
Handout 4: Going Partial (Muskens 1995, Ch. 5)

Semantics C (Spring 2010)

One of the basic assumptions of classical logic is the assumption that a sentence is false if and only if it is not

true. Thus two possibilities are excluded:

(a) that sentences are neither true nor false;

(b) that sentences are both true and false.

Partial logics are logics in which at least one of these possibilities is allowed. This handout has two goals:

• develop partial variants of classical propositional logic and classical predicate logic.

• Generalize these to a full partial theory of types.

The First Consideration:

Should we allow both (a) and (b) or will it do to allow just (a) or just (b)?

• Between the last two possibilities there is not much to choose, since under certain reasonable assump-

tions a logic that allows sentences to be both true and false but does not allow them to be neither will be

isomorphic to a logic that does the reverse.

• But the choice between a logic that allows all four possible combinations of truth values and one that

allows only three of them is real.

Muskens allows both overdefinedness and underdefinedness (Four-valued logic).

• Accepting one, but not the other, of the two symmetrical possibilities (a) and (b) above would introduce

certain asymmetries into the logic that are less than nice. Four-valued logics tend to be more elegant

than three-valued ones.

• If we want to give a natural account of the semantics of the psychological verbs, we need situations that

are overdefined as well as situations that are underdefined.

– Good examples of underdefined situations are people’s visual scenes, the situations they see at some

given moment.

– But people do not only see things, they imagine and believe things as well. People can believe things

to be and not to be the case, or at least they can believe that they believe this.1 It is therefore useful

to have overdefined situations around if you want to model the logic of the verbs believe, imagine,

dream and the like.

Now that the tie between truth and falsity has been cut, we are left with four combinations of truth values:2

• ‘true and not false’ T

1The sentences we usually encounter in Montague Grammar, sentences not containing truth predicates etc., are always either true

or false and never both in the real world (but they may be neither true nor false in parts of the real world or both true and false in

imagined situations). In the next chapter we shall make sure that this is the case in all models under consideration by means of a

meaning postulate. Of course the situation may be different with respect to the Liar sentence, which is treated as neither true nor false

or as both true and false in most contemporary theories. Although the logic that is developed below is a higher order generalization of

the four-valued predicate logic that is usually employed in analyses of the Liar paradox, we postpone a treatment of the Liar within the

present framework to another occasion.
2Note that T, F, N and B are not truth values themselves, they are truth combinations.
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• ‘false and not true’ F

• ‘neither true nor false’ N

• ‘both true and false’ B

Say that:

• a combination X includes truth iff X equals T or B

• a combination X includes falsity iff X equals F or B.3

Partial Propositional Logic

How does the truth combination of a complex sentence depend on the truth combinations of its parts? There

is a stunningly simple answer to this question.

• Truth and falsity can be computed just as it is done ordinarily, provided that truth conditions and falsity

conditions are separated:

i. ¬ϕ is true if and only if ϕ is false,

¬ϕ is false if and only if ϕ is true;

ii. ϕ∧ψ is true if and only if ϕ is true and ψ is true,

ϕ∧ψ is false if and only if ϕ is false or ψ is false;

iii. ϕ∨ψ is true if and only if ϕ is true or ψ is true,

ϕ∨ψ is false if and only if ϕ is false and ψ is false.

An Example:

If ϕ receives the combination N and ψ gets the combination T, then ϕ∧ψ gets N: ϕ∧ψ is not true since ϕ isn’t

and it is not false since neither ϕ nor ψ is. THUS:

∧ T F N B ∨ T F N B ¬

T T F N B T T T T T T F

F F F F F F T F N B F T

N N F N F N T N N T N N

B B F F B B T B T B B B

Note that if we restrict these tables to {T,F,N} we obtain just the Strong Kleene tables; following we shall

therefore call the above the Extended Strong Kleene tables.

• The two-place function on {T,F,N,B} given by the table for conjunction will be denoted by ∩ and similarly

∪ will denote the function given by the table for disjunction.

