

Handout 9: Introduction to CDRT+GQ

Semantics C (Spring 2010)

1. Dynamic Ty2

To goal is to achieve compositionality at sub-clausal level by

"[…] combin[ing] Montague Semantics and Discourse Representation into a formalism
that is not only notationally adequate, in the sense that the working linguist need
remember only a few rules and notations, but is also mathematically rigorous and based
on ordinary type logic. […] DRT's Discourse Representation Structures (DRSs or boxes
henceforth) are already present in type logic […] The presence of boxes in type logic
permits us to fuse DRT and Montague Grammar in a rather evenhanded way: both
theories will be recognizable in the result. […] With this unification of the theories
standard techniques (such as type-shifting) that are used in Montague Grammar become
available in DRT."
(Muskens 1996: 144-145)

"[The unification of Montague semantics and dynamic semantics is] based on two
assumptions and one technical insight. The first assumption is that meaning is
compositional. The meaning of words (roughly) are the smallest building blocks of
meaning and meanings may combine into larger and larger structures by the rule that the
meaning of a complex expression is given by the meaning of its parts.
The second assumption is that meaning is computational. Texts effect change, in
particular, texts effect changes in context. The meaning of a sentence or text can be
viewed as a relation between context states, much in the way that the meaning of a
computer program can be viewed as a relation between program states.
[…] The technical insight […] is that virtually all programming concepts to be found in
the usual imperative computer languages are available in classical type theory. We can do
any amount of programming in type theory. This suggests that type theory is an adequate
tool for studying how languages can program context change. Since there is also some
evidence that type theory is also a good vehicle for modelling how the meaning of a
complex expression depends on the meaning of its parts, we may hope that it is adequate
for a combined theory: a compositional theory of the computational aspects of natural
language meaning."(Muskens 1991: 3-41)

1 Page references are to the online version.

1.1. Preliminaries

The logic that underlies the entire unification project is Ty2 (Gallin 1975; see also Janssen
1986 and Carpenter 1998). The set of basic types is {t, e, s}:

� type t is the type of truth values: the domain of type t (Dt) is {T, F}
� type e is the type of individuals; for now, we assume that De contains only atomic entities,

i.e., there are no pluralities
� the domain of type s (Ds) models DPL's variable assignments; several axioms will be

needed to ensure that the entities of type s actually behave as DPL variable assignments

Drefs:

� modeled as functions that take 'assignments' as arguments (i.e., entities of type s) and return
a static object as value, e.g., an individual (type e)

� so, a dref for individuals is of type se

� this is not as different from the DPL way of modeling drefs as it might seem: DPL models

drefs as variables and a variable x is basically an instruction to look in the current info
state, i.e., the current variable assignment g, and retrieve whatever individual the current
info state associates with x – that individual is, of course, g(x)

� instead of working directly with variables, we can work with their 'type-lifted' versions, i.e.,
instead of x, we can take a dref to be a function of the form �g. g(x), which is the (set-
theoretic) xth projection function that projects sequence g onto coordinate x

� this is what Dynamic Ty2 does: instead of modeling discourse referents as atomic entities

(variables) and info states as functions taking drefs as arguments (i.e., variable
assignments), we model info states as atomic entities (of type s) and drefs as functions
taking info states as arguments

� drefs are similar to the Montagovian individual concepts (e.g., the denotation of Miss
America), which are functions from indices of evaluation to individuals

� both drefs and individual concepts refer only indirectly, as a function of the current context
of evaluation

1.2. Definitions and Abbreviations

The definition of types in (1) below isolates a subset of of the set of types as the types of
drefs:

� these are the types of functions from 'assignments' (type s) to static objects of arbitrary type
� more than sufficient for our current purposes – but see Stone & Hardt (1999) for an account

of strict/sloppy readings that employs 'dynamic' drefs, i.e., drefs of type s(s(…)) (these are
just the pointers introduced in Janssen 1986)

� we restrict our drefs to functions from 'variable assignments' to static objects of arbitrary
types because, if we allow for arbitrary dref types, e.g., s(st), we might run into
counterparts of Russell's paradox – see Muskens (1995): 179-180, fn. 10.

1

1. Dynamic Ty2 – the set of dref types DRefTyp and the set of types Typ.
a. The set of basic static types BasSTyp: {t, e} (truth-values and individuals).
b. The set of static types STyp: the smallest set including BasSTyp and s.t., if
�,��STyp, then (��)�STyp.
c. The set of dref types DRefTyp: the smallest set s.t., if ��STyp, then (s�)�DRefTyp.
d. The set of basic types BasTyp: BasSTyp�{s} ('variable assignments').
e. The set of types Typ: the smallest set including BasTyp and s.t., if �,��Typ, then
(��)�Typ.

The definition in (2) provides some typical examples of expressions of various types and
introduces several notational conventions.

2. Dynamic Ty2 – basic expressions.
For any type ��Typ, there is a denumerable set of �-constants Con� and a denumerably
infinite set of �-variables Var� = {��,0, ��,1, …}, e.g.
Cone = {john, mary, dobby, …, a, a', …, b, b', …, a0, a1, a2, …}
Conet = {donkey, farmer, h.elf, witch, …, leave, drunk, walk, …}
Cone(et) = {in_love, own, beat, have, …}
Cons = {h, h', …, i, i', …, j, j', …, k, k', …, h0, h1, …, i0, i1, …}
Conse = {u, u', u'', …, u0, u1, u2, …}
Notational conventions:
 x, x',…, y, y', …, z, z',…, x0, x1, … are variables of type e;
 h, h', h'', …, i, i', i'', …, j, j', j'', … are variables of type s;
 f, f', f'', … f0, f1, f2, … are variables over terms of type �, for any ��STyp;
 v, v', v'', …, v0, v1, v2, … are variables over terms of type �, for any ��Typ.

The definition in (3) introduces the term i[�]j of type t that models the DPL notion of
random variable assignment:

� the formula i[�]j requires the assignments i and j to differ at most with respect to the value
they assign to def �

� unlike Muskens (1995b, 1996), I introduce this as a basic formula of the language and not
as an abbreviation, because the set DRefTyp of dref types is infinite and the abbreviation
would require an infinite conjunction of formulas (as indicated in (4d) below).

Proper names with capitals, e.g., John, are drefs for individuals (type se) and they are
constant functions, a.k.a. specific drefs. They are defined in terms of the corresponding constant
of type e, e.g., john.

3. Dynamic Ty2 – terms.
For any type ��Typ, the set of �-terms Term� is the smallest set s.t.:
 Con��Var� � Term�;
 	(
)�Term� if 	�Term�� and
�Term� for any ��Typ;
 (�v.)�Term� if �=(��), v�Var� and 	�Term� for any �,��Typ;
 (=
)�Term� if �=t and 	,
�Term� for any ��Typ;
 (i[�]j)�Term� if �=t and i,i'�Vars and ��Term�, for any ��DRefTyp.
Abbreviations (the subscripts on terms indicate their type):

 Johnse := �is. johne, Maryse := �is. marye …;
 T := �ft. f = �ft. f; F := �ft. ft = �ft. T;
 � := �ft. ft = F;
 := �ftf't. (�f''tt. f''(f)=f') = �f''tt. f''(T));2
 � := �ftf't. (f
 f') = f; � := �ftf't. �f � f';
 �v(�) := �v. � = �v. T; �v(�) := �v. �� � �v. T.

Definition (4) introduces four axioms that Dynamic Ty2 models have to satisfy – these
axioms make sure that the entities of type s behave as variable assignments.

