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Semantic analysis of presuppositions requires partialization of Montague grammar.

• Karttunen & Peters 1979 two-dimensional approach: Assertion and presupposition as two separate expressions
of Montague logic.

– Does not work for sentences with presupposition-quantification interaction:

(1) Somebody managed to succeed George V on the throne of England.

Goal of this chapter: Provide an analysis of a fragment with presupposition-quantification interaction.

• What K&P would have looked like if they had access to Muskens’ partialization of Montague Grammar.

1 Background

TY2
3: three-valued two-sorted type theory (⋆ = undefined expression).

Types:

1. e, s andt are types,

2. if α andβ are types, then(αβ) is a type.

Syntax:

1. If ϕ andψ are formulas, then¬ϕ and(ϕ ∧ ψ) are formulas.

2. If ϕ is a formula andx is a variable of any type, then∃xϕ is a formula.

3. If A is an expression of typeαβ andB is an expression of typeα, then(AB) is an expression of typeβ.

4. If A is an expression of typeβ andx is a variable of typeα, thenλx(A) is an expression of type(αβ).

5. If A andB are expressions of the same type, then(A ≡ B) is a formula.

6. ⋆ is a formula.

Semantics:

1. J¬ϕKg = −JϕKg

2. Jϕ ∧ ψKg = JϕKg ∩ JψKg

3. J∃xαϕKg =
⋃

d∈Dα
JϕKg[x/d]

4. JABKg = JAKg(JBKg)

5. JλxαAKg = the functionF s.t.F (d) = JAKg[x/d]

6. JA ≡ BKg = T iff JAKg = JBKg and F iff JAKg 6= JBKg
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7. J⋆Kg = N

Abbreviations

1. ϕ ∨ ψ abbreviates¬(¬ϕ ∧ ¬ψ)

2. ϕ ↔ ψ abbreviates¬(ϕ ∧ ¬ψ)

3. ∀xϕ abbreviates¬∃x¬ϕ

4. ϕ∧̇ψ abbreviates(ϕ ∧ ψ) ∨ (¬ϕ ∧ ϕ)

5. ϕ∧̈ψ abbreviates(ϕ ∧ ψ) ∨ (¬ϕ ∧ ϕ) ∨ (¬ψ ∧ ψ)

6. ⊤ abbreviates⋆ ≡ ⋆

7. ∂π abbreviates(π ≡ ⊤) ∨ ⋆

8. ϕ〈π〉 abbreviates∂π∧̇ϕ

Basic idea: Because presuppositions are built into the semantics, it is possible to provide a compositional account of
presupposition and quantification that does not run into thebinding problem of K&P.

2 Presuppositional Montague Grammar

We want to provide an analysis of sentences that contain bothquantifiers and presuppositions:

(2) a. Somebody managed to succeed George V on the throne of England.

b. A fat man pushes his bicycle.

c. Every man who serves his king will be rewarded.

d. Every fat man pushes his bicycle.

To account for the data in (2), some additions must be made to thePTQ-fragment:

• Presupposition triggers:

– manage to as a presuppositional variant oftry to

– ’s as member of categoryDET/NP

• Adjectives:

– fat as member of categoryCN/CN

It is also necessary to define a function(.)• that translates syntactic trees into expressions ofTY2
3.

• These expressions are then combined via functional application:

(3) ([[α]A/mB [β]B ]A)• = α•β•, for m ∈ {1, 2}

An example:

(4) S

NP

somebody

VP

VP/VP

manage to

VP

TV

succeed

NP

George V
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The translations of the relevant lexical entries intoTY2
3 are:

(5) a. somebody• = λPλi∃y(P yi)

b. manage to• = λPλxλi(P xi〈(difficult P) xi〉)

c. succeed• = λQλy(Qλx(succeed xy))

d. George V• = λP (P g)

By functional application:

1. ([succeed George V])• = succeed• George•

λQλy(Qλx(succeed xy))λP (P g) ⇒ λy(succeed gy) ⇒ succeed g

2. ([manage to [succeed George V]])• = manage to• (succeed George V)•

λPλxλi(P xi〈(difficultP) xi〉)succeed g ⇒ λxλi(succeed gxi〈(difficult(succeed g)) xi〉)

3. ([somebody [manage to [succeed George V]]])• = somebody• (manage to succeed George V)•

λPλi∃y(P yi)λxλi(succeed gxi〈(difficult(succeed g)) xi〉) ⇒
λPλi∃y(P yi)λxλj(succeed gxj〈(difficult(succeed g)) xj 〉) ⇒ λi∃y(succeed gyi〈(difficult(succeed g)) yi〉)

Result: Function from states to truth values

• True if it is asserted that there is someone who succeeded George V ins and presupposed that that person found
it difficult to succeed George V ins.

• Aviods K&P binding problem.

Defining presuppositions:

So far, we have a compositional account of presupposition that works if we stipulate the presuppositions that are
associated with a particular proposition. It does not predict which presuppositions should be associated with which
propositions.