• the one-place function given by the negation table we shall denote with −. We write X⊆Y iff for some Z,

X∪Z equals Y.

– Notice that X⊆Y if and only if Y includes truth if X does and X includes falsity if Y includes falsity.

3T, F, N and B are often defined as {true}, {false}, ; and {true, false} respectively. A truth combination X can then be said to include

truth (falsity) if true ∈X (false ∈X). This is elegant but I shall not adopt this definition for the reason that union and intersection on these

sets do not correspond to disjunction and conjunction respectively. (They do however correspond to the operations ⊔ and ⊓ to be defined

below.)
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– The partial order ⊆, a generalization of the ordering relation in the Boolean algebra {true, false},

will play the role of entailment in the logics to be defined below

The operations ∩ and ∪ form a distributive lattice on the set of truth combinations, depicted below as L4.

Adding negation to L4 gives a structure that conforms to almost all of the customary axioms of the theory of

Boolean algebra’s.4
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To be more precise, the structure LK4= 〈{T,F,N,B}, ∩, ∪, −, T, F〉 satisfies the following list of axioms:

The Axioms for Distributive Lattices: (also called a Kleene algebra)

i. 0+a = a, 1 ·a = a;

ii. a′′ = a;

iii. (a ·b)′ = a′+b′, (a+b)′ = a′ ·b′,

iv. 0′ = 1, 1′ = 0.

There are two Boolean axioms that do not hold in LK4 and that, of course, we don’t want to hold:

• a+a′ = 1

• a ·a′ = 0.

If we would add them to the above list of axioms we would get a full set of axioms for Boolean algebras; the

move from single truth values to combinations of them did not cause an unmotivated loss of algebraical prop-

erties.

A Second Algebra

Let us say that a truth combination X approximates a truth combination Y, X ⊑ Y, if and only if Y includes

truth if X does and Y includes falsity if X includes falsity.

• Intuitively, if X⊑Y then Y contains at least as much information as X does.

• The relation ⊑ on the truth combinations gives rise to the distributive lattice A4 below.

4Note that this operation corresponds with rotating L4 halfway around its B-N axis
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Approximation lattice
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Clearly, A4 is just L4 put on its side.

• Its meet and join correspond to two natural ways to combine information.

• If one good friend tells you that a certain rumour is true and another equally good friend tells you that

it is false, there are two evenhanded ways to combine the information that they have given you.

– Accept that the rumour is both true and false.

– Conclude that the rumour is neither.

These join and meet operations are what we can call half-duals of the operations ∪ and ∩ defined above.

• The meet of two truth combinations X and Y in A4, written X⊓Y, includes truth (falsity) iff both X and

Y include truth (falsity).

• The join X⊔Y, includes truth (falsity) iff either X or Y includes truth (falsity).

We can also define a half-dual of negation:

• This is the unary operation that leaves T and F fixed, but swaps B and N. That is, X includes truth

(falsity) iff X does not include falsity (truth).

The structure 〈{T,F,N,B}, ⊓, ⊔, , B, N〉, which we shall call AK4, is a Kleene algebra.

At this point we may introduce propositional connectives corresponding to our new operations on truth combi-

nations. Let us write:

• ⊗ for ⊓

• ⊕ for ⊔

• for

⊗ T F N B ⊕ T F N B

T T N N T T T B T B T T

F N F N F F B F F B F F

N N N N N N T F N B N B

B T F N B B B B B B B N

Back up and look at our new connectives.
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• The connective ⊗ is what calls interjunction. It has the truth conditions of ∧ but the falsity conditions

of ∨.

• Its dual ⊕ has the truth conditions of ∨ and the falsity conditions of ∧.

• Entailment corresponds to the L4 ordering while approximation is the A4 ordering, we can even say that

approximation is the half-dual of entailment.

We see here that our decision to severe the classical connection between truth and falsity does not only lead to

a strengthening of the entailment relation, it also leads to a complete set of half-duals of our ordinary logical

concepts.

