
Handout 3: PTQ Revisited (Muskens 1995, Ch. 4)

Semantics C (Spring 2010)

Montague’s PTQ article (Montague 1973), the paper in which he gave his ‘Proper Treatment of Quan-
tification’, functions as the paradigm of Montague Grammar:

• a fragment of ordinary English was provided with a semantics, via a translation into the logic IL

Plan – we take a second look at the PTQ fragment and:

• reformulate its syntax

– we define certain structures called analysis trees: languages are ambiguous and expressions may
have more than one reading – analysis trees represent those readings

– we give an inductive assignment of phrases to analysis trees: if a phrase is assigned to an analysis
tree, the tree will be a reading of that phrase

• give it a simplified semantics on the basis of our relational type logic TT2

– analysis trees will be translated into TT2 by a separate induction

– this will associate truth conditions and other semantic values with trees and will induce a relation
of entailment on them

– if a tree with certain truth conditions functions as a possible reading of a sentence, we can say
that the sentence has those truth conditions given that particular reading

– it will also be possible to characterize an argument as valid or invalid, given readings of its premises
and conclusion

– the relation of entailment that is induced on the fragment by this procedure is provably orthodox:
it equals the entailment relation given in the textbook Dowty et al. (1981)1

1 Syntactic Categories and Analysis Trees

The syntactic system described here – a categorial grammar:

• all syntactic objects are required to have some category, just as all objects in type logic are subsumed
under some type

The set of categories is defined in the following way.

(1) (Categories)

i. E is a category; S is a category;
1The main difference between Montague’s own semantics for the PTQ fragment and that given in DWP concerns the use of

‘individual concepts’ (type se functions). Montague employed these in order to circumvent certain difficulties with sentences
like Partee’s The temperature is ninety but it is rising, but DWP skip the use of individual concepts altogether, following
Bennett (1974), who saw that these did not only complicate the theory considerably, but moreover created as many problems
as they were supposed to solve. For a careful discussion see DWP; for a contrary opinion Janssen (1984). We accept Bennett’s
Simplification here. However, it is possible to reintroduce individual concepts in the present relational setting by treating
them as 〈se〉 type relations that happen to be functional. See also Chapter 9 where individual concepts are reintroduced in a
somewhat different manner.
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ii. If A and B are categories and A 6= E , then A/B and A//B are categories.

The idea: an object of category A/B or category A//B combines with an object of category B to an object
of category A.

For example:

• if Mary is assigned to category S/(S/E) and run is given category S/E, then the two expressions can
combine into Mary runs.

Table 1 lists the categories we actually use, the way in which we abbreviate these categories and their
traditional name.

Category A Abbreviation Traditional name
S Sentence
S/E IV Verb Phrase/Intransitive Verb
S//E CN Common Noun
S/S Sentence Adverb
S/IV T or NP Noun Phrase/Proper Name
IV /S Sentence-complement Verb
IV /IV IAV Verb Phrase Adverb
IV //IV Infinitive-complement Verb
IV /T TV Transitive Verb
T/CN DET Determiner
IAV /T Preposition

Table 1: Syntactic categories

Next step: define the lexicon of our fragment.

Each category A comes with a set of basic expressions BA.

(2) (Basic Expressions)

BIV = {run,walk, talk}
BCN = {man,woman, park, fish, pen, unicorn}
BS/S = {necessarily}
BT = {John,Mary,Bill, he0, he1, he2, . . .}
BIV /S = {believe that, assert that}
BIAV = {rapidly, slowly, voluntarily, allegedly}
BIV //IV = {try to,wish to}
BTV = {find, lose, eat, love, date, be, seek, conceive}
BDET = {every, the, a}
BIAV /T = {in, about}
BA = ∅ if A is any category other than those mentioned above

The words in this lexicon can be combined into larger units by means of certain modes of combination:

• each clause in the definition below corresponds to one such mode of combination

• analysis trees simply summarize the basic combinatorics of an expression (they do not capture all
syntactic information and there is no semantic information)

(3) (Analysis Trees) For each category A the set ATA of analysis trees of category A is defined as follows.

2



Basic rule

G1. BA ⊆ ATA for every category A.

Relative clause rule For each natural number n:

G2. If ξ ∈ ATCN and ϑ ∈ ATS then [ξϑ]2,n ∈ ATCN .

