
Handout 2: Two Type Logics (Muskens 1995, Ch. 2)

Semantics C (Spring 2010)

Montague Grammar:

• a very elegant and a very simple theory of natural language semantics

• its elegance and simplicity are obscured by a needlessly baroque formalization

• as Barwise and Cooper (1981) put it:

Montague had a certain job that he wanted to do and used whatever tools he had at hand to do it.
If the product looks a bit like a Rube Goldberg machine, well, at least it works pretty well.

• among linguists, the Rube Goldberg character of Montague’s theory has created a general impression
that the subject is ‘difficult’ – it would be worthwhile to streamline the theory a bit even if this would
only serve the purpose of taking away this false impression

• streamlining the theory serves another goal as well: if we cut down the theory to its bare essentials, it
will be easier to generalize it afterwards

Montague based his semantic theory on a higher-order logic which he called IL—Intensional Logic.

• he defined this system as an extension of Russell’s Simple Theory of Types (Russell (1908)), a logic
which had found its classical formulation in Church (1940)

• the great complexity of the logic IL is to be held responsible, at least in part, for Barwise & Cooper’s
remark, but in fact Montague’s semantic theory can be based on much simpler logics

• Gallin (1975) observes that from a formal point of view it is natural to interpret IL in a two-sorted
variant of Russell’s original type theory, a logic which he called TY2

• replacing IL by this version of classical higher-order logic already leads to a much smoother set-up of
Montague’s original system

• we will discuss TY2 presently

The partialization of Montague’s semantic theory in later chapters will not be based on the logic TY2 –
there is a further simplification that we want to make.

• the models of TY2 are hierarchies built up from certain ground domains by the single rule that the set
of all unary functions from one domain to another is itself a domain

• why only unary functions? we need functions and relations in more than one argument, but these can
be coded by unary functions

• two steps are needed to code a multi-argument relation:

– identify it with its characteristic function, a multi-argument function; this identification is very
simple and unobjectionable

– the second step is highly tricked is based on Schönfinkel’s and Curry’s observation that there is
a one-to-one correspondence between multi-argument functions and certain unary functions of
higher type

1

• e.g., an ordinary three-place relation on individuals like the relation give is equated with its charac-
teristic function, which, in its turn, is identified with a function from individuals to functions from
individuals to functions from individuals to truth-values

• the virtue of this approach is a certain parsimony: some objects (relations, multi-argument functions)
are replaced by others (unary functions) that are needed anyway

• from a purely technical point of view there is nothing that can be said against this move

• the price: an unintuitive complication of our models and an unintuitive recursive encoding of relatively
simple objects by relatively complex ones

We will therefore define a second type theory TT2 in which these unnecessary complications are done away
with.

• TT2 can informally be described as consisting of the syntax of Church’s type logic interpreted on the
relational models of Orey (1959)

• a comparison between TY2 and TT2 will reveal that, although the two systems have different models,
the entailment relation on TT2 is the same as that on the functional logic TY2; as the latter is a
classical logic, this means that TT2 is classical as well

1 The functional type logic TY2

An m-sorted functional type logic TYm:

• has m+ 1 basic or ground types

• one of these types must be the type t, which stands for truth values

The two other ground types in Gallin’s TY2:

• s, which stands for world-time pairs

• e, which is the type of (possible) individuals or entities (individuals which exist in some possible world
at some point in time)

From these basic types, complex types are built up as follows:

(1) (TY2 types) The set of TY2 types is the smallest set of strings such that:

i. e, s and t are TY2 types;

ii. if α and β are TY2 types, then (αβ) is a TY2 type.

Types αβ (we usually omit outer brackets) are associated with functions from objects of type α to objects
of type β:

• e.g., e(e(et)) stands for functions from individuals to functions from individuals to functions from
individuals to truth-values

Models for the logic are based on hierarchies of typed domains, as defined below:

(2) (TY2 frames) A TY2 frame is a set {Dα | α is a TY2 type} such that:

• De 6= ∅
• Ds 6= ∅
• Dt = {0, 1}
• Dαβ ⊆ {F | F : Dα → Dβ} for each type αβ

(3) A TY2 frame is standard if Dαβ = {F | F : Dα → Dβ} for each type αβ.