Axiom1 employs a non-logical constant udref to identify unspecific drefs, i.e., the drefs
that are supposed to behave as the DPL variables, e.g., u, u', …, u0, u1 …

The constant function John (recall that John := �i. johne), for example, is a specific dref:
although it is of type se, i.e., the type of drefs for individuals, it does not behave as a DPL
variable – its value does not vary from 'assignment' to 'assignment'; if anything, specific drefs are
the counterpart of DPL constants, not variables.

Axiom2 makes sure that all the unspecific dref names actually name different functions: if
two distinct names denoted the same function, we would accidentally update both whenever we
would update one of them.

Axiom3 ensures that, just like DPL variable assignments, two 'assignments' (i.e., two
entities of type s) are different only if they assign different values to some dref �. If they assign
the same values to all drefs, the 'assignments' are identical.

Axiom4 ensures that we have enough 'assignments': for any given 'assignment' i, any
unspecific dref v and any possible dref value (i.e., static object) f of the appropriate type, there is
an 'assignment' j that differs from i at most with respect to the value it assigns to v and which in
fact assigns f as the value of v.

4. Dynamic Ty2 – frames, models, assignments, interpretation and truth.
a. A standard frame F for Dynamic Ty2 is a set {D�: ��Typ} s.t. De, Dt and Ds are
pairwise disjoint sets and D�� = {f: f is a total function from D� to D�}, for any �,��Typ.
b. A model M for Dynamic Ty2 is a pair <FM, ���M> s.t.:
- FM is a standard frame for Dynamic Ty2;
- ���M assigns an object �	�M�DM� to each 	�Con� for any ��Typ, i.e., ���M
respects typing;
- M satisfies the following axioms:
Axiom1 ("Unspecific drefs"): udref(�),
 for any unspecific dref name � of any type (s�)�DRefTyp,
 e.g., u0, u1, … but not John, Mary, …;
 udref is a non-logical constant3 intuitively identifying the 'variable' drefs,

2 Equivalently,
 := �ftf't. �f''t(tt)(f''(f, f') = f''(T, T)) or
 := �ftf't. �f''tt(f = (f''(f) = f''(f'))).
3 In fact, udref stands for an infinite family of non-logical constants of type (�t) for any ��DRefTyp. Alternatively,
we can assume a polymorphic type logic with infinite sum types, in which udref is a polymorphic function. For a
discussion of sum types, see, for example, Carpenter (1998): 69 et seqq.

2

 i.e., the non-constant functions of type s� (for any ��STyp)
 intended to model DPL-like variables.
Axiom2 ("Drefs have unique dref names"): udref(�)
 udref(�') � ���',
 for any two distinct dref names � and �' of type �,
 for any type ��DRefTyp,
 i.e., we make sure that we do not accidentally update a dref �' when we update �.
Axiom3 ("Identity of 'assignments'"): �isjs(i[]j � i=j).
Axiom4 ("Enough 'assignments'"): �is�vs��f�(udref(v) � �js(i[v]j
 vj=f)),
 for any type �� STyp.
c. An M-assignment � is a function that assigns to each variable v�Var� an element
�(v)�D�

M for any ��Typ. Given an M-assignment �, if v�Var� and d�D�
M, then �v/d is

the M-assignment identical with � except that it assigns d to v.
d. The interpretation function ���M,� is defined as follows:
 �	�M,� = �	�M if 	�Con� for any ��Typ;
 �	�M,� = �() if 	�Var� for any ��Typ;
 �	(
)�M,� = �	�M,� (�
�M,�);
 ��v. 	�M,� = ��	�M, /�v d : d�DM�� if v�Var�;
 �	=
�M,� = T if �	�M,� =�
�M,�
 = F otherwise.
 �i[�]j�M,� = T if ��Term�, ��DRefTyp and
 ��v�(udref(v)
 v�� � vi=vj)�M,� = T and
 ��v�(udref(v) � vi=vj�M,� = T for all ���, ��DRefTyp
 = F otherwise.
e. Truth: A formula ��Termt is true in M relative to � iff ���M,� = T.
 A formula ��Termt is true in M iff it is true in M relative to any assignment �.

Given the domain De and the set of udref names, how can we construct the domain Ds so
that Ds satisfies the axioms?

2. Translating DPL into Dynamic Ty2

We will now encode DPL (and therefore classical DRT / FCS) in Dynamic Ty2.

We do this by providing a list of abbreviations that follows closely the previous definition
of DPL: the definiendum has the form of a DPL expression, while the definiens is a term of
Dynamic Ty2.

2.1. Definitions and Abbreviations

Definition (5) below corresponds to the previous DPL definition.

� '
' is the Dynamic Ty2 conjunction, i.e., the official, type-logical conjunction, and '�' is the
Dynamic Ty2 negation, i.e., the official, type-logical negation. In contrast, dynamic
conjunction ';' and dynamic negation '~' are simply abbreviations.

� yhe DPL notion of random assignment [x] has as its direct correspondent the random
assignment [u] of Dynamic Ty2.

The DPL distinction between conditions and DRSs is formulated in terms of types.

� conditions are terms of type st, i.e., they denote sets of 'assignments'; intuitively, conditions
denote the set of 'assignments' that satisfy them.

� DRSs are terms of type s(st), i.e., binary relations between 'assignments'; intuitively, a DRS
D is satisfied by a pair of two 'assignments' i and j iff the output 'assignment' j is the result
of non-deterministically updating the input 'assignment' i with D.

5. DPL in Dynamic Ty2 (subscripts on terms represent their types).
a. Atomic conditions – type st:
 R{u1, …, un} := �is. R(u1i, …, uni),
 for any non-logical constant R of type ent,
 where ent is defined as follows: e0t := t and em+1t := e(emt)
 u1=u2 := �is. u1i=u2i
b. Atomic DRSs (DRSs containing exactly one atomic condition) – type s(st)
(corresponding to DPL atomic formulas):
 [R{u1, …, un}] := �isjs. i=j
 R{u1, …, un}j
 [u1=u2] := �isjs. i=j
 u1j=u2j
c. Condition-level connectives (negation), i.e., non-atomic conditions:
 ~D := �is. ��ks(Dik) 4,
 where D is a DRS (term of type s(st))
 i.e., ~D := �is. i�Dom(D),
 where Dom(D) := {is: �js(Dij)}
d. Tests (generalizing 'atomic' DRSs):
 [C1, …, Cm] := �isjs. i=j
 C1j
 …
 Cmj 5,
 where C1, …, Cm are conditions (atomic or not) of type st.
e. DRS-level connectives (dynamic conjunction):
 D1; D2 := �isjs. �hs(D1ih
 D2hj),
 where D1 and D2 are DRSs (type s(st))
f. Quantifiers (random assignment of value to a dref):
 [u] := �isjs. i[u]j
g. Truth:
 A DRS D (type s(st)) is true with respect to an input info state is iff �js(Dij),
 i.e., i�Dom(D) (equivalently, i�!D).

4 Strictly speaking, the Dynamic Ty2 translation of DPL negation is defined as TR(~�) := [~TR(�)], i.e., TR(~�) :=
[�is. ��ks(TR(�)ik)]. TR is the translation function from DPL to Dynamic Ty2 which is recursively defined in the
expected way, e.g., for DPL atomic formulas, we have that TR(R(x1, …, xn)) := [R{u1, …, un}] and TR(x1=x2) :=
u1=u2.
5 Alternatively, [C1, …, Cm] can be defined using dynamic conjunction as follows:

[C1, …, Cm] := �isjs. ([C1]; …; [Cm])ij, where [C] := �isjs. i=j
 Cj.