[woman [John [love he0]5 ]4 ]2,0

2, 0CN

mmmmmmmmm

NNNNNNNN

womanCN 4S

pppppppp
NNNNNNNN

JohnT 5IV

qqqqqqqq

KKK
KKK

KK

loveTV he0T

Rules of functional application

G3. If ξ ∈ ATDET and ϑ ∈ ATCN then [ξϑ]3 ∈ ATT .

[every woman]3
3T

nnnnnnnnn

PPPPPPPPP

everyDET womanCN

G4. If ξ ∈ ATT and ϑ ∈ AT IV then [ξϑ]4 ∈ ATS .

[Mary run]4
4S

rrrrrrrr

KKK
KKK

KK

MaryT runIV

G5. If ξ ∈ ATTV and ϑ ∈ ATT then [ξϑ]5 ∈ AT IV .

[love he17]5
5IV

qqqqqqqq

KKKKKKKK

loveTV he17T

G6. If ξ ∈ AT IAV /T and ϑ ∈ ATT then [ξϑ]6 ∈ AT IAV .

[about Mary]6
6IAV

nnnnnnnnnn

KKKKKKKK

aboutIAV /T MaryT

G7. If ξ ∈ AT IV /S and ϑ ∈ ATS then [ξϑ]7 ∈ AT IV .
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[believe that [Mary [date Bill]5 ]4 ]7

7IV

kkkkkkkkkkkk

LLLLLLLL

believe thatIV /S 4S

rrrrrrrr

LLLLLLLL

MaryT 5IV

qqqqqqqq

KKK
KKK

KK

dateTV BillT

G8. If ξ ∈ AT IV //IV and ϑ ∈ AT IV then [ξϑ]8 ∈ AT IV .

[try to run]8
8IV

mmmmmmmmmm

KKK
KKK

KK

try toIV //IV runIV

G9. If ξ ∈ ATS/S and ϑ ∈ ATS then [ξϑ]9 ∈ ATS .

[necessarily [Mary [date Bill]5 ]4 ]9

9S

lllllllllll

LLLLLLLL

necessarilyS/S 4S

rrrrrrrr

LLLLLLLL

MaryT 5IV

qqqqqqqq

KKK
KKK

KK

dateTV BillT

G10. If ξ ∈ AT IAV and ϑ ∈ AT IV then [ξϑ]10 ∈ AT IV .

[slowly walk]10
10IV

ooooooooo

LLLLLLLL

slowlyIAV walkIV

Rules of conjunction and disjunction

G11. If ξ, ϑ ∈ ATS then [ξϑ]11a, [ξϑ]11b ∈ ATS .

[[Mary [date John]5 ]4 [Mary [date Bill]5 ]4 ]11b

11bS

gggggggggggggg

WWWWWWWWWWWWWW

4S

oooooooo
OOOOOOOO 4S

oooooooo
OOOOOOOO

MaryT 5IV

qqqqqqqq

LLLLLLLL MaryT 5IV

qqqqqqqq

KKK
KKK

KK

dateTV JohnT dateTV BillT

G12. If ξ, ϑ ∈ AT IV then [ξϑ]12a, [ξϑ]12b ∈ AT IV .
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[run talk]12a
12aIV

sss
sss

ss

LLLLLLLL

runIV talkIV

G13. If ξ, ϑ ∈ ATT then [ξϑ]13 ∈ ATT .

[Mary John]13
13T

rrrrrrrr

LLLLLLLL

MaryT JohnT

Quantification rules For each natural number n:

G14. If ξ ∈ ATT and ϑ ∈ ATS then [ξϑ]14,n ∈ ATS .

[[a woman]3 [[every man]3 [love he0]5 ]4 ]14,0

14, 0S

dddddddddddddddddddddddd

ZZZZZZZZZZZZZZZZZZZZZZ

3T

rrrrrrr

QQQQQQQQQ 4S

gggggggggggggg

VVVVVVVVVVVVVV

aDET womanCN 3T

ppppppppp

LLLLLLLL 5IV

rrrrrrrr

JJJ
JJJ

JJ

everyDET manCN loveTV he0T

G15. If ξ ∈ ATT and ϑ ∈ ATCN then [ξϑ]15,n ∈ ATCN .
G16. If ξ ∈ ATT and ϑ ∈ AT IV then [ξϑ]16,n ∈ AT IV .