2

1.1 TY2 syntax

• for each type, we assume a denumerably / countably infinite set of variables of that type

• for each type, we assume a denumerably / countably infinite set of constants

• from these basic expressions, we build up terms inductively with the help of the usual logical connec-
tives, quantification, lambda abstraction, application, and identity

(4) (TY2 terms) For each TY2 type, the set of (TY2) terms of that type is defined as follows:

i. every constant or variable of any type is a term of that type;

ii. if ϕ and ψ are terms of type t (formulas), then ¬ϕ and (ϕ ∧ ψ) are formulas;

iii. if ϕ is a formula and x is a variable of any type, then ∀xϕ is a formula;

iv. if A is a term of type αβ and B is a term of type α, then (AB) is a term of type β;

v. if A is a term of type β and x is a variable of type α, then λx (A) is a term of type αβ;

vi. if A and B are terms of the same type, then (A = B) is a formula.

The other logical operators have their usual definitions. When parentheses are omitted, association is to the
left.

• e.g., instead of writing (. . . (AB1) . . . Bn), we write AB1 . . . Bn

We freely add parentheses where this improves readability. Terms are sometimes subscripted with their
types:

• as a metalanguage convention we may write Aα to indicate that A is of type α

These conventions will hold for all subsequent logics.

1.2 TY2 semantics

We can now interpret TY2 terms on TY2 frames – we just need to state how basic expressions (constants
and variables) are to be interpreted. This is where interpretation functions and assignments come in.

(5) An interpretation function I for a frame F = {Dα}α is a function such that:

• I has the set of all constants as its domain

• I(cα) ∈ Dα for each constant cα of type α

(6) A standard model is a tuple 〈F, I〉 where F is a standard frame and I is an interpretation function
for F .

(7) An assignment is a function a taking variables as its arguments such that a(xα) ∈ Dα for each
variable xα of type α.

(8) If a is an assignment then we write a[d/x] for the assignment a′ such that:

• a′(x) = d

• a′(y) = a(y) if x 6= y

The Tarski truth definition:

(9) Conventions:

• we sometimes write |A| for |A|M,a

• we use the von Neumann definition of 0 and 1, so 0 = ∅ and 1 = {∅}

3

(10) (Tarski truth definition for TY2) The value |A|M,a of a term A on a standard model M = 〈F, I〉
under an assignment a is defined as follows:

i. |c| = I(c) if c is a constant;
|x| = a(x) if x is a variable;

ii. |¬ϕ| = 1− |ϕ|;
|ϕ ∧ ψ| = |ϕ| ∩ |ψ|;

iii. |∀xα ϕ|M,a =
⋂
d∈Dα |ϕ|

M,a[d/x];

iv. |AB| = |A|(|B|);
v. |λxβ A|M,a = the function F with domain Dβ such that F (d) = |A|M,a[d/x] for all d ∈ Dβ ,

i.e., |λxβ A|M,a =
〈
|A|M,a[d/x] : d ∈ Dβ

〉
;

vi. |A = B| = 1 if |A| = |B|,
= 0 if |A| 6= |B|.

Clauses ii. and iii. are couched completely in terms of the Boolean operations on {0, 1} to make partialization
easier. These clauses clearly correspond to the usual ones.

The definition of the entailment relation is also put in terms of the natural Boolean algebra on {0, 1}.

(11) Let Γ and ∆ be sets of TY2 formulas. Γ s-entails ∆, Γ |=s ∆, if, for all standard models M and
M -assignments a: ⋂

ϕ∈Γ

|ϕ|M,a ⊆
⋃
ψ∈∆

|ψ|M,a

(12) A formula ϕ is standardly valid or s-valid if |=s ϕ.

This logic behaves classically – the following schemata are s-valid, for example.