Towards a Partial Propositonal Logic:

In order to define a partial propositional logic we need to augment the syntax of ordinary two-valued proposi-

tional logic with new connectives. Apart from the classical ∧ and ¬, these will be:

• # is a constant (of formula type) to denote B

• ⋆ is a constant (of formula type) to denote N

• = is a two-place identity connective5

The choice of = as a primitive symbol rather than ⊗ and is taken with a view to the generalization to the

theory of types that we are after: in type theory we want to be able to express that objects of equal type are

identical whatever this type is, so we shall need a symbol to express identity between objects of formula type

〈〉 anyhow.

Having augmented the syntax of propositional logic thus, we can now give a partial semantics.

Definition 1 (Tarski truth definition for partial propositional logic) Let L be a set of propositional constants

and let V : L → {T,F,N,B} be a (valuation) function. The value |ϕ|V of a formula ϕ under V is defined as

follows:

i. |p|V =V (p) if p ∈ L;

ii. |¬ϕ|V =−|ϕ|V ;

|ϕ∧ψ|V = |ϕ|V ∩|ψ|V ;

|#|V =B;

|⋆ |V =N;

|ϕ=ψ|V =T if |ϕ|V = |ψ|V

=F if |ϕ|V 6= |ψ|V ;

The clauses for negation, conjunction, # and ⋆ are clearly in agreement with the preceding discussion; the

clause for = we shall discuss shortly. We can now define ⊗, ⊕ and and the classical abbreviatory symbols

from the primitive connectives that we have chosen.

Definition 2 (Abbreviations) Write

⊤ for6
⋆=⋆

⊥ for ¬⊤

ϕ∨ψ for ¬(¬ϕ∧¬ψ)

ϕ→ψ for ¬ϕ∨ψ

ϕ↔ψ for (ϕ→ψ)∧ (ψ→ϕ)

ϕ@ψ for (ϕ∧#)∨ (ψ∧⋆)

ϕ⊗ψ for (ϕ∧ψ) @ (ϕ∨ψ)

ϕ⊕φ for (ϕ∨ψ) @ (ϕ∧ψ)

ϕ for ¬(ϕ=⊥)∧

((ϕ=⋆)→ #)∧ ((ϕ= #)→⋆)

5Notice that ↔, if we give it its usual definition in terms of ∧ and ¬, can no longer do duty as identity as it does in two-valued

propositional logic, since ϕ↔ψ gets the value N if both ϕ and ψ get the value N.
6Warning: while ⊤ is often used to denote the top element of the approximation lattice A4, we follow the established practice to let it
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Notice that ϕ @ ψ has the truth conditions of ϕ but the falsity conditions of ψ and hence the right operations

are assigned to ⊗ and ⊕.

Entailment:

Let us say that a valuation V verifies (falsifies) a formula ϕ if |ϕ|V includes truth (falsity). Letting
⋂

and⋃
denote the infimum and the supremum of sets of truth combinations in the logical lattice L4, we define

entailment thus:

Definition 3 (Entailment in partial propositional logic) Let Γ and ∆ be sets of formulae. Γ entails ∆, Γ |=∆, if

⋂

ϕ∈Γ

|ϕ|V ⊆
⋃

ψ∈∆

|ψ|
V

for all valuations V .

The resulting notion of logical consequence is double-barrelled: A set of premises entails a set of conclusions if

and only if two conditions hold.

• The first of these is that each valuation that verifies all premises verifies some conclusion.

• the second is that each valuation that falsifies all conclusions falsifies some premise.

• Thus, logical consequence is preservation of truth in one direction and preservation of falsity in the other.

Other stabs at Entailment:

There are two obvious single-barrelled alternatives to the one above.

• Write ϕ |=′ ψ iff each valuation that verifies ϕ verifies ψ.

• Write ϕ |=′′ ψ iff each valuation that falsifies ψ falsifies ϕ.