3

The abbreviations introduced in definition (6) below correspond to the DPL abbreviations
defined in the previous chapter.

� '�' and '�' are the official type-logical existential and universal quantifiers, while ' ' and ' '
are the abbreviations corresponding to the dynamic (DPL-style) existential and universal
quantifiers.

� following the notational conventions in the literature, I use '�' and '�' both for the official
Dynamic Ty2 and for the dynamic DPL-style implication and, respectively, disjunction.

6. a. Additional abbreviations – condition-level connectives (closure, disjunction,
implication):
 !D:= ~[~D] 6,
 i.e., !D := �is. �ks(Dik) or simply: !D := Dom(D)
 D1 � D2 := ~([~D1]; [~D2]),
 i.e., D1 � D2 := ~[~D1, ~D2]
 i.e., D1 � D2 := �is. �ks(D1ik � D2ik);
 equivalently: D1 � D2 := Dom(D1)�Dom(D2) 7
 D1 � D2 := ~(D1; [~D2]),
 i.e., D1 � D2 := �is. �hs(D1ih � �ks(D2hk)),8
 i.e., D1 � D2 := �is. (D1)i � Dom(D2),
 where (D)i := {js: Dij}
b. Additional abbreviations – DRS-level quantifiers (multiple random assignment,
existential quantification):
 [u1, …, un] := [u1]; …; [un]
 u(D) := [u]; D
c. Additional abbreviations – condition-level quantifiers (universal quantification):
 u(D) := ~([u]; [~D]),
 i.e., ~[u | ~D] or [u] � D or equivalently ~ u([~D]),
 i.e., u(D) := �is. �hs(i[u]h � �ks(Dhk)),
 i.e., u(D) := �is. ([u])i � Dom(D)
d. Additional abbreviations – DRSs (a.k.a. linearized 'boxes'):
 [u1, …, un | C1, …, Cm] := �isjs. ([u1, …, un]; [C1, …, Cm])ij,
 where C1, …, Cm are conditions (atomic or not),
 i.e., [u1, …, un | C1, …, Cm] := �isjs. i[u1, …, un]j
 C1j
 …
 Cmj.

6 Strictly speaking, DPL anaphoric closure is translated in Dynamic Ty2 as TR(!�) := [~TR(~�)], i.e., TR(!�) :=
[~[~TR(�)]] = [~[�js. ��ls(TR(�)jl)]] = [�is. ��ks([�js. ��ls(TR(�)jl)]ik)], i.e., TR(!�) := [�is. ��ks(i=k

��ls(TR(�)kl))] = [�is. �(��ls(TR(�)il))], i.e., TR(!�) := [�is. �ls(TR(�)il)] = Dom(TR(�)).
7 D1 � D2 := ~([~D1]; [~D2]) = �i. ��k(([~D1]; [~D2])ik) = �i. ��kl([~D1]il
 [~D2]lk) = �i. ��kl(i=l
 ��h(D1ih)

l=k
��h'(D2lh')) = �i. �(��h(D1ih)
 ��h'(D2ih')) = �i. �h(D1ih) � �h'(D2ih') = �i. �k(D1ik � D2ik).
8 D1 � D2 := ~(D1; [~D2]) = �i. ��k((D1; [~D2])ik) = �i. ��kl(D1il
 [~D2]lk) = �i. ��kl(D1il
 l=k
��h(D2lh)) =
�i. ��k(D1ik
 ��h(D2kh)) = �i. �k(D1ik � �h(D2kh)).

2.2. Cross-sentential Anaphora

7. A 1u house-elf fell in love with a 2u witch.
8. He

1u bought her
2u an 3u alligator purse.

� the DRT-style representation in DPL is provided in (9)
� the DRT-style representation in Dynamic Ty2 is provided in (10)
� the formula in (11) is the 'unpacked' type-logical term of type s(st) translating the discourse

in (7-8)
� the formula in (12) provides the truth-conditions associated with the Dynamic Ty2 term in

(11), derived on the basis of the definition of truth for DRSs in (5g) and the "Enough
States" axiom (Axiom4 in (4b) above)

Note that the formula in (12) capturing the truth-conditions of discourse (7-8) contains a
vacuous �-abstraction over input 'assignments', which is intuitively correct given that the
discourse does not contain any item whose reference is dependent on the input context (e.g., a
deictically used pronoun).

9. [x, y | h.elf(x), witch(y), in_love(x, y)]; [z |
a.purse(z), buy(x, y, z)]

10. [u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}];
[u3 | a.purse{u3}, buy{u1, u2, u3}]

11. �isjs. i[u1, u2, u3]j
 h.elf(u1j)
 witch(u2j)
 in_love(u1j, u2j)

 a.purse(u3j)
 buy(u1j, u2j, u3j)

12. �is. �xe�ye�ze(h.elf(x)
 witch(y)
 in_love(x, y)

 a.purse(z)
 buy(x, y, z))

How do we derive the truth conditions in (12) based on the DRS in (11), the definition of
truth in (5g) and Axiom4?

2.3. Relative-Clause Donkey Sentences

� the formula in (14) provides the DRT-style DPL translation of sentence (13)
� the corresponding Dynamic Ty2 formula is provided in (15) -- note the double square

brackets: the external square brackets are due to the fact that dynamic implication '�' is a
condition-level connective, so we need the extra square brackets to obtain a test, i.e., a DRS
(which is a term of type s(st)), out of a condition of type st.

13. Every 1u house-elf who falls in love with a 2u witch buys her
2u an 3u alligator purse.

14. [x, y | h.elf(x), witch(y), in_love(x, y)] � [z | a.purse(z), buy(x, y, z)]
15. [[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}] � [u3 | a.purse{u3}, buy{u1, u2, u3}]]

� the DRT-style representation in (15) is 'unpacked' as the type-logical term in (16)
� the corresponding truth-conditions are given in (17) – note again the vacuous �-abstraction

over 'assignments', followed by a static first-order formula that captures the intuitively
correct truth-conditions for sentence (13)

4

16. �isjs. i=j
 �hs(i[u1, u2]h
 h.elf(u1h)
 witch(u2h)
 in_love(u1h, u2h)
 � �ks(h[u3]k
 a.purse(u3k)
 buy(u1k, u2k, u3k)))

17. �is. �xe�ye(h.elf(x)
 witch(y)
 in_love(x, y)
 � �ze(a.purse(z)
 buy(x, y, z)))

2.4. Conditional Donkey Sentences

� the conditional donkey sentence in (18) receives the same Dynamic Ty2 translation and the
same truth-conditions as the relative-clause donkey sentence in (13)

� that is, Dynamic Ty2 captures the intuitive correspondence between the generalized
determiner every and bare conditional structures (just as DPL does).

18. If a 1u house-elf falls in love with a 2u witch, he
1u buys her

2u an 3u alligator purse.

Consider now the negative donkey sentences in (19), (20) and (21).

19. Nox house-elf who falls in love with ay witch buys hery anz alligator purse.
20. If ax house-elf falls in love with ay witch, hex never buys hery anz alligator purse.
21. If ax house-elf falls in love with ay witch, hex doesn't buy hery anz alligator purse.

We can translate the determiner no in sentence (19) in two different ways:

� by means of a combination of negation and existential quantification
� by means of a combination of negation and universal quantification

These two ways are equivalent given the partial duality in (22) between existential and
universal quantification, inherited from DPL by Dynamic Ty2.