(13) (Extensionality) ∀x (Ax = Bx)→ A = B

(14) (Universal Instantiation) ∀xα ϕ→ [Aα/x]ϕ

(15) (Lambda Conversion) λx (A)B = [B/x]A

(16) (Leibniz’s Law) A = B → ([A/x]ϕ→ [B/x]ϕ)

These laws (except the first) are subject to a substitutability provision:

• in the second schema, A must be free for x in ϕ

• in the third, B must be free for x in A

• in the fourth, both A and B must be free for x in ϕ

For more information about TY2 and its one-sorted and zero-sorted variants (including proof theory), see
Henkin (Henkin 1950, 1963) and Gallin (1975).

Since we have decided that indices (elements of Ds) are to be interpreted as world-time pairs, we must
ensure that the ground domains Ds of our models will behave in the correct way. We enforce this the help
of the non-logical axioms below.

• let ≈ and < be two TY2 constants of type s(st)

• a formula i ≈ j (we use infix notation here) is to be interpreted as ‘i and j have the same world
component’

• a formula i < j as ‘the time component of i precedes that of j’

4

The following eight axioms make the domain Ds of indices behave like the Cartesian product of two sets,
the second of which is linearly ordered.1

(17) AX1 ∀i i ≈ i
AX2 ∀i∀j (i ≈ j → j ≈ i)
AX3 ∀i∀j∀k (i ≈ j → (j ≈ k → i ≈ k))

AX4 ∀i¬i < i

AX5 ∀i∀j∀k (i < j → (j < k → i < k))

AX6 ∀i∀j (i < j → ∀k (i < k ∨ k < j))

AX7 ∀i∀j∃k (i ≈ k ∧ ¬j < k ∧ ¬k < j)

AX8 ∀i∀j ((i ≈ j ∧ ¬j < i ∧ ¬i < j)→ i = j)

Had we worked with a three-sorted logic with two separate sorts for possible worlds and times – instead of
our single sort of world-time pairs s, we could have made do with less axioms here:

• the sole purpose of our axioms is to make indices behave as if they were pairs with a strict linear
ordering on their second elements – so a set of axioms saying that < is a strict linear order on the
domain of times would have sufficed

• the number of basic types can be traded off against the number of axioms here and we have opted for
fewer types as this gives an overall simplification of the theory

2 The relational type logic TT2

The logic TY2 can be said to be universal in the sense that all relations and functions over its ground domains,
all relations between such functions and relations, and so on, are encodable as objects in its complex domains.

• a ternary relation between individuals can be represented as an object of type e(e(et))

• a binary relation between such ternary relations can be coded as an object of type (e(e(et)))((e(e(et)))t)

• i.e., we have coded binary relations between ternary relations as functions

– from: functions from individuals to functions from individuals to functions from individuals to
truth values

– to: functions from functions from individuals to functions from individuals to functions from
individuals to truth values to truth values

• we have replaced objects that we have some intuitive grasp on by monsters that we can only reason
about in an abstract way

Moreover: if we consider type hierarchies consisting of partial rather than total functions (we need them for
θ-roles, for example: not all events have an agent or experiencer role), Schönfinkel’s one-one correspondence
between multi-argument functions and unary ones breaks down.

For example (adapted from Tichy 1982):

• let a be some object of type e

• consider two partial functions F1 and F2, both of type e(ee), defined as follows:

– F1(x) = F2(x) = the identity function, if x 6= a

– F1(a) is undefined
1For a proof of this statement see the proof of Theorem 2 in Chapter 3.

5

– F2(a) is defined as the ee function that is undefined for all its arguments

• clearly, F1 6= F2

• the function F2 codes the two-place partial function F such that F (a, y) is undefined and F (x, y) = y
if x 6= a

• but if F1 codes anything at all, it must code F too

It seems that it is not a very good idea to put intricate codifications2 like Schönfinkel’s into your logic if
they are not absolutely necessary: they complicate the theory.

• if you confine yourself to direct applications of the logic, you may get used to the complications

• but if you are trying to prove things about the logic and generalize it – as it is often needed for natural
language semantics, the complications are a hindrance to any real progress

The general idea: we should first give a formulation of type theory that is not based on this identification
before we can generalize it to a partial theory of types.