We do not use these because there are some important properties that |= does, but that |=′ and |=′′ do not, share

with the classical notion of entailment.

• Contraposition: ϕ |=ψ if and only if ¬ψ |= ¬ϕ.

– On the other hand neither |=′ nor |=′′ satisfies this property.

– ⋆ |=′ ⊥ but not that ¬⊥ |=′ ¬⋆.

• Classical Logical Equivalence: ϕ∼=ψ if and only if ϕ |=ψ and ψ |=ϕ

since |ϕ|V = |ψ|V for each valuation V .

– The other notions fail since both ⋆ |=′ ⊥ and ⊥ |=′
⋆, but of course ⋆ and ⊥ get different values.

• Classical Correspondence: ϕ |=ψ if and only if ϕ∼=ϕ∧ψ if and only if ψ∼=ϕ∨ψ.

– Again this fails for the other relations; we have for example that ⋆ |=′ ⊥ but not that ⋆∼=⋆∧⊥.

We see here that an adoption of |=′ or of |=′′ as our notion of logical consequence would lead to deviations from

classical logic that are unaccounted for by our original motivation of cutting the tie between truth and falsity.

Also, we don’t lose much since we can recover |=′ and |=′′ in terms of |=:

ϕ |=
′ ψ if and only if ϕ |=ψ,⋆

ϕ |=
′′ ψ if and only if ϕ,⋆ |=ψ.

Identity:

This clause in Definition 1 seems the only reasonable one, given the constraint that identity statements

ϕ=ψ are two-valued, that is, if they always get the value T or F.

be the formula that is always true and never false, that is, it denotes the top of the logical lattice L4; a similar remark can be made with

respect to the symbol ⊥.
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• But what about this requirement? Aren’t there reasonable definitions of the semantics of = such that an

identity formula ϕ=ψ could in some cases get a value N or B?

• The answer is no. The possibility is ruled out by the requirement that identity should satisfy the identity

axioms, that is, the demand that the following should hold:

|=ϕ=ϕ

ϕ=ψ, [ψ/p]χ |= [ϕ/p]χ.

Suppose that in Definition 28 we had adopted some alternative clause for =, but that the two statements above

would still hold. We derive that even then no formula ϕ=ψ would get B or N as a value under any valuation.

• From |= ϕ = ϕ it follows that ϕ = ϕ must always get the value T and hence that ¬(ϕ = ϕ) must get the

value F.

• An instantiation of the other statement gives ϕ = ψ, ¬(ϕ = ψ) |= ¬(ϕ = ϕ). From the assumption that

|ϕ=ψ|V =N for some V we derive N⊆F, which is absurd.

• From the assumption that |ϕ=ψ|V =B we derive that B⊆F, no less absurd.

• We see that if = is to satisfy the identity axioms it has to be two-valued.

Functional Completeness:

If f is some n-ary truth function f : {T,F,N,B}n → {T,F,N,B} and ϕ is some formula in which exactly the

propositional constants p1, . . . , pn occur, we say that ϕ expresses f iff |ϕ|V = f (V (p1), . . . ,V (pn)) for each

valuation V . The following proposition holds (see the Appendix for its proof).

Theorem 1 Every truth function is expressed by some formula.

As a corollary we find that the set {⊗, ,∧,¬} is expressively adequate as well, since ⋆ is equivalent with

p0 ⊗¬ p0, # is equivalent with ⋆ and

((ϕ@ ϕ)↔ (ψ@ ψ))∧ (( ϕ@ϕ)↔ ( ψ@ψ))

is equivalent with ϕ=ψ. The result is that we can express all functions on the four truth combinations.

Other authors want only pretty truth functions and consider on the family of monotonic functions.

Definition 4 (Monotonic truth functions) An n-ary truth function f is called monotonic if it holds that

x1 ⊑ y1, . . . , xn ⊑ yn ⇒ f (x1, . . . , xn)⊑ f (y1, . . . , yn)

for all x1, . . . , xn, y1, . . . , yn ∈ {T,F,N,B}.