In this intensional system, propositions are not simply True or False—they are True or False with respect to some state
s.

• Must define when an expressionϕst presupposes an expressionπst :

• Let ϕ andπ be expressions of typest. ϕ presupposes π iff for all modelsM , assignmentsg and for all statess:

(6) if JϕsKM ,g = T or JϕsKM ,g = F, thenJπsKM ,g = T

• (Maximal) presupposition ofϕ: if ϕ is of the formλiψ andψ is aλ-free formula, then the presupposition ofϕ

is given by:

(7) PR(ϕ) = λj(TR+(ϕj) ∨ TR−(ϕj))

Applied to our example, this definition produces:

(8) λj(∃y((difficult(succeed g)) yj ∧ succeed gyj) ∨ ∀y((difficult(succeed g)) yj ∧ ¬succeed gyj))

Other presuppositions:

Every andsome trigger existential presuppositions.

• In other words, the antecedent of material implication is always met.

In Presuppositional Montague Grammar, this presupposition means thatevery has the following translation:

(9) every• = λP 1λP 2λi(∀x(P 1 xi →̇ P 2 xi)〈∃y(P1 yi)〉)
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Some examples:

Both of the sentences in (10) presuppose that there was a (i.e., at least one) girl at the party:

(10) a. Bill kissed every girl at the party.
λi(∀x(girl xi →̇ kiss xbi)〈∃y(girl yi)〉)

b. Bill didn’t kiss every girl at the party.
λi¬(∀x(girl xi →̇ kiss xbi)〈∃y(girl yi)〉)

Stop doing X in a states presupposes having done X before and asserts not doing X any more ins:

(11) stop to• = λPλxλi(¬(P xi)〈∃j (j<i ∧̇ i≈j ∧̇ P xj )〉)

Applying this translation to an actual sentence gives us thetranslation in (12b):

(12) a. Somebody stopped dating Mary.

b. λi∃x(¬(date mxi)〈∃j (j<i ∧̇ i≈j ∧̇ date mxj )〉)

• Given a states, it is asserted that there is someone who doesn’t date Mary ins, and it is presupposed that there
is a states′ which precedess on the time-axis in which thatsame someone dates Mary.

• Presupposition: Either somebody has been dating Mary before and now no longer dates her, or everybody dated
Mary before and still dates her at the moment.

The presupposition triggered bytoo requires a meaning postulate and a rule for a special kind of quantifying-in (cf.
K&P):

(13) a. Too rule translated
([[ξ]NP [ϑ]S ]too

S ,n)• = λi(ξ•λxn(ϑ•)i〈tooξ•ϑ•i〉)

b. Meaning postulate
too ≡ λQλPλi∃x(∗ xi ∧̇ ¬(λP (P x) ≡ Q) ∧̇ λxn(P )xi)

The sentence in (14) asserts that Bill loves Mary and presupposes that there is someone other than Mary whom Bill
loves as well:

(14) a. Bill loves Mary too.

b. λi(love mbi〈∃x(¬(x≡m) ∧̇ love xbi)〉)

A problem:

Presuppositional Montague Grammar does not assign the correct presuppositions to texts like the following:

(15) a. A fat man pushes his bicycle. Itis broken.

b. Every man who serves his king is rewarded by him.

This is not really a problem with presuppositions; it is a problem with classical Montague grammar and, indeed, with
all static logics.

The solution? Dynamification!

4



3 Dynamifying Presuppositional Montague Grammar

To replace the system described in the previous section witha dynamic one, we need only four additions toTY2
3:

• DR(se)t , 7→, i[d]j, and three axioms

Step One:

• Add discourse referentsd1, d1, . . . to TY2
3.

– Discourse markers are of typese (individual concepts).

• Add the non-logical constantDR of type(se)t

– Interpretation: is a discourse referent.

– The interpretation is total: every expression of typese either is a discourse referent or it is not.

Add Muskens’ classical implication7→:

(16) ϕ 7→ ψ abbreviatesϕ ∧ ψ ≡ ϕ

Step Two:

• Definei[d]j to mean: statesi andj agree on all discourse referents except possibly in the value ofd:

(17) i[d]j iff ∀d′((DR d′ ∧ ¬(d ≡ d′)) 7→ d′i ≡ d′j)

• Three axioms are required to make this work:

(18) a. AX1:∀i∀d∀x(DR d 7→ ∃j(i[d]j ∧ dj = x))

b. AX2: DR d, for each discourse referentd

c. AX3: ¬(d1 ≡ d2), for each two different discourse referentsd1 andd2

Step Three:

• Build the discourse fragment.

– Sentences are translated into expressions of types(st) (relations between states).

• Add a rule for text formation:

(19) If [ξ]S and[ϑ]S are trees, then[[ξ]S [ϑ]S ]tf
S is a tree, and([[ξ]S [ϑ]S ]tf

S )• = ξ• ∧̇ ϑ•

Making the logic dynamic does not introduce any partiality into the system. In other words,modeling dynamics in
TY2

3 is exactly like modeling dynamics inTY2
2.