22. ~ u(D; D') = u([D � [~D']])9

9 u(D � [~D'])

= �is. �hs([u]ih � �ks((D � [~D'])hk))

= �is. �hs([u]ih � �ks(h=k
 �h's(Dhh' � �k's([~D']h'k'))) = �is. �hs([u]ih � �h's(Dhh' � �k's(h'=k'
 (~D')k')))

= �is. �hs([u]ih � �h's(Dhh' � (~D')h'))

= �is. �hs([u]ih � �h's(Dhh' � ��ks(Dh'k))

= �is. �hs([u]ih � �h's(Dhh' � ��ks(Dh'k))

= �is. ��hs([u]ih
 ��h's(Dhh' � ��ks(Dh'k))

= �is. ��hs([u]ih
 �h's�(Dhh' � ��ks(Dh'k))

= �is. ��hs([u]ih
 �h's(Dhh'
 �ks(Dh'k))

= �is. ��hs�h's�ks([u]ih
 Dhh'
 Dh'k)

= �is. ��ks(([u]; D; D')ik)

= ~ u(D; D')

� the terms in (22) are of type st because both dynamic negation '~' and universal
quantification ' ' are condition-level connectives

� the corresponding tests – which are DRSs, i.e., terms of type s(st) – are identical if the
conditions they are based on are identical

Given the identity in (22), we can translate sentence (19) either way10 – see (23) and (25).
These equivalent translations are also equivalent to the DRT-style formulas in (24) and (26).

Note that the universal quantification over pairs of house-elves and witches is exhibited in
the clearest way by (26), since any dref introduced in the antecedent of a conditional ends up
being quantified over universally11.

23. [~ u1([h.elf{u1}]; u2([witch{u2}, in_love{u1, u2}]); u3([a.purse{u3}, buy{u1, u2, u3}]))]
24. [~[u1, u2, u3 | h.elf{u1}, witch{u2}, in_love{u1, u2}, a.purse{u3}, buy{u1, u2, u3}]]
25. [u1([h.elf{u1}]; u2([witch{u2}, in_love{u1, u2}])

 � [~ u3([a.purse{u3}, buy{u1, u2, u3}])])]
26. [[u1, u2| h.elf{u1}, witch{u2}, in_love{u1, u2}] � [~[u3 | a.purse{u3}, buy{u1, u2, u3}]]]

The formula in (26) is in fact the compositional translation of the negative conditional
sentences in (20) and (21) above.

The Dynamic Ty2 truth-conditions for all three sentences, provided in (27), are most easily
derived from (24). Just as before, we have vacuous �-abstraction over 'assignments', followed by
a static first-order formula that captures the intuitively correct truth-conditions for the three
English sentences under consideration.

27. �is. ��xe�ye�ze(h.elf(x)
 witch(y)
 in_love(x, y)
 a.purse(z)
 buy(x, y, z))

Summary:

� Dynamic Ty2 can capture everything that DPL (hence classical DRT / FCS) does, including
compositionality down to sentence-/clause-level.

� moreover, we now have all the ingredients to go compositional at sub-sentential/sub-clausal
level

Proper Names in Dynamic Ty2

Proper names can in principle receive two kinds of analyses in DPL / Dynamic Ty2:

� a pronoun-like analysis, whereby a proper name is basically interpreted as a deictically used
pronoun, whose referent is specified by the input discourse context

10 I assume that terms that are equivalent to (Dynamic Ty2 translations of DPL) translations of English sentences are
also acceptable as translations.
11 It is easily checked that the following identities hold:

u([D � D']) = [u] � [D � D'] = ([u]; D) � D' = u(D) � D'.

5

� an indefinite-like analysis, whereby a proper name introduces a new individual-level dref
whose referent is constrained to be the individual (rigidly) designated by the proper name

Muskens (1996) chooses the pronoun-like analysis of proper names, which are (basically)
translated as the corresponding specific drefs.

28. Dobbyu --> Dobby

I will choose the indefinite-like analysis and let proper names introduce an unspecific dref
and an identity condition between the unspecific dref and the specific dref that is the Ty2
correspondent of the proper name.

29. Dobbyu --> [u | u=Dobby], i.e., �isjs. i[u]j
 uj=Dobbyj, i.e., �isjs. i[u]j
 uj=dobby

This interpretation is equivalent to the external anchoring of proper names in Kamp &
Reyle (1993): 248 and it is similar to the interpretation of proper names in Kamp (1981).

Pronouns anaphoric to proper names are taken to be anaphoric to the unspecific dref
introduced by the proper name, as exemplified by (30) below.

30. … Dobbyu … heu …

An argument against the indefinite-like analysis (Muskens 1996: 151-153) – the resulting
representation seems needlessly complex. Why not simply take the proper name to be anaphoric
to its corresponding specific dref?

� the idea would be that proper names are used deictically – so, they are interpreted directly
relative to the input context (as the causal chain theory of proper names would have it – see
Kripke 1972 and Kaplan 1977/1989a, 1989b)

� a pronoun anaphoric to a proper name would be anaphoric to the corresponding specific
dref, as shown in (31) below

The use of a pronoun anaphoric to a proper name and the use of the proper name itself are
not semantically different.

31. … John … heJohn … John

An argument against the pronoun-like analysis – the conflation of proper names and
pronouns is undesirable for two reasons.

� a proper name is felicitous in a discourse initial position, while a pronoun requires a
suitable context (linguistic or non-linguistic) to have previously been set up – as shown in
(32) and (33) below.

32. Dobby entered The Three Broomsticks.
33. ??HeDobby entered The Three Broomsticks.

� when the proper name has been (recently) mentioned, using an anaphoric pronoun is
felicitous, while using the proper name again is not

34. Dobby entered the Three Broomsticks. HeDobby ordered a butterbeer.
35. Dobby entered the Three Broomsticks. ??Dobby ordered a butterbeer.

An argument for the pronoun-like analysis – negation and anaphora to proper names vs.
anaphora to indefinites:

� an indefinite introduced in the scope of negation is not anaphorically accessible to a
subsequent pronoun, as shown in (36) below

� a proper name is anaphorically accessible when it occurs in the scope of negation

36. Hermione didn't see au / anyu house-elf at The Three Broomsticks.
#Heu was on vacation in the Bahamas.

37. Hermione didn't see Dobby at The Three Broomsticks.
HeDobby was on vacation in the Bahamas.

� the fact that dynamic negation is defined as in (5c) above, i.e., as externally static, correctly
predicts the infelicity of anaphora in (36): the pronoun, despite being co-indexed with the
indefinite, ends up being interpreted as a deictic pronoun, picking up whatever the input
context associates with the dref u

� the reason for the infelicity of discourse (36): the co-indexation of the indefinite and the
pronoun formally encodes that the pronoun should be 'bound' by the indefinite, i.e., as far
as the speaker is concerned, the indefinite and the pronoun should be co-referent /
anaphorically connected (the infelicity follows directly if we work with partial variable
assignments)

The indefinite-like analysis of proper names incorrectly predicts that anaphora to proper
names introduced under negation is as infelicitous as the corresponding anaphora to indefinites.

An indefinite-like analysis can still account for the felicitous anaphora in (37) above if we
assume that pronouns can be indexed not only with unspecific drefs, but also with specific drefs
like Dobby or John.

That is, in addition to the anaphoric pattern in (30) above, we should allow for the kind of
connection between a pronoun and a proper name in (38).

38. … Dobbyu … heDobby …

� strictly speaking, the pronoun is not co-referring with the proper name – but, in the given
context, the pronoun refers to the same entity as the proper name

39. Hermione 1u didn't see Dobby 2u at The Three Broomsticks.
HeDobby was on vacation in the Bahamas.

40. [u1 | u1=Hermione, ~[u2 | u2=Dobby, see_at_TTB{u1, u2}]]; [on_vacation{Dobby}]

6

3. Syntax of a Fragment of English

3.1. Indexation

"The most important requirement that we impose is that the syntactic component of the
grammar assigns indices to all names, pronouns and determiners" (Muskens 1996: 159).