There is a nice correspondence between monotonic truth functions and sentences that are built up using only

⋆, # and the classical ∧, ¬ and ⊤.

Theorem 2 (Proved in the Appendix) A truth function is monotonic if and only if it is expressed by a sentence

that is built up from propositional constants using only ⋆, #, ∧, ¬ and ⊤.

The monotonic truth functions are a natural enough class to consider, but we do not want to be restricted. We

want not monontoinc functions, like identity, as well as the following:

Definition 5 (More abbreviations)

ϕ։ψ abbreviates (ϕ∧ψ)=ϕ

ϕ⊑ψ abbreviates (ϕ⊗ψ)=ϕ
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Clearly these are object-language versions of the ordering relations ⊆ and ⊑ in the lattices L4 and A4 discussed

above.

։ T F N B ⊑ T F N B

T T F F F T T F F T

F T T T T F F T F T

N T F T F N T T T T

B T F F T B F F F T

Since the double-headed arrow corresponds to the relation ⊆ on the truth combinations it also corresponds to

entailment; we have:

ϕ |=ψ if and only if |=ϕ։ψ.

The truth table for ։ given above is just the one that Anderson and Belnap associate with the notion of

‘tautological entailment’.

• One of our motives to partialize classical logic has been our discontent with the coarse-grainedness of

the classical relation of entailment.

• Some arguments that are classically valid are nevertheless irrelevant. (Examples are: |=ϕ∨¬ϕ; ϕ∧¬ϕ |=

and ϕ∧¬ϕ |=ψ∨¬ψ.)

• Since this irrelevance of classical entailment leads to problems if we use classical logic as an instrument

to describe the semantics of natural language, we have wanted to get rid of it.

• The source of the irrelevance we have diagnosed to be the classical connection between truth and falsity.

Giving up this connection indeed leads to a form of Relevant Logic.

Partial Predicate Logic

Assuming some countably infinite set of individual variables and a set L (a language) consisting of relation

symbols (each having a fixed number of argument places) and individual constants (we omit function symbols):

• terms to are either individual constants or individual variables.

• The set of formulae we define as follows:

Definition 6 The set of (partial predicate logical) formulae is defined with the following clauses:

i. If R is an n-ary relation symbol and t1, . . . , tn are terms then Rt1 . . . tn is an (atomic) formula;

ii. If t1 and t2 are terms then (t1 = t2) is an (atomic) formula;

iii. # and ⋆ are (atomic) formulae;

iv. If ϕ and ψ are formulae then ¬ϕ, (ϕ∧ψ) and (ϕ=ψ) are formulae;

v. If ϕ is a formula and x is an individual variable, then ∀xϕ is a formula.

Note that the identity symbol may occur in two different contexts; in one it is intended to denote identity

between individuals, in the other it denotes identity between combinations of truth values.

The Semantics:

We define an interpretation function for a set D in the standard way.

• It is a function I with domain L such that I(c) ∈ D if c is an individual constant and I(R) ∈ Dn if R is an

n-ary relation symbol.
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• But we need two interpretation functions for each model now: a model for partial predicate logic is a

triple 〈D, I+, I−〉 where I+ and I− are interpretation functions for D.

• We stipulate that I+(c)= I−(c) if c is an individual constant, but for relational symbols R the denotation

I+(R) and the antidenotation I−(R) may differ:

– The denotation of a relation symbol consists of those tuples for which it is true that they stand in

the relation.

– The antidenotation consists of the tuples for which this is false.

• As before truth and falsity are not connected in the classical way, it may be neither true nor false or it

may be both true and false that some tuple stands in a certain relation.

Assignments for a given model 〈D, I+, I−〉 are defined as usual:

• they are functions taking variables to elements of D. If a is an assignment then a[d/x] is the assignment

such that a[d/x](x)= d and a[d/x](y)= a(y) if y 6= x.