Three options are open:

i. we can consider type hierarchies consisting of both multi-argument functions and multi-argument
relations, but we will not need this generality here

ii. we can consider only multi-argument functions; relations can then be coded by their characteristic
functions

iii. we can take only relations – and this is the course we will follow, since it is simpler than the first and
better suited to our present purposes than the second

At first glance, it might seem that the last solution is not liberal enough: it is often useful in natural language
semantics to take a functional perspective on things.

• the intension of an expression can fruitfully be seen as a function from indices of evaluation (world-time
pairs) to extensions

• functional application seems to be the correct semantic correlate of many / most syntactic constructions

But it is possible to view any relation as a function. And it is possible to do this in at least as many ways
as the relation has argument places. The following pictures illustrate this point:

• let R be some binary relation on the reals, or, equivalently, a set of points in the Euclidean plane

• for any point d on the X-axis, we have a corresponding set of points {y | 〈d, y〉 ∈ R} on the Y -axis –
see the left picture

• for any point d′ on the Y -axis, we have a corresponding set of points {x | 〈x, d′〉 ∈ R} on the X-axis –
see the right picture

• thus: there are two natural ways to see R as a function from the reals to the power set of the reals

• for binary relations, e.g., kiss, devour etc., we choose one particular way for syntactic purposes – but
both ‘schönfinkelizations’ / ways of ‘currying’ are equally plausible from a semantic point of view

2The question whether the Schönfinkel encoding is intricate or not is of course a matter of taste and opinion. Note however
that a double recursion is needed if one wants to define the correspondence in any precise way. See the definition of the functions
Sα in the next section.

6

RR

d′

Y

X

�
�
	
%
� �Y

Xd

�
�
	
%
� �

The procedure is entirely general:

(18) (Slice Functions) Let R be an n-ary relation (n > 0) and let 0 < k ≤ n. Define the k-th slice function
of R by:

F kR(d) = {〈d1, . . . , dk−1, dk+1, . . . , dn〉 |
〈d1, . . . , dk−1, d, dk+1, . . . , dn〉 ∈ R}.

• F kR(d) is the n− 1-ary relation that is obtained from R by fixing its k-th argument place by d (we will
often want to view relations as functions in this way)

• given that 〈a〉 = a, 〈 〉 = ∅, ∅ = 0 and {∅} = 1:
if R is a one-place relation, then F 1

R is its characteristic function

• for example:

– let love be a ternary relation, love xyi meaning ‘y loves x at index i’

– this is a relation-in-intension; relations-in-intension are normally thought of as functions from
possible worlds to extensions – F 3

love is this function for love

– it is also natural to view the relation as the function that, when applied to an entity ‘Mary’ gives
the property ‘y loves Mary at index i’ – this is the function F 1

love

• thus: we can shift between a functional and a relational perspective without making use of Schönfinkel’s
identification

2.1 TT2 types and frames

A relational formulation of higher-order logic was given in Orey (1959) (see also Gallin 1975 and and Benthem
and Doets 1983). The following two definitions give a two-sorted version of Orey’s type hierarchies:

(19) (TT2 types) The set of types is the smallest set of strings such that:

i. e and s are types,

ii. if α1, . . . , αn are types (n ≥ 0), then 〈α1 . . . αn〉 is a type.

(20) (TT2 frames) A frame is a set of sets {Dα | α is a type} such that De 6= ∅, Ds 6= ∅ and

D〈α1...αn〉 ⊆ Pow(Dα1 × . . .×Dαn)

for all types α1, . . . , αn.

(21) A frame is standard if
D〈α1...αn〉 = Pow(Dα1 × . . .×Dαn)

for all types α1, . . . , αn.

• note: the angled brackets are crucial and cannot be omitted – we do not want to equate the type 〈e〉
with the type e, although we usually do equate the ordered 1-tuple 〈a〉 with a

7

• domains De and Ds are thought to consist of possible individuals and world-time pairs respectively

• domains D〈α1...αn〉 consist of all n-ary relations having Dαi as their i-th domain

• the string 〈 〉 is a type and D〈 〉 = Pow({∅}) = {0, 1} – i.e., the set of truth-values

Orey used his relational frames to interpret the formulas of higher-order predicate logic on.