� we let indices be specific and unspecific drefs (recall that they are all constants of type se),
e.g., u, u', u0, u1, Dobby etc. Just as before, the antecedents are indexed with superscripts
and dependent elements with subscripts (following the convention in Barwise 1987)

� we also allow variables that have the appropriate dref type as indices on traces of
movement, e.g., vse, v'se, v0,se, v1,se etc.

But: variable indices appear only on traces – because they are needed only on traces.

"In Montague's PTQ […] the Quantifying-in rules served two purposes: (a) to obtain scope
ambiguities between noun phrases and other scope bearing elements, such as noun phrases,
negations and intensional contexts, and (b) to bind pronouns appearing in the expression that the
noun phrase took scope over. In the present set-up the mechanism of discourse referents takes
over the second task." (Muskens 1996: 169)

The fact that we use distinct indices for the two purposes enables us to keep track of:

� when our indexation makes an essentially dynamic contribution to the semantics
� when it is an artifact of the particular scoping mechanism and the particular

syntax/semantics interface we employ

So, it will be easy to reformulate the analyses we develop in a different syntactic formalism.

The choice of a particular (version of a particular) syntactic formalism is largely orthogonal
to our concerns. The syntax-semantics interface we define is just a proof of concept, showing
that our semantics is compatible with a variety of syntactic formalisms.

3.2. Phrase Structure and Lexical Insertion Rules

� the Y-model of syntax has four components: D-structure (DS), S-Structure (SS), Logical
Form (LF) and Phonological Form (PF)

� we are interested in the first three, in particular in the level of LF, which provides the input
to the semantic interpretation procedure

� the DS component consists of all the trees that can be generated by the phrase structure
rules PS1-PS12 and the lexical insertion rules LI1-LI11 in (41)

� we could do away with rule PS1, but we will keep it as a reminder that sequencing two
sentences in discourse occurs at a supra-sentential, textual level

41. Phrase structure rules and lexical insertion rules.

(PS 1) Txt � (Txt) CP (PS 5) VP � DP V' (PS 9) Vdi' � Vdi DP

(PS 2) CP � (CP) IP (PS 6) V' � Vin (PS 10) DP � D NP

(PS 3) CP � C IP (PS 7) V' � Vtr DP (PS 11) NP � N (CP)

(PS 4) IP � I VP (PS 8) V' � Vdi' DP (PS 12) X � X+ Conj X

(LI 1) D � au, everyu, mostu, fewu,
nou, someu, anyu, au', everyu', …

(LI 5) N � farmer, house-elf,
donkey, …

(LI 9) I � Ø, doesn't, don't, -
ed, -s, didn't, …

(LI 2) DP � heu, sheu, itu, heu', ...,
heJohn, sheMary, …, tv, tv', … (LI 6) Vtr � own, beat, … (LI 10) C � if, Ø

(LI 3) DP � Johnu, Maryu, Johnu', ... (LI 7) Vin � sleep, walk, … (LI 11) Conj � and, or

(LI 4) DP � who, whom, which, Ø (LI 8) Vdi � buy, give, …

� subjects are assumed to be VP-internal and this is where they remain by default even at LF
(they are raised out of VP only at PF) – this is how we can interpret sentential negation as
having scope over quantifiers in subject position.

� similarly, V-heads move to the inflectional I-head only at PF.

3.3. Relativization and Quantifier Raising

DS and SS are connected via the obligatory movement rule of Relativization (REL).

A tree �' follows by REL from a tree � iff �' is the result of replacing some sub-tree of � of
the form [CP [IP X [DP wh] Y]], where X and Y are (possibly empty) strings and wh is either who,
whom or which, by a tree [CP [DP wh]v [CP [IP X tv Y]]], where v is a fresh variable index (not
occurring in � as a superscript).

REL is basically CP adjunction.

42. Relativization (REL): [CP [IP X [DP wh] Y]] � [CP [DP wh]v [CP [IP X tv Y]]]

For example, the DP au girl who everyu' boy adores has the syntactic representation in (43)
below, obtained by an application of REL:

43. [DPau [NP[N girl] [CP[DP who]v [CP[IP[I -s] [VP [DP everyu' boy] [V' [Vtr adore] tv]]]]]]]

SS is the smallest set of trees that includes DS and is closed under REL; thus, DS�SS.

We define an optional rule of Quantifier Raising (QR) (May 1977) which adjoins DPs to
IPs or DPs to VPs (we need VP-adjunction for ditransitive verbs among other things) and which
is basically the Montagovian Quantifying-In rule.

7

A tree �' follows by QR from a tree � iff: (a) �' is the result of replacing some sub-tree � of
� of the form [IP X [DP Z] Y] by a tree [IP [DP Z]v [IP X tv Y]], where v is a fresh variable index (not
occurring in � as a superscript); or (b) �' is the result of replacing some sub-tree � of � of the
form [VP X [DP Z] Y] by a tree [VP [DP Z]v [VP X tv Y]], where v is a fresh variable index (not
occurring in � as a superscript).

The conditions on the QR rule are that Z is not a pronoun or a wh-word and that [DP Z] is
not a proper sub-tree of a DP sub-tree [DP W] of �.12

44. Quantifier Raising (QR):
a. [IP X [DP Z] Y] � [IP [DP Z]v [IP X tv Y]]
b. [VP X [DP Z] Y] � [VP [DP Z]v [VP X tv Y]]

For example, the inverse scope of everyu house-elf adores au' witch can be obtained by QR
to IP (of course, it could also be obtained by QR to VP):

45. [IP [DP au' witch]v [IP [I -s] [VP [DP everyu house-elf] [V' [Vtr adore] tv]]]]

LF is the smallest set of trees that includes SS and is closed under QR; thus, SS�LF.

4. Type-driven Translation

� in a Fregean / Montagovian framework, the compositional aspect of the interpretation is
largely determined by the types for the 'saturated' expressions, i.e., names and sentences

� abbreviate them as e and t
� an extensional static logic without pluralities (i.e., classical higher-order logic) is the

simplest: e is e (atomic entities) and t is t (truth-values)
� the English verb sleep, for example, is represented by a term sleep of type (et), i.e., (et), and

the generalized quantifier (GQ) every man by a term of type ((et)t), i.e., ((et)t)

� this setup can be complicated in various ways – for example, Lewis (1972) and Creswell

(1973) introduce intensionality by letting t := st, where s is the type of indices of evaluation
(however one wants to think of them, e.g., as worlds, <world, time> pairs etc.)

� Dynamic Ty2 complicates this by adding another basic type s, whose elements model DPL
variable assignments

� a sentence denotes a relation between an input and an output 'assignment', i.e., t := (s(st))
� a name (basically) denotes an individual dref, i.e., e := se 13

12 For example, if the DP sub-tree [DP W] of � contains a relative clause which in its turn contains [DP Z], we do not
want to QR [DP Z] all the way out of the relative clause.
13 Relativizing the interpretation of names to 'assignments' is not different from the Montagovian interpretation of
names (or the Tarskian interpretation of individual constants in first-order logic): just as a name like John is assigned
the same individual, namely johne, relative to any variable assignment g in a static Montagovian system, we interpret
proper names in terms of constant functions of type se, e.g., the denotation of John is given in terms of the constant
function Johnse that maps each 'assignment' is to the individual johne.