Negation and tense rules

G17. If ξ ∈ ATT and ϑ ∈ AT IV then [ξϑ]17a, [ξϑ]17b, [ξϑ]17c, [ξϑ]17d, [ξϑ]17e ∈ ATS .

For example, typical examples of quantifier scope ambiguities are captured in terms of different analysis trees
(both elements of ATS):

(4) a. [[every man]3 [love [a woman]3 ]5 ]4

b. 4S

gggggggggggggg

WWWWWWWWWWWWWW

3T

ooooooooo

MMMMMMMM 5IV

qqqqqqqq

KKK
KKK

KK

everyDET manCN loveTV 3T

ttt
ttt

tt

OOOOOOOOO

aDET womanCN

(5) a. [[a woman]3 [[every man]3 [love he0]5 ]4 ]14,0
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b. 14, 0S

dddddddddddddddddddddddd

ZZZZZZZZZZZZZZZZZZZZZZ

3T

rrrrrrr

QQQQQQQQQ 4S

gggggggggggggg

VVVVVVVVVVVVVV

aDET womanCN 3T

ppppppppp

LLLLLLLL 5IV

rrrrrrrr

JJJ
JJJ

JJ

everyDET manCN loveTV he0T

2 Syntax of the Fragment

Our main interest lies in the semantic interpretation of analysis trees – but we must assign them English for
our syntax to be complete.

• we do this by letting the expression that is to be assigned to a complex tree be a function of the
expressions that are assigned to its parts

• the functions we use are Montague’s operations F3–F15

• using these functions we can give a compositional assignment of phrases to trees – we only need to
stipulate which operation is used in which case

• Montague’s syntax is awkward and is not the reason for studying Montague Grammar; however, it
does show the basics of how a categorial syntax can be coupled with Montagovian semantics; we’ll give
a slightly modified version of Montague’s original syntax

• all modern syntactic theories (CG, HPSG, MP etc.) are usually coupled with a version Montague
semantics

(6) (Syntactic operations) Let γ and δ be strings. Define:

F3,n(γ, δ) = γ such that δ′; and δ′ comes from δ by replacing each occurrence of hen or himn by
he/she/it or him/her/it respectively, according as the first BCN in γ is of masc./fem./neuter
gender.

F4(γ, δ) = γδ′ , and δ′ is the result of replacing the main verbs in δ by their third person singular
present.

F5(γ, δ) = γδ if δ does not have the form hen, otherwise F5(γ, hen) = γhimn.

F6(γ, δ) = F7(δ, γ) = γδ.

F8(γ, δ) = γ and δ.

F9(γ, δ) = γ or δ.

F10,n(γ, δ) comes from δ by replacing the first occurrence of hen or himn by γ and all other occur-
rences of hen or himn by he/she/it or him/her/it respectively, according as the first BCN or BT
in γ is masc./fem./neuter, if γ does not have the form hek, otherwise F10,n(hek, δ) comes from
δ by replacing all occurrences of hen or himn by hek or himk respectively.

F11(γ, δ) = γδ′ and δ′ is the result of replacing the first verb in δ by its negative third person
singular present.

F12(γ, δ) = γδ′′ and δ′′ is the result of replacing the first verb in δ by its third person singular
future.

F13(γ, δ) = γδ′′′ and δ′′′ is the result of replacing the first verb in δ by its negative third person
singular future.

F14(γ, δ) = γδ′′′′ and δ′′′′ is the result of replacing the first verb in δ by its third person singular
present perfect.
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F15(γ, δ) = γδ′′′′′ and δ′′′′′ is the result of replacing the first verb in δ by its negative third person
singular present perfect.

(7) (Phrases) For each analysis tree ξ, define a phrase σ(ξ) by induction on the complexity of analysis
trees:

S1. σ(ξ) = ξ if ξ ∈ BA
S2–S17. If g is a rule number and S(g) is as in Table 2, then σ([ξϑ]g) = FS(g)(σ(ξ), σ(ϑ)).

g S(g) g S(g) g S(g) g S(g)
G2,n F3,n G8 F6 G12b F9 G17b F12

G3 F6 G9 F6 G13 F9 G17c F13

G4 F4 G10 F7 G14,n F10, n G17d F14

G5 F5 G11a F8 G15,n F10,n G17e F15

G6 F5 G11b F9 G16,n F10,n

G7 F6 G12a F8 G17a F11

Table 2: Rule-to-operation correspondence

For example, the phrases associated with the analysis trees in (4) and (5) above are derived as follows.