• these formulas have a syntax that is essentially that of ordinary predicate logic – except that quantifi-
cation over objects of arbitrary type is allowed

• there is no lambda-abstraction and the syntax allows only one type of complex expressions: type 〈 〉,
the type of formulas

• Montague Grammar assigns many different types to linguistic phrases – so, higher-order predicate logic
as it stands does not fit our purposes

• but the syntax of ordinary functional type logic does satisfy our needs

• the plan: keep Church’s syntax and attach Orey’s models to it

2.2 TT2 syntax

We need a slight reformulation of the syntax – more precisely, of the typing of terms.

• for each type, assume a denumerably infinite set of variables of that type

• for each type, assume a countably infinite set of constants

(22) (TT2 terms) For each type α, the set of terms of type α is defined as follows:

i. every constant or variable of any type is a term of that type;

ii. if ϕ and ψ are terms of type 〈 〉 (formulas), then ¬ϕ and (ϕ ∧ ψ) are formulas;

iii. if ϕ is a formula (type 〈 〉) and x is a variable of any type, then ∀xϕ is a formula;

iv. if A is a term of type 〈βα1 . . . αn〉 and B is a term of type β, then (AB) is a term of type
〈α1 . . . αn〉;

v. if A is a term of type 〈α1 . . . αn〉 and x is a variable of type β, then λx (A) is a term of type
〈βα1 . . . αn〉;

vi. if A and B are terms of the same type, then (A = B) is a formula (type 〈 〉).

2.3 TT2 semantics

(23) Standard models are tuples 〈F, I〉, consisting of a frame F = {Dα}α and an interpretation function
I such that:

• I has the set of constants as its domain

• I(c) ∈ Dα for each constant c of type a

(24) An assignment is a function a taking variables as its arguments such that a(xα) ∈ Dα for each
variable xα of type α.

(25) If a is an assignment then we write a[d/x] for the assignment a′ such that:

• a′(x) = d

• a′(y) = a(y) if x 6= y

We use the slice functions defined above to evaluate TT2 terms on these relational standard models:

8

• we simply let the value of a term AB be the result of applying the first slice function of the value of
A to the value of B

• we evaluate terms of the form λx.A by an inverse procedure

(26) (Tarski truth definition for TT2) The value ||A||M,a of a term A on a model M under an assignment
a is defined in the following way (we sometimes write ||A|| for ||A||M,a to improve readability):

i. ||c|| = I(c) if c is a constant;
||x|| = a(x) if x is a variable;

ii. ||¬ϕ|| = 1− ||ϕ||;
||ϕ ∧ ψ|| = ||ϕ|| ∩ ||ψ||;

iii. ||∀xα ϕ||M,a =
⋂
d∈Dα ||ϕ||

M,a[d/x];

iv. ||AB|| = F 1
||A||(||B||);

v. ||λxβ A||M,a = the R such that F 1
R(d) = ||A||M,a[d/x] for all d ∈ Dβ ,

i.e., the R such that F 1
R =

〈
||A||M,a[d/x] : d ∈ Dβ

〉
;

vi. ||A = B|| = 1 if ||A|| = ||B||;
= 0 if ||A|| 6= ||B||.

• clauses i, ii, iii and vi are completely analogous to the corresponding TY2 clauses

• only clauses iv and v differ

The following identities hold:

||AB|| = {〈d1, . . . , dn〉 | 〈||B||, d1, . . . , dn〉 ∈ ||A||}
||λxβ A||M,a = {〈d, d1, . . . , dn〉 | d ∈ Dβ and

〈d1, . . . , dn〉 ∈ ||A||M,a[d/x]}.

Given the Boolean character of our relational domains, it is possible to define the notion of logical consequence
for terms of arbitrary relational type, not only for formulas.

(27) (Entailment in TT2) Let Γ and ∆ be sets of terms of some type α = 〈α1 . . . αn〉. Γ is said to s-entail
∆, Γ |=s ∆, if ⋂

A∈Γ

||A||M,a ⊆
⋃
B∈∆

||B||M,a

for all standard models M and M -assignments a.