� the English verb sleep is still translated by a term of type (et), but now this means that it

takes a dref u of type e and it relates two info states i and i' of type s if and only if i=i' and
the entity denoted by u in info state i, i.e., ui, has the static sleep property of type et

4.1. Translating Basic Expressions

Table (46) below provides examples of basic meanings for the lexical items in (41) above:

� the first column contains the lexical item
� the second column its Dynamic Ty2 translation
� the third column its type, assuming the abbreviations t := (s(st)) and e := (se)

The abbreviated types have exactly the form we would expect them to have in Montague
semantics, e.g.:

� the translation of the intransitive verb sleep is of type et
� the translation of the pronoun he is of type (et)t
� the translations of the indefinite article a and of the determiner every are of type (et)((et)t)

The list of basic meanings constitutes rule TR0 of our type-driven translation procedure for
the English fragment.

46. TR 0: Basic Meanings (TN – Terminal Nodes).

Lexical Item Translation Type
e := se t := s(st)

[sleep]
inV � �ve. [sleepet{v}] et

[own]
trV � �Q(et)t.�ve. Q(�v'e. [owne(et){v, v'}]) ((et)t)(et)

[buy]
diV � �Q'(et)t.�Q(et)t.�ve. Q'(�v'e. Q(�v''e. [buye(e(et)){v, v', v''}])) (ett)((ett)(et))

[house-elf] N � �ve. [h.elfet{v}] et

[heu] DP � �Pet. P(ue) (et)t

[tv] DP � �Pet. P(ve) (et)t

[heDobby] DP � �Pet. P(Dobbye) (et)t

[Dobbyu] DP � �Pet. [u | u=Dobby]; P(u) (et)t

[au] D � �P'et.�Pet. [u]; P'(u); P(u),
 i.e., �P'et.�Pet. u(P'(u); P(u))

(et)((et)t)

[everyu] D � �P'et.�Pet. [([u]; P'(u)) � P(u)],
 i.e., �P'et.�Pet. [u(P'(u) � P(u))]

(et)((et)t)

8

46. TR 0: Basic Meanings (TN – Terminal Nodes).

Lexical Item Translation Type
e := se t := s(st)

[nou] D � �P'et.�Pet. [~([u]; P'(u); P(u))],
 i.e., �P'et.�Pet. [~ u(P'(u); P(u))]

� �P'et.�Pet. [([u]; P'(u)) � [~P(u)]],
 i.e., �P'et.�Pet. [u(P'(u) � [~P(u)])]

(et)((et)t)

[who] DP � �Pet. P (et)(et)

[Ø] / [-ed] / [-s] I I I � �Dt. D tt

[doesn't] / [didn't] I I � �Dt. [~D] tt

[if] C � �D't.�Dt. [D' � D] t(tt)

[and] Conj � �D't.�Dt. D'; D t(tt)

[or] Conj � �D't.�Dt. [D' � D] t(tt)

� transitive verbs like own take a generalized quantifier (GQ) as their direct object (type
(et)t), which captures the fact that the default quantifier scoping is subject over object

� inverse scope is obtained by QR

� ditransitive verbs like buy are assumed to take two GQs as objects
� the default relative scope of the two GQs (encoded in the lexical entry) is their left-to-right

surface order, i.e., the first of them (e.g., the Dative GQ) takes scope over the second (e.g.,
the Accusative GQ)

� this seems to be empirically correct since the most salient quantifier scoping in the sentence
Dobby bought every witch an alligator purse follows the left-to-right linear order: the
Dative GQ takes scope over the Accusative GQ, so that the purses co-vary with the witches

� once again, inverse scope is obtained by QR (to VP or IP)
� the Dative GQ takes scope over the Accusative GQ despite their relative syntactic position:

given the phrase structure rules PS8 and PS9 in (41) above, the Dative GQ is actually c-
commanded by the Accusative GQ

� the fact that a quantifier can take scope over another without c-commanding it is one of the

advantages of working with a dynamic system, where quantifier scope is encoded in the
order in which the updates are sequenced

� thus, in a dynamic framework, syntactic structure affects quantifier scope only to the extent
to which syntactic relations (e.g., c-command) are ultimately reflected in update
sequencing

� the lexical entry for ditransitive verbs in (46) 'neutralizes' syntactic c-command: it
sequences the updates contributed by the two GQ objects according to their linear order
and not according to their syntactic structure

� defaulting to linear order (as opposed to syntactic c-command) has welcome empirical
consequences: besides the fact that we capture the correlation between linear order and
quantifier scope, we can also account for the fact that the Dative GQ is able to bind
pronouns within the Accusative GQ without c-commanding them, as for example in Dobby
gave everyu witch heru broom

� it is not unexpected that a dynamic system can account for pronoun binding without c-

command given that donkey anaphora is a paradigmatic example of such binding without
c-command.

� pronouns of the form heu and traces of the form tv are interpreted as in Montague (1974),

i.e., as the GQ-lift of their index
� for pronouns, this index is a dref (i.e., a constant of type e := se)
� for traces, this index is a variable (also of type e := se).

� proper names are analyzed as indefinites – see the discussion above, in particular (29)
� the only difference is that they are now translated as the corresponding GQ-lift

� indefinites have the type of (dynamic) generalized determiners, as needed for the definition

of the compositional interpretation procedure
� their crucial dynamic contribution: the introduction of a new dref, which has to satisfy the

restrictor property and the nuclear scope property in this order
� the DPL-style abbreviation explicitly exhibits the existential quantification built into the

indefinite

� every also has the type of generalized determiners and it is interpreted as expected
� note the square brackets surrounding the DRS – they are due to the fact that, unlike the

indefinite determiner a, the universal determiner every contributes a test – it is internally
dynamic but externally static, just as in DRT / FCS / DPL

� no also contributes a test

� the wh-words that enter the construction of relative clauses are analyzed as identity

functions over the property contributed by the relative clause
� this property will then be 'sequenced' with the property contributed by the preceding

common noun to yield a 'conjoined' property that is a suitable argument for a generalized
determiner

� the order in which the common noun and the relative clause are sequenced follows the
linear surface order

� the rule that achieves this dynamic 'conjunction' / 'sequencing' of properties generalizes
both the static Predicate Modification rule in Heim & Kratzer (1998) and the dynamic
Sequencing rule in Muskens (1996) – see (49) below

� non-negative inflectional heads are interpreted as identity functions over DRS meanings
� negative inflectional heads are interpreted as expected: their value is a test, containing a

condition that negates the argument DRS

9

� the conditional if is a binary DRS connective: it takes two DRSs as arguments and it returns

a test containing a dynamic implication condition that relates the two argument DRSs

� the coordinating elements and and or will be discussed in more detail later on.

4.2. Translating Complex Expressions

Based on TR0, we can obtain the translation of more complex LF structures by specifying
how the translation of a mother node depends on the translations of its daughters.

� there are five such rules, the last of which (TR5: Coordination) will be subsequently
generalized

47. TR 1 – Non-branching Nodes (NN).
If A � 	 and A is the only daughter of B, then B � 	.

48. TR 2 – Functional Application (FA).
If A � 	 and B �
 and A and B are the only daughters of C, then C � 	(
), provided
that this is a well-formed term.

49. TR 3 – Generalized Sequencing (GSeq) (i.e., Sequencing + Predicate Modification).
If A � 	, B �
, A and B are the only daughters of C in that order (i.e., C � A B) and
	 and
 are of the same type � of the form t or �t (for any ��Typ) then C � 	;
 if �=t
or C � �v�. 	(v);
(v), if �=�t, provided that this is a well-formed term.