• The value of a term t in a model M = 〈D, I+, I−〉 under an assignment a, |t|M,a, is defined as I+(t) (or,

equivalently, as I−(t)) if t is a constant and as a(t) if t is a variable.

We can now define truth.

Definition 7 (Tarski truth definition for partial predicate logic) The value |ϕ|M,a ∈ {T,F,N,B} of a formula

ϕ on a model M = 〈D, I+, I−〉 under an assignment a is defined in the following way (I suppress superscripts

where possible):

i. |Rt1 . . . tn| =T if 〈|t1|, . . . , |tn|〉 ∈ I+(R)− I−(R),

|Rt1 . . . tn| =F if 〈|t1|, . . . , |tn|〉 ∈ I−(R)− I+(R),

|Rt1 . . . tn| =N if 〈|t1|, . . . , |tn|〉 ∈ Dn − (I+(R)∪ I−(R)),

|Rt1 . . . tn| =B if 〈|t1|, . . . , |tn|〉 ∈ I+(R)∩ I−(R);

ii. |t1 = t2| =T if |t1| = |t2|,

|t1 = t2| =F if |t1| 6= |t2|;

iii. |#| =B;

|⋆ | =N;

iv. |¬ϕ| = −|ϕ|;

|ϕ∧ψ| = |ϕ|∩ |ψ|;

|ϕ=ψ| =T if |ϕ| = |ψ|,

|ϕ=ψ| =F if |ϕ| 6= |ψ|;

v. |∀xϕ|M,a =
⋂

d∈D |ϕ|M,a[d/x].

There is also the following equivalent formulation (We write M |=ϕ[a] if |ϕ|M,a includes truth and M =|ϕ[a] if

|ϕ|M,a includes falsity).

i. M |= Rt1 . . . tn[a] iff 〈|t1|, . . . , |tn|〉 ∈ I+(R);

M =| Rt1 . . . tn[a] iff 〈|t1|, . . . , |tn|〉 ∈ I−(R);

ii. M |= t1 = t2[a] iff |t1| = |t2|

M =| t1 = t2[a] iff |t1| 6= |t2|;

iii. M |= #[a]

M =| #[a];

M 6|=⋆[a]

M 6=|⋆[a];
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iv. M |= ¬ϕ[a] iff M =|ϕ[a];

M =| ¬ϕ[a] iff M |=ϕ[a]

M |=ϕ∧ψ[a] iff M |=ϕ[a] and M |=ψ[a]

M =|ϕ∧ψ[a] iff M =|ϕ[a] or M =|ψ[a];

M |=ϕ=ψ[a] iff |ϕ| = |ψ|

M =|ϕ=ψ[a] iff |ϕ| 6= |ψ|;

v. M |= ∀xϕ[a] iff M |=ϕ[a[d/x]] for all d ∈ D

M =| ∀xϕ[a] iff M =|ϕ[a[d/x]] for some d ∈ D.

Note that the definition does not only give the Extended Strong Kleene truth conditions to ¬ and ∧, but to ∀

now as well:

• A universally quantified formula is true iff all its instances are true, false iff at least one of its instances is

false. Again this condition is in fact the classical one; of course in the classical case one of the condition’s

conjuncts is superfluous.

• It is clear that clauses iii. and iv. are the only ones possible if we want the logic to be a generalization of

the partial propositional logic discussed above.

• The form of clause i. is a direct consequence of the denotation-antidenotation approach.

• Clause ii. (a clause that is in analogy with the last clause of iv.) is again the only reasonable one if we

want identity to satisfy the identity axioms.

Let us define entailment with the help of the L4 ordering relation again.

Definition 8 (Entailment in partial predicate logic) Let Γ and ∆ be sets of formulae. Γ entails ∆, Γ |=∆, if

⋂

ϕ∈Γ

|ϕ|M,a
⊆

⋃

ψ∈∆

|ψ|
M,a

for all models M and assignments a for M.