3 The logics TY2 and TT2 compared

Comparing our relational frames with the more usual functional ones:

• one one hand: since every function is a relation, it should be clear that all objects occurring in some
functional standard frame occur in the relational standard frame based on the same ground domains
De and Ds as well

• on the other hand: we can code relations as functions by the Schönfinkel codification

To give a formal account of this encoding, we first we need to establish a correspondence between relational
types and functional ones.

(28) Define the function Σ (Σ is for Schönfinkel) taking TT2 types to TY2 types by the following double
recursion:

9

I Σ(e) = e, Σ(s) = s

II i. Σ(〈 〉) = t

ii. Σ(〈α1 . . . αn〉) = (Σ(α1)Σ(〈α2 . . . αn〉)) if n ≥ 1.

For example:

• Σ(〈e〉) = et

• Σ(〈〈e〉〉) = (et)t

• Σ(〈ee〉) = e(et)

• Σ(〈〈se〉〈se〉〉) = (s(et))((s(et))t)

In general, if α is the type of some relation, then Σ(α) is the type of the unary function that codes this
relation in functional type theory.

The arguments of Σ, i.e., the TT2 types, tend to have less length than the corresponding values, i.e.,
the TY2 types.

(29) We call any TY2 type that is a value of Σ quasi-relational .

(30) A TY2 type is a value of Σ, i.e., is a quasi-relational type, iff no occurrence of e or s immediately
precedes a right bracket in it.

• this characterization presupposes the ‘official’ notation for functional types, with outer brackets
in place

• for example, in order to avoid clutter, we usually write se for (se), but this type is not quasi-
relational

Next step: provide a full definition of the Schönfinkel encoding function.

• this function is simple if only relations over individuals are considered

• in the higher-order case, where relations can take relations as arguments, which in their turn can again
take relations as arguments and so on, the identification is somewhat less transparent

(31) (The Schönfinkel Encoding) Let F = {Dα | α is a TT2 type type} be a standard TT2 frame and let
F ′ = {D′α | α is a TY2 type} be the TY2 standard frame such that De = D′e and Ds = D′s.
For each TT2 type α, we define a function Sα : Dα → D′Σ(α) by the following double recursion:

I Se(d) = d, if d ∈ De; Ss(d) = d, if d ∈ Ds;

II i. S〈 〉(d) = d, if d ∈ D〈 〉;
ii. if n ≥ 1, α = 〈α1 . . . αn〉 andR ∈ Dα, then Sα(R) is the functionG of type (Σ(α1)Σ(〈α2 . . . αn〉))

such that:
G(f) = S〈α2...αn〉(F

1
R(S−1

α1
(f))) for each f ∈ D′Σ(α1).

• the functions Sα are bijections, so the definition is correct

This definition shows us two things:

• we can code multi-argument relations as unary functions:
〈d1, . . . , dn〉 ∈ R iff S(R)(S(d1)) . . . (S(dn)) = 1, for all relations R (of any type)

• we shouldn’t code multi-argument relations as unary functions:
the functions Sα tend to increase complexity rather dramatically; this doubly recursive encoding is
just a needless complication.

10

3.1 An example of redundancy attributable to the Schönfinkel encoding

Natural language and, or and not can be used with expressions of almost all linguistic categories – so, type
domains should have a Boolean structure. This has been argued for by a variety of authors, beginning with
Von Stechow (1974) (see also Keenan and Faltz (1978)).

Orey’s relational standard frames have a Boolean structure on all their (non-basic) domains, since they
are power sets:

• the rule for the interpretation of natural language conjunction, disjunction and negation is very simple:
they are to be treated as ∩, ∪ and − (complementation within a typed domain) respectively

• entailment between expressions of the same category is to be treated as inclusion

But: the relevant Boolean operations are not as easily available in a functional type theory. Therefore
Gazdar (1980) (see also the work of Partee & Rooth) gives some pointwise recursive definitions.