50. TR 4 – Quantifying-In (QIn).
If DPv � 	, B �
 and DPv and B are daughters of C, then C � 	(�v.
), provided that
this is a well-formed term.

51. TR 5 – Coordination (Co).
If A1 � 	1, Conj �
, A2 � 	2 and A1, Conj and A2 are the only daughters of A in that
order (i.e., A � A1 Conj A2), then A �
(1)(2), provided this a well-formed term and
has the same type as 	1 and 	2.

� the first rule covers non-branching nodes: the mother inherits the translation of the daughter

� the second rule is functional application: the translation of the mother is the result of

applying the translation of one daughter to the translation of the other

� the third rule is a generalized sequencing (i.e., a generalized dynamic conjunction) rule
� it translates the meaning of complex texts (Txt) that are formed out of a text (Txt) and a

sentence (CP) – see PS1 in (41) above; in this sense, it is a generalization of the
Sequencing rule in Muskens (1996)

� it also handles predicate modification in general, e.g., it translates the meaning of an NP
that is formed out of a common noun N and a relative clause CP – see PS11 in (41) above;
in this sense, it is a generalization of the Predicate Modification rule in Heim & Kratzer
(1998)

� the fourth rule handles Quantifying-In, both for quantifiers and for relativizers (i.e., wh-

words)

� the fifth rule handles binary coordinations (to be generalized to an arbitrary finite number of

coordinated elements)

The translation procedure, i.e., the relation 'tree � translates as term 	', is formally defined
as the smallest relation � between trees and Dynamic Ty2 terms that is conform to TR0-TR5
and is closed under type-logical identity, e.g., if tree � translates as term 	 and 	=
 is true, then
� translates as
.

5. Anaphora and Quantification in Compositional DRT (CDRT)

5.1. Bound Variable Anaphora

We can capture bound anaphora in CDRT without using QR (Quantifier Raising, see (44)
above) and the corresponding semantic rule QIn (Quantifying-In, see (50) above): we simply
need the pronoun to be co-indexed with the antecedent, as shown in (52).

52. Every 1u house-elf hates himself
1u .

� co-indexation is enough for binding because binding in CDRT (or DPL) is taken care of by
the explicit (and, in this case, unselective) quantification over 'assignments' built into the
meaning of quantifiers

� if we want to obtain bound variable anaphora in a static system, co-indexation, i.e., using
the same variable, is not enough: we also need to create a suitable �-abstraction
configuration that will ensure the semantic co-variation via selective quantification over
assignments (what particular clause in the above definition of Dynamic Ty2 requires that?)

Sentence (52) receives the Dynamic Ty2 representation in (53) below – or, equivalently, the
one in (54). The formulas deliver the intuitively correct truth-conditions in (55).

53. [[u1 | h.elf{u1}] � [hate{u1, u1}]]
54. [u1([h.elf{u1}] � [hate{u1, u1}])]
55. �is. �xe(h.elf(x) � hate(x, x))

CDRT associates the correct Dynamic Ty2 translation with sentence (52) in a
compositional way, as shown by the LF in (56) below.

10

56. Every 1u house-elf hates himself
1u .

What type-driven translation rules are applied at various points in the derivation?

What is the precise point where static Montagovian semantics and our CDRT semantics
diverge? Why does CDRT semantics go through?

5.2. Quantifier Scope Ambiguities

The typical example in (57) below is ambiguous between two quantifier scopings:

� the surface scope every 1u >>a 2u
� the inverse scope a 2u >>every 1u , obtained by an application of QR

The two LFs yield the translations in (58) and (60) below, which capture the intuitively
correct truth-conditions for the two readings, as shown in (59) and (61).

57. Every 1u house-elf adores a 2u witch.
58. every 1u >>a 2u : [[u1 | h.elf{u1}] � [u2 | witch{u2}, adore{u1, u2}]]
59. every 1u >>a 2u : �is. �xe(h.elf(x) � �ye(witch(y)
 adore(x, y)))
60. a 2u >>every 1u : [u2 | witch{u2}, [u1 | h.elf{u1}] � [adore{u1, u2}]]
61. a 2u >>every 1u : �is. �ye(witch(y)
 �xe(h.elf(x) � adore(x, y)))

[every 1u] D
�P'et.�Pet.[([u1]; P'(u1)) � P(u1)]

[house-elf] N
�ve.[h.elfet{v}]

NP
�ve.[h.elfet{v}]

DP
�Pet.[[u1 | h.elf{u1}] � P(u1)]

VP
[[u1 | h.elf{u1}] � [hate{u1, u1}]]

V'
�ve.[hate{v, u1}]

[hate]
trV

�Q(et)t.�ve.Q(�v'e.[hatee(et){v, v'}])
[himself

1u] DP
�Pet.P(u1)

[-s] I

�Dt. D

IP
[[u1 | h.elf{u1}] � [hate{u1, u1}]]

CP

Txt

The two LFs are provided in (62) and (63) below.

62. every 1u >>a 2u : Every 1u house-elf adores a 2u witch.

The inverse scope is obtained by applying the QR rule to the indefinite DP a witch, as
shown in (

2u

63) below.

The application of the QR rule yields the inverse scope not because it places the indefinite
DP in a c-commanding position, but because it reverses the order of updates.

Thus, having a syntactic level for quantifier scoping that encodes dominance in addition to
linear precedence relations is a bit of an overkill.

every 1u house-elf

DP
�Pet.[[u1 | h.elf{u1}] � P(u1)]

VP
[[u1 | h.elf{u1}] � [u2 | witch{u2}, adore{u1, u2}]]

V'
�ve.[u2 | witch{u2}, adore{v, u2}]

[adore]
trV

�Q(et)t.�ve.Q(�v'e.[adoree(et){v, v'}])

[-s] I

�Dt. D

CP

Txt

DP
�Pet.[u2 | witch{u2}]; P(u2)

a 2u witch

IP
[[u1 | h.elf{u1}] � [u2 | witch{u2}, adore{u1, u2}]]

11

63. (a 2u >>every 1u) Every 1u house-elf adores a 2u witch.

5.3. Quantifier Scope with Ditransitive Verbs

Consider the sentence in (64) below: the Dative GQ both takes scope over and binds into
the Accusative GQ – without c-commanding it.

64. Dobby 3u gave every 1u witch her
1u alligator purse.

This example simultaneously exhibits two of the most interesting aspects of CDRT:

� we can have binding of pronouns without c-command and without QR, i.e., without the
covert syntactic manipulations associated with the level of LF

� a quantifier can have scope over another without c-commanding it as long as the update it
contributes is sequenced before the update of the other quantifier: the lexical entry for
ditransitive verbs specifies that the Dative GQ update is sequenced / takes scope over the
Accusative GQ update – and this is enough to nullify the fact that, syntactically, the
former does not take scope over the latter

� both features of CDRT point to the fact that a finer-grained semantics should enable us to

simplify the syntactic structure that we need as input to the semantic interpretation

every 1u house-elf

DP
�Pet.[[u1 | h.elf{u1}] � P(u1)]

VP
[[u1 | h.elf{u1}] � [adore{u1, v''}]]

V'
�ve.[adore{v, v''}]

[adore]
trV

�Q(et)t.�ve.Q(�v'e.[adoree(et){v, v'}])

[-s] I

�Dt. D

CP

Txt

DPv''
�Pet.[u2 | witch{u2}]; P(u2)

a 2u witch

IP
[u2 | witch{u2}, [u1 | h.elf{u1}] � [adore{u1, u2}]]

[tv''] DP
�Pet.P(v''e)

IP
[[u1 | h.elf{u1}] � [adore{u1, v''}]]

procedure – for example, the dominance relations that the LF level encodes are not
always relevant for interpretation

Following the simplified LF for possessive DPs proposed in Heim & Kratzer (1998),14 I
analyze her alligator purse as the DP in (65) below.15

65. [DP a 2u [NP [N alligator purse] [PP of her
1u]]]

The preposition of receives a translation similar to transitive verbs like own.