(8) a.

σ([[every man]3 [love [a woman]3 ]5 ]4) =
F4(F6(every,man), F5(love, F6(a,woman))) =

F4(every man, love a woman) =
every man loves a woman

b. every man loves a womanS

gggggggggggggg

WWWWWWWWWWWWWW

every manT

ooooooooo

MMMMMMMM love a womanIV

qqqqqqqq

KKK
KKK

KK

everyDET manCN loveTV a womanT

ttt
ttt

tt

OOOOOOOOO

aDET womanCN

(9) a.

σ([[a woman]3 [[every man]3 [love he0]5 ]4 ]14,0) =
F10,0(F6(a,woman), F4(F6(every,man), F5(love, he0))) =

F10,0(a woman, F4(every man, love him0)) =
F10,0(a woman, every man loves him0) =

every man loves a woman
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b. every man loves a womanS

dddddddddddddddddddddddd

ZZZZZZZZZZZZZZZZZZZZZZ

a womanT

rrrrrrr

QQQQQQQQQ every man loves him0S

gggggggggggggg

VVVVVVVVVVVVVV

aDET womanCN every manT

ppppppppp

LLLLLLLL love him0IV

rrrrrrrr

JJJ
JJJ

JJ

everyDET manCN loveTV he0T

That is, the function σ is not one-one: the same phrase may be associated with different trees.

• we say that an analysis tree ξ is a reading for the phrase σ(ξ)

• thus, a phrase may have different readings – and each reading consists of exactly one analysis tree

The above way of defining the syntax of the PTQ fragment differs slightly from Montague’s original setup:

• we defined analysis trees first and assigned them English expressions inductively

• Montague defines English expressions directly and uses analysis trees as a way to track their construc-
tion process

• the gain of our approach: we now have a distinct language of analysis trees and we assign meanings
directly to these trees

• this approach conforms to the general program Montague set out in ‘Universal Grammar’ (Montague
1970), where ambiguous languages are interpreted through the mediation of ‘disambiguated’ languages

• note also the parallel between this grammar architecture and the Y-model of syntax in GB/MP:
analyses trees are spelled out on the PF branch (i.e., English expressions are associated with them)
and are interpreted on the LF branch (i.e., model-theoretic objects are associated with them, possibly
via translation into an intermediate logical language)

• this grammar architecture has another advantage (again, compare with GB/MP): the separation of
the syntactical operations of the language (F3–F15 in the present case) from the grammatical rules
(G1–G17 here) makes a distinction between those parts of the grammar that are language-dependent
and those that are not

• Dowty (1982) has an interesting discussion of this point and traces the idea of separating grammat-
ical rules and syntactic operations back to Curry (1963), who calls the universal part of language
‘tectogrammatics’ and the language-particular part ‘phenogrammatics’

• for example, grammatical relations like ‘subject’, ‘object’ and ‘indirect object’ are universal / tec-
togrammatical in nature – and such relations can be easily defined on the basis of our analysis trees
(just as they are in GB/MP)

3 Semantics of the Fragment

To formalize the way in which meanings are attached to expressions of English, we give a translation function
◦ that associates analysis trees with terms of our relational logic TT2.

Given that

• the terms of our logic are interpreted model-theoretically and

• the translation is be well behaved
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we can think of these translations as standing proxy for meanings.

Each phrase Φ is associated with a set of trees ξ by our function σ: {ξ | σ(ξ) = Φ}. We associate Φ
with a set of meanings by translating each tree ξ into TT2 – the resulting TT2 term is ξ◦.

Thus, the set of meanings associated with a phrase Φ is:

{ξ◦ | σ(ξ) = Φ}

3.1 Category-to-Type Correspondence

Analysis trees of syntactic category A are translated into terms of a fixed type that can be obtained from A
as follows:

(10) (Category-to-type Rule)

i. τ(E) = e; τ(S) = 〈s〉;
ii. τ(A/B) = τ(A//B) = τ(B) ∗ τ(A),

where β ∗ 〈α1 . . . αn〉 = 〈βα1 . . . αn〉 for all β, α1, . . . , αn.

