGREEN(x)||M,a = the R such that F1
R(d) = ||GREEN||M,a[d/x]  for all d  D∈ e

in TT2

F1
||GREEN|| (d) 

in TT2
4

F1
||GREEN|| (d) = <F1

||GREEN||+ (d), F1
||GREEN||– (d)>
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Function application: Remember: Here, 0 is just  and ∅
||AαβBα|| = F1

||A|| (||B||)       1 is just { }.∅

Ex.2: “John is green.”
GREEN<e>(JOHNe) = F1

||GREEN|| (||JOHN||) = F1
I(GREEN) (I(JOHN)) = F1

 GREEN ()

in TT2

F1
GREEN () = 0

F1
GREEN 

 → 0
 → 1
 → 0
      … 

in TT2
4

F1
GREEN () = <F1

GREEN+ (), F1
GREEN– ()>

    = <0 , 1> 
F1

GREEN+ F1
GREEN–

 → 0  → 1
 → 1  → 0
 → 0  → 0
      …      …

         (denotation)                           (antidenotation)
Ex.3: “Abe is furious.”

FURIOUS<e>(ABEe) = F1
||FURIOUS|| (||ABE||) = F1

I(FURIOUS) (I(ABE)) = F1
 FURIOUS ()

in TT2

F1
FURIOUS () = 1

F1
FURIOUS 

 → 1
 → 1
 → 0
      … 

in TT2
4

F1
FURIOUS () = <F1

FURIOUS+ (), F1
FURIOUS– ()>

    = <1 , 1>
F1

FURIOUS+ F1
FURIOUS–

 → 1  → 0
 → 1  → 1
 → 0  → 0
      …      …

         (denotation)                           (antidenotation)

Conjunction:
||φ  ψ|| = ||∧ φ|| ∩ ||ψ|| 

Ex.4: “John is green and Abe is furious.”
GREEN(JOHNe) ^ FURIOUS(ABEe )

in TT2

||GREEN(JOHNe) ^ FURIOUS(ABEE )|| 
= ||GREEN(JOHNe)|| ∩ || FURIOUS(ABEe )|| 
= ∅ ∩ { }∅
=  ∅
= 0

in TT2
4

||GREEN(JOHNe) ^  FURIOUS(ABEE )|| 
= ||GREEN(JOHNe)|| ∩ || FURIOUS(ABEe )|| 
= <F1

GREEN+ () ∩ F1
FURIOUS+ () ,  F1

GREEN– ()∪F1
FURIOUS– ()  > 

= <  ∩ { } , { } ∅ ∅ ∅ ∪ { }>∅
= <  , { }> ∅ ∅
= <0, 1>
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