66. [of]P � �Q(et)t. �ve. Q(�v'e. [ofe(et){v, v'}])

We compositionally derive the following translation for the DP in (65) (the subscript on the
symbol � indicates the rule applied in translating the mother node):

67. a. [PP of her
1u] �FA �ve. [of{v, u1}]

b. [NP [N alligator purse] [PP of her
1u]] �GSeq �ve. [a.purse{v}, of{v, u1}]

c. (65) �FA �Pet. [u2 | a.purse{u2}, of{u2, u1}]; P(u2)

 The syntactic structure of the V' is provided in linearized form in (68) and is
compositionally translated in (69).

The Dative GQ every witch takes scope over the Accusative GQ and also binds the
pronoun her contained in it.

1u

1u

68. [V' [Vdi' give every 1u witch] [DP a 2u alligator purse of her
1u]]

69. [Vdi' give every 1u witch] �FA �Q(et)t. �ve. [[u1 | witch{u1}] � Q(�v''e. [give{v, u1, v''}])]

(68) �FA �ve. [[u1 | witch{u1}] � [u2 | a.purse{u2}, of{u2, u1}, give{v, u1, u2}]]

Sentence (64) is translated as shown in (70). It receives the intuitively correct truth-
conditions (for its most salient reading) in (71).

70. [u3 | u3=Dobby, [u1 | witch{u1}] � [u2 | a.purse{u2}, of{u2, u1}, give{u3, u1, u2}]]
71. �is. �ze(z=dobby
 �xe(witch(x) � �ye(a.purse(y)
 of(y, x)
 give(z, x, y)))),

 i.e., �is. �xe(witch(x) � �ye(a.purse(y)
 of(y, x)
 give(dobby, x, y)))

14 Although the LF in (65) is similar to the one in Heim & Kratzer (1998), the analysis is different: while Heim &
Kratzer (1998) take possessives to be covertly definite DPs (and adopt a Fregean analysis of definite descriptions), I
analyze them here as covertly indefinite DPs. The indefinite analysis of possessive DPs is empirically supported by
the interpretation of possessives in predicative positions, e.g., John is her / Mary's brother, which are not associated
with uniqueness implications.
15 I assume that the following phrase structure and lexical insertion rules are added to the syntax of our English
fragment: (PS 13) NP � N (PP); (PS 14) PP � P DP); (LI 12) P � of.

12

5.4. Cross-sentential Anaphora

72. A 1u house-elf fell in love with a 2u witch.
73. He

1u bought her
2u an 3u alligator purse.

[a 1u house-elf] DP
�Pet.[u1 | h.elf{u1}]; P(u1)

VP
[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}]

 V'
�ve.[u2 | witch{u2}, i.l{v, u2}]

[fall in love]
trV

�Q(et)t.�ve.Q(�v'e.[in_lovee(et){v, v'}])

[-ed] I

�Dt. D

CP

Txt
[u1, u2, u3 | h.elf{u1}, witch{u2}, in_love{u1, u2}, a.purse{u3}, buy{u1, u2, u3}]

Txt

CP IP
[u3 | a.purse{u3}, buy{u1, u2, u3}]

[a 2u witch] DP
�Pet.[u2 | witch{u2}]; P(u2)

 IP
[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}]

[he
1u] DP

�Pet.P(u1)

[-ed] I

�Dt. D

 VP
[u3 | a.purse{u3}, buy{u1, u2, u3}]

 V'
�ve.[u3 | a.p{u3}, buy{v, u2, u3}]

[an 3u alligator purse] DP
P� et.[u3 | a.purse{u P3}]; (u3)

 Vdi'
�Q(et)t. �ve. Q(�v''e. [buye(e(et)){v, u2, v''}]))

[her
2u] DP

�Pet.P(u2)
[buy]

diV

�Q'(et)t. �Q(et)t. �ve. Q'(�v'e. Q(�v''e. [buye(e(et)){v, v', v''}]))

5.5. Relative-clause Donkey Sentences

74. Every 1u house-elf who falls in love with a 2u witch buys her
2u an 3u alligator purse.

VP
[u2 | witch{u2}, in_love{v'', u2}]

 V'
�ve.[u2 | witch{u2}, in_love{v, u2}]

[fall in love]
trV

�Q(et)t.�ve.Q(�v'e.[in_lovee(et){v, v'}])

CP

[a 2u witch] DP
�Pet.[u2 | witch{u2}]; P(u2)

Txt

 IP
[[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}] � [u3 | a.purse{u3}, buy{u1, u2, u3}]]

[-s] I

�Dt. D

VP
[[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}] � [u3 | a.p{u3}, buy{u1, u2, u3}]]

 V'
�ve.[u3 | a.p{u3}, buy{v, u2, u3}]

buy her
2u an 3u alligator purse

 DP
�Pet.[[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}] � P(u1)]

[every 1u] D NP
�ve.[u2 | h.elf{v}, witch{u2}, in_love{v, u2}] P'et. P� � et.[([u1 P']; (u1 P)) � (u1)]

[house-elf] N
�ve.[h.elfet{v}]

CP
�v''e.[u2 | witch{u2}, in_love{v'', u2}]

[who] DP
v''

�Pet.P

CP

 IP
[u2 | witch{u2}, in_love{v'', u2}]

[-s] I

�Dt. D

[tv''] DP
�Pet.P(v''e)

13

5.6. Conditional Donkey Sentences

75. If a 1u house-elf falls in love with a 2u witch, he
1u buys her

2u an 3u alligator purse.

Txt

CP
[[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}] � [u3 | a.purse{u3}, buy{u1, u2, u3}]]

IP
[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}]

Show that the sentences in (76) and (77) below, which involve sentence-coordination
structures, are compositionally assigned the intuitively correct interpretation

76. If a 1u house-elf falls in love with a 2u witch and she
2u likes fancy handbags, he

1u buys
her

2u an 3u alligator purse.
77. If a 1u farmer owns a 2u donkey, he

1u beats it
2u or he

1u feeds it
2u poorly.

6. Translating Unselective Quantification into Dynamic Ty2

Consider again the DPL-style definition of unselective generalized quantification:

78. �det(�, �)� = {<g, h>: g=h and DET((�)g, Dom(���))},

 where DET is the corresponding static determiner

 and (�)g := {h: ���<g, h> = T}

 and Dom(���) := {g: there is an h s.t. ���<g, h> = T}.

79. detx(�, �) := det([x]; �, �)

In particular:

80. �everyx(�, �)� = {<g, h>: g=h and EVERY(([x]; �)g, Dom(���))},

 i.e., �everyx(�, �)� = {<g, h>: g=h and ([x]; �)g � Dom(���)}

 IP
[u3 | a.purse{u3}, buy{u1, u2, u3}]

 CP
�Dt.[[u1, u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}] � D]

[if] C he
1u buys her

2u an 3u alligator purse
D'

a 1u house-elf falls in love with a 2u witch

� t. �D D' � D. [] t

81. �nox(�, �)� = {<g, h>: g=h and NO(([x]; �)g, Dom(���))},
 i.e., �nox(�, �)� = {<g, h>: g=h and ([x]; �)g�Dom(���)=Ø}