The idea:

• the meaning of a sentence is a proposition – a type 〈s〉 object, i.e., a set of indices

• the meaning of an expression of category E (these do not actually occur in the fragment) is a possible
individual

• the meaning of an expression of any category expecting a B in order to form an A has a type that
expects a τ(B) to form a τ(A)

• the translation of an expression will be its meaning, i.e., its intension, not its extension

• the extension of an expression at any index can always be obtained from its intension

Lewis (1974) gives the following category-to-type rule (using functional types):

i. τL(E) = se; τL(S) = st;

ii. τL(A/B) = τL(A//B) = (τL(B)τL(A))

Adopting Bennett’s Simplification – from se to e, we obtain the following rule:

i. τ ′(E) = e; τ ′(S) = st;

ii. τ ′(A/B) = τ ′(A//B) = (τ ′(B)τ ′(A))

Our category-to-type rule for TT2 is equivalent to this last one in the sense that τ ′(A) = Σ(τ(A)), where
the function Σ is as in Chapter 2.

The extensional version of the τ ′ function is defined below:

i. τ ′ext(E) = e; τ ′ext(S) = t;

ii. τ ′ext(A/B) = τ ′ext(A//B) = (τ ′ext(B)τ ′ext(A))

Table 3 provides the values of the function τ for those categories that are actually used in the PTQ frag-
ment. The third column gives the functional types that are assigned to these categories in Lewis (1974)
(with Bennett’s simplification) and the fourth column gives the corresponding extensional types.

To see that objects of type τ(A) are the kind of objects one would like to assign to expressions of category
A, we can use the slice functions discussed previously. For example:
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Category A τ(A) τ ′(A) τ ′ext(A)
S 〈s〉 st t
S/E 〈es〉 e(st) et
S//E 〈es〉 e(st) et
S/S 〈〈s〉s〉 (st)(st) tt
S/IV 〈〈es〉s〉 (e(st))(st) (et)t
IV/S 〈〈s〉es〉 (st)(e(st)) t(et)
IV/IV 〈〈es〉es〉 (e(st))(e(st)) (et)(et)
IV//IV 〈〈es〉es〉 (e(st))(e(st)) (et)(et)
IV/T 〈〈〈es〉s〉es〉 ((e(st))(st))(e(st)) ((et)t)(et)
DET 〈〈es〉〈es〉s〉 (e(st))((e(st))(st)) (et)((et)t)
IAV /T 〈〈〈es〉s〉〈es〉es〉 ((e(st))(st))((e(st))(e(st))) ((et)t)((et)(et))

Table 3: Categories and corresponding TT2 and functional types (intensional and extensional)

• one would arguably like the intension of a CN or an IV to be a property of individuals, i.e., a function
from possible worlds to sets of entities

• the second slice function of any type 〈es〉 object is just this kind of thing

• the meaning of a term is a property of properties (a quantifier), a function from possible worlds to sets
of properties

• the meaning of an IV/IV is a function from properties to properties

• the intension of a determiner can be seen as:

– a function from properties to quantifiers (use the first slice function)

– a so-called relation-in-intension between properties, a function from possible worlds to relations
between properties (use the third slice function)

Examples:

Constants Type
john, bill, mary e
run, walk, talk 〈es〉
man, woman, park, fish, pen, unicorn 〈es〉
believe, assert 〈〈s〉es〉
find, lose, eat, love, date 〈ees〉
seek, conceive 〈〈〈es〉s〉es〉
rapidly, slowly, voluntarily, allegedly 〈〈es〉es〉
try, wish 〈〈es〉es〉
in 〈〈〈es〉s〉〈es〉es〉
about 〈e〈es〉es〉
<, ≈ 〈ss〉

Table 4: Constants and their types

3.2 Translation Rules

We now can translate each expression of the fragment into type theory inductively by:

• giving translations to all lexical items
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• specifying how the translation of a complex expression is to depend on the translations of its parts

Notational conventions:

• x, y and z range over individuals (type e)

• i and j range over indices (type s)

• p and q range over propositions (type 〈s〉)

• P ranges over properties (type 〈es〉)

• Q ranges over quantifiers (type 〈〈es〉s〉)