This is not a dynamic semantics; rather, it is a mechanism formodeling dynamic discourse assignment in a static
system.

The system is no longer intensional—states are assignments to discourse referents (not world-time pairs).
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4 Conclusion

Benefits of (Dynamified) Presuppositional Montague Grammar:

• Does not have K&P binding problem.

• Does not predict Heim’s overly strong, universal presuppositions

• Makes the same predictions as Partial Predicate logic, but is fully compositional.

• Is compatible with K&P’s fragment.

In this account, presupposition failure leads to undefinedness. One possible objection is that these “presuppositions”
are really conventional implicatures; failing implicatures should not necessarily lead to undefined truth values.

• It is possible to turnTY2
3 into TY2

4 (a four-valued, two-sorted logic) with the addition of#.

– This is exactly the same system, except thatDt = {T,F, t, f}, where:

∗ J⋆K = t (true in spite of presupposition failure)

∗ J#K = f (false in spite of presupposition failure)

Appendix: More examples

(20) S

NP0

DET

a

CN

ADJ

fat

CN

man

S

NP

t0

VP

TV

push

NP

DET

NP

t0

POSS

’s

CN

bicycle

This sentence requires a translation rule for quantifying-in:

(21) ([[ξ]NP [ϑ]S ]S ,n
qi)

• = ξ•λxn(ϑ•), for n ∈ N

The translation rules for the lexical items in the sentencesare the following:

(22) a. a• = λP 1λP 2λi∃y(P 1 yi ∧̇ P 2 yi)

b. fat• = fat

c. man• = man

d. bicycle• = bike

e. push• = λQλy(Qλx(push xy))

f. tn
• = λP (Pxn)

g. ’s• = λQλP 1λP 2λi(∃x(P 1 xi ∧̇ Qλy(of yx)i ∧̇ P 2 xi)〈∃!x(P1 xi ∧̇ Qλy(of yx)i)〉)
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Once we add a notation convention for the meaning ofof , we can use functional application to get a compositional
translation of the sentence:

(23) ∀x∀y∀i((γ xi ∧̇ of xyi)→̇ γ − of yxi), whereγ is man, bike or king

1. ([fat man])• ⇒ fat man

2. ([a [fat man]])• ⇒ λP 3λi∃z((fat man) zi ∧̇ P 3 zi)

3. ([t0 ’s])• ⇒ λP 1λP 2λi(∃x(P 1 xi ∧̇ of x0xiP 2 xi)〈∃!x(P1 xi ∧̇ of x0 xi)〉)

4. ([[t0 ’s] bicycle])• ⇒ λP 2λi(∃x(bike − of x0xi ∧̇ P 2 xi)〈∃!x(bike−of x0 xi)〉)

5. ([push [[t0 ’s] bicycle]])• ⇒ λyλi(∃x(bike − of x0xi ∧̇ push xx0 i)〈∃!x(bike−of x0 xi)〉)

6. ([t0 [push [[t0 ’s] bicycle]]])• ⇒ λi(∃x(bike − of x0xi ∧̇ push xx0 i)〈∃!x(bike−of x0 xi)〉)

7. ([[a [fat man]]t0 [push [[t0 ’s] bicycle]]]qi
S ,0 )• ⇒ λi∃z((fat man)) zi ∧̇ ∃x(bike−of zxi ∧̇ push xzi)〈∃!x(bike−ofzxi)〉

The presupposition for this sentence is built up compositionally; it is the disjunction of an existential truth-condition
and a universal falsity condition, which is weaker than the presupposition predicted in Heim (1983):

(24) λj(∃z(fat man) zj ∧ ∃!x(bike − of zxj) ∧ ∃x(bike − of zxj ∧ push xzj)) ∨
∀z((fat man) zj → (∃!x(bike − of zxj) ∧ ∀x(bike − of zxj → ¬push xzj)))

The same procedure derives the following analogous sentence-translation pair:

(25) a. Every fat man pushes his bicycle.

b. λi∀z((fat man)zi →̇ ∃x(bike − of zxi ∧̇ push xzi)〈∃!x(bike−of zxi)〉)

Sentences containing relative clauses require a rule of translation for relative clause formation:

(26) a. S

NP

DET

every

CN0

CN

man

S

NP

t0

VP

TV

serve

NP

DET

NP

t0

POSS

’s

CN

king

VP

be rewarded

b. ([[ξ]CN [ϑ]S ]rcf
CN ,n)• = λxnλi(ξ•xn i ∧̇ ϑ•i), for n ∈ N

c. ([[every [man [t0 [serve [[t0 ’s] king]]]] rcf
CN ,0 ] be rewarded])• ⇒

λi∀x((man xi ∧̇ ∃y(king − of xyi ∧̇ serve yxi)〈∃!yking−of xyi〉) →̇ reward xi)
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