First, we must characterize a certain subclass of the TY2 types, the so-called conjoinable ones:

(32) (Conjoinable TY2 types)

i. t is conjoinable;
ii. if β is conjoinable, then αβ is conjoinable.

• while not all conjoinable TY2 types are quasi-relational, the two classes of types are closely related: a
TY2 type is quasi-relational if and only if all its subtypes are either basic or conjoinable

The definition of generalized conjunction in functional type theory is as follows:

(33) (Generalized Conjunction)

i. a u b := a ∩ b, if a, b ∈ {0, 1} (i.e., a, b are of type t);
ii. if F1 and F2 are functions of some conjoinable TY2 type αβ, (F1 uF2)(z) := λzα F1(z)uF2(z).

• similar definitions can be given for generalized disjunction, complementation and inclusion (see Groe-
nendijk and Stokhof (1984) for the last operation)

• but the need for these definitions is an artifact of Schönfinkel’s Trick – they enable us to treat generalized
coordination by reversing Schönfinkelizations

• more precisely: for any R1, R2 of relational type, S(R1 ∩R2) = S(R1) u S(R2)

• as soon as we get rid of the Trick, the need for its reversals (i.e., these pointwise definitions) vanishes
too

We can use the formal characterization of the Schönfinkel Encoding to prove an equivalence between our
two logics.

• first, we stipulate that the constants (variables) of any TT2 type α are identical to the constants
(variables) of TY2 type Σ(α)

• given this stipulation, it is easily seen that all TT2 terms of any type α are TY2 terms of type Σ(α)
(and vice versa)

• so our new syntax is just a part of the TY2 syntax

• not all TY2 terms are TT2 terms by this identification since Σ is not onto, but the TY2 terms that
belong to TT2 are exactly those whose subterms are all of a quasi-relational type

The following theorem (proved is in the Appendix) says that both logics give the same entailment relation
on TT2 sentences. That is: we can have the nice models of the relational theory, but we do not have to
give up the classical entailment relation. In particular, laws such as Extensionality, Lambda Conversion,
Universal Instantiation and Leibniz’s Law continue to hold.

(34) Let Γ and ∆ be sets of TT2 sentences. Then Γ |=s ∆ in TT2 iff Γ |=s ∆ in TY2.

11

References

Barwise, J. and R. Cooper: 1981, ‘Generalized Quantifiers and Natural Language’, Linguistics and Philosophy
4, 159–219.

Benthem, J.F.A.K. van and K. Doets: 1983, ‘Higher-Order Logic’, in D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Vol. I, 275–329. Reidel, Dordrecht.

Church, A.: 1940, ‘A Formulation of the Simple Theory of Types’, Journal of Symbolic Logic 5, 56–68.

Gallin, D.: 1975, Intensional and Higher-Order Modal Logic. North-Holland, Amsterdam.

Gazdar, G.: 1980, ‘A Cross-Categorial Semantics for Coordination’, Linguistics and Philosophy 3, 407–409.

Groenendijk, J. and M. Stokhof: 1984, Studies on the Semantics of Questions and the Pragmatics of Answers,
Doctoral Dissertation, University of Amsterdam.

Henkin, L.: 1950, ‘Completeness in the Theory of Types’, Journal of Symbolic Logic 15, 81–91.

Henkin, L.: 1963, ‘A Theory of Propositional Types’, Fundamenta Mathematicae 52, 323–344.

Keenan, E. and L. Faltz: 1978, ‘Logical Types for Natural Language’. UCLA Occasional Papers in Linguis-
tics, 3.

Orey, S.: 1959, ‘Model Theory for the Higher Order Predicate Calculus’, Transactions of the American
Mathematical Society 92, 72–84.

Russell, B.: 1908, ‘Mathematical Logic as Based on the Theory of Types’, American Journal of Mathematics
30, 222–262.

Tichy, P.: 1982, ‘Foundations of Partial Type Theory’, Reports on Mathematical Logic 14, 59–72.

Von Stechow, A.: 1974, ‘ε-λ kontextfreie Sprachen: Ein Beitrag zu einer natürlichen formalen Semantik’,
Linguistische Berichte 34, 1–33.

12