What are this logic’s properties?

We can show it has many nice properties through an embedding of partial predicate logic into ordinary predi-

cate logic. With its help we can get some important theorems for free.

The following definition gives the syntactic part.

Definition 9 With each n-ary relation symbol R of our language L we associate two n-ary symbols R+ and

R−. Let L† be the language consisting of (a) all relation symbols R+ and R− associated with some R ∈ L, (b) all

individual constants in L and (c) two new zero place relation symbols p+ and pÐ. If ϕ is a formula then we write

±ϕ for the result of simultaneously substituting each R+ for its associated R− and each R− for its associated

R+ in ϕ (p+ and p− are meant to be included here). With each formula ϕ of partial predicate logic we associate

a formula ϕ† of ordinary predicate logic with the help of the following clauses.

i. (Rt1 . . . tn)† = R+t1 . . . tn;

ii. (t1 = t2)† = t1 = t2;

iii. (#)† = p+;

(⋆)† = p−;

iv. (¬ϕ)† =¬±ϕ†;

(ϕ∧ψ)† =ϕ† ∧ψ†;

(ϕ=ψ)† = (ϕ† ↔ψ†)∧±(ϕ† ↔ψ†);

v. (∀xϕ)† =∀xϕ†.
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The following lemma holds.

Embedding Lemma. Let M4 = 〈D, I+, I−〉 be a model for partial predicate logic and let M2 = 〈D, I2〉 be a

model for standard predicate logic such that:

(i.) I2(c)= I+(c) for each individual constant c ∈ L;

(ii.) I2(p+)= 1, I2(p−)= 0;

(iii.) I2(R+)= I+(R) and I2(R−)= Dn − I−(R) for all n-ary relation symbols R.

Then the following two equivalences hold for each assignment a :

M4 |=ϕ[a] iff M2 |=ϕ†[a]

M4 =|ϕ[a] iff M2 |= ¬±ϕ†[a].

The proof of this lemma is a straightforward induction on the complexity of ϕ which we leave to the reader.

From the Embedding Lemma the next theorem follows.

Theorem 3 (Embedding Theorem) Let Γ and ∆ be sets of sentences of partial predicate logic. Define Γ† to be

the set {ϕ† |ϕ ∈ Γ} and similarly define ∆
† to be {ψ† |ψ ∈∆}. Write |=2 for the relation of entailment in predicate

logic. Then:

Γ |=∆ iff Γ†, (p+
∧¬p−)∨ (p−

∧¬p+) |=2 ∆
†.

The proofs of this theorem and of its corollaries—see below—are in the Appendix as usual.

A Rich Harvest of Corollaries:

Let us call M a model of a theory Σ if M |=σ for every σ ∈Σ. We have:

Corollary. (Compactness Theorem for partial predicate logic) If every finite subset of some theory has a model

then that theory has a model.

Corollary. (Löwenheim-Skolem Theorem for partial predicate logic) If a theory has an infinite model then it

has a countably infinite model.

Corollary. There is a recursive axiomatization of partial predicate logic.

Corollary. Let Γ and ∆ be sets of sentences of partial predicate logic that are built up from ¬, ∧, ⊤, ⊥, = and

∀. Then Γ |=∆,⋆ iff Γ,⋆ |=∆.

This last corollary is of some practical value since it follows that in many cases it will be possible to see that

some entailment holds after doing only half of the checking that is required in general.

• If some argument consists only of sentences built up from ¬, ∧, ⊤, ⊥, = and ∀

• It suffices to prove either that truth is preserved from premises to conclusions or that falsity is preserved

in the other direction.

• We need not prove both in these cases because either proposition implies the other.

We opened this chapter questioning one of the central principles of classical logic, the principle that a sentence

is true if and only if it is not false. The answer is: surprisingly little. There is a simple function embedding the

former logic into the latter and we can use this embedding in many cases to reduce questions about four-valued

predicate logic to questions about standard logic.
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