(11) (Translation) Let the constants in the first column of Table 4 have types as indicated in the second
column. For each analysis tree ξ define its translation ξ◦ by induction on the complexity of analysis
trees:

Basic rule

T1. run◦ = run, walk◦ = walk , talk◦ = talk ;
John◦ = λP (P john), Mary◦ = λP (Pmary),
Bill◦ = λP (P bill), he◦n = λP (Pxn);
believe that◦ = believe, assert that◦ = assert
find◦ = λQλy Q(λx (find xy)), lose◦ = λQλy Q(λx (lose xy)),
eat◦ = λQλy Q(λx (eat xy)), love◦ = λQλy Q(λx (love xy)),
date◦ = λQλy Q(λx (date xy)), be◦ = λQλyQ(λxλi (x = y)),
seek◦ = seek , conceive◦ = conceive
rapidly◦ = rapidly , slowly◦ = slowly
voluntarily◦ = voluntarily , allegedly◦ = allegedly ;
try to◦ = try , wish to◦ = wish;
man◦ = man, woman◦ = woman park◦ = park ,
fish◦ = fish, pen◦ = pen, unicorn◦ = unicorn;
every◦ = λP1λP2λi ∀x(P1xi→ P2xi),
a◦ = λP1λP2λi ∃x(P1xi ∧ P2xi),
the◦ = λP1λP2λi ∃x(∀y(P1yi↔ x = y) ∧ P2xi);
necessarily◦ = λpλi ∀j(pj);
in◦ = λQλPλy Q(λx (in xPy)), about◦ = about

Relative clause rule. For each natural number n:

T2. ([ξϑ]2,n)◦ = λxnλi (ξ◦xni ∧ ϑ◦i);
Rules of functional application.

T3–T10. ([ξϑ]k)◦ = ξ◦ϑ◦ if 3 ≤ k ≤ 10;

Rules of conjunction and disjunction.

T11. ([ξϑ]11a)◦ = λi (ξ◦i ∧ ϑ◦i);
([ξϑ]11b)◦ = λi (ξ◦i ∨ ϑ◦i);

T12. ([ξϑ]12a)◦ = λxλi (ξ◦xi ∧ ϑ◦xi);
([ξϑ]12b)◦ = λxλi (ξ◦xi ∨ ϑ◦xi);

T13. ([ξϑ]13)◦ = λPλi(ξ◦Pi ∨ ϑ◦Pi);
Quantification rules. For each natural number n:

T14. ([ξϑ]14,n)◦ = ξ◦λxn (ϑ◦);

T15. ([ξϑ]15,n)◦ = λy(ξ◦λxn (ϑ◦y));

T16. ([ξϑ]16,n)◦ = λy (ξ◦λxn (ϑ◦y));
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Negation and tense rules.

T17. ([ξϑ]17a)◦ = λi¬ξ◦ϑ◦i;
([ξϑ]17b)◦ = λi∃j (i < j ∧ i ≈ j ∧ ξ◦ϑ◦j);
([ξϑ]17c)◦ = λi¬∃j (i < j ∧ i ≈ j ∧ ξ◦ϑ◦j);
([ξϑ]17d)◦ = λi∃j (j < i ∧ i ≈ j ∧ ξ◦ϑ◦j);
([ξϑ]17e)◦ = λi¬∃j (j < i ∧ i ≈ j ∧ ξ◦ϑ◦j).

The translation of (8) is provided below.

(12) a. a◦ = λP1λP2λi ∃x(P1xi ∧ P2xi)
b. woman◦ = woman
c. ([a woman]3)◦ = λP1λP2λi ∃x(P1xi ∧ P2xi) [woman] 

λP2λi ∃x(woman xi ∧ P2xi)
d. love◦ = λQλy Q(λx (love xy))
e. ([love [a woman]3 ]5)◦  

λQλy Q(λx (lovexy)) [λP2λi∃x (woman xi ∧ P2xi)] 
λy (λP2λi ∃x(woman xi ∧ P2xi) [λx(love xy)]) 
λyλi∃x(woman xi ∧ (λx (love xy) [xi])) 
λyλi∃x(woman xi ∧ love xyi))

f. every◦ = λP1λP2λi ∀x(P1xi→ P2xi)
g. man◦ = man
h. ([every man]3)◦ = λP1λP2λi ∀x(P1xi→ P2xi) [man] 

λP2λi ∀x(man xi→ P2xi)
i. ([[every man]3 [love[a woman]3 ]5 ]4)◦  
λP2λi ∀x(man xi→ P2xi) [λyλi∃x(woman xi ∧ love xyi)] 
λi ∀x(man xi→ (λyλi∃x(woman xi ∧ love xyi) [xi])) 
λi ∀x(manxi→ (λyλi∃z(woman zi ∧ love zyi) [xi])) 
λi ∀x(man xi→ ∃z(woman zi ∧ love zxi))

(13) λi ∀x(man xi→ ∃z(woman zi ∧ love zxi))

gggggggggggggg

WWWWWWWWWWWWWW

λP2λi ∀x(man xi→ P2xi)

ooooooooo

MMMMMMMM λyλi∃x(woman xi ∧ love xyi)

qqqqqqqq

UUUUUUUUUUUUU

everyDET manCN loveTV λP2λi ∃x(woman xi ∧ P2xi)

ttt
ttt

tt

OOOOOOOOO

aDET womanCN

The translation of (9) is provided below.

(14) a. love◦ = λQλy Q(λx (love xy))
b. he◦0 = λP (Px0)
c. ([love he0]5)◦ = λQλy Q(λx (love xy)) [λP (Px0)] 

λy (λP (Px0) [λx (love xy)]) 
λy (λx (love xy) [x0]) 
λy (love x0y) 
love x0

d. ([every man]3)◦  
λPλi ∀x(man xi→ Pxi)

e. ([[every man]3 [love he0]5 ]4)◦  
λPλi ∀x(man xi→ Pxi) [love x0] 
λi ∀x(manxi→ love x0xi)
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f. ([a woman]3)◦  
λPλi ∃x(woman xi ∧ Pxi)

g. ([[a woman]3 [[every man]3 [love he0]5 ]4 ]14,0)◦  
λPλi∃x(woman xi ∧ Pxi) [λx0λi ∀x(man xi→ love x0xi)] 
λPλi∃y(woman yi ∧ Pyi) [λx0λi ∀x(man xi→ love x0xi)] 
λi ∃y(woman yi ∧ (λx0λi ∀x(man xi→ love x0xi) [yi])) 
λi ∃y(woman yi ∧ ∀x(man xi→ love yxi))

(15) λi ∃y(woman yi ∧ ∀x(man xi→ love yxi))

dddddddddddddddddddddddd

ZZZZZZZZZZZZZZZZZZZZZZ

λPλi∃x(woman xi ∧ Pxi)

rrrrrrr

QQQQQQQQQ λi ∀x(manxi→ love x0xi)

gggggggggggggg

VVVVVVVVVVVVVV

aDET womanCN λPλi ∀x(man xi→ Pxi)

ppppppppp

LLLLLLLL love x0

rrrrrrrr

JJJ
JJJ

JJ

everyDET manCN loveTV he0T

4 Entailment

A precise definition of the notion of logical consequence on our natural language fragment (in all categories
– we need not restrict it to sentences) is provided below. Notational convention:

• if Γ and ∆ are sets of terms of type 〈α1 . . . αn〉, we write Γ |=AX ∆ for:

Γ, {λxα1 . . . λxαn
ϕ | ϕ ∈ AX} |=s ∆

where AX is the set {AX1, . . . ,AX8}.

We say that an analysis tree ϑ of any category follows from a set of trees Ξ of the same category if and only
if it holds that Ξ◦ |=AX ϑ◦.

For analysis trees of sentence category S, i.e., that have translations of type 〈s〉, this amounts to stipu-
lating that (in each model in which indices behave like world-time pairs):

• at each index at which all propositions expressed by the premises are true the proposition expressed
by the conclusion is true

This entailment relation is equivalent to the one given in DWP. The following theorem states this; its proof
and more precise information about the translation function ′ and set of IL sentences ∆ that it mentions are
given in the Appendix.

(16) For each analysis tree ξ let ξ′ be the translation it is given in DWP. Let ∆ be a set of DWP meaning
postulates, to be specified in the Appendix, and let Ξ ∪ {ϑ} be a set of analysis trees, then:

Ξ◦ |=AX ϑ◦ in TT2 iff Ξ′,∆ |= ϑ′ in IL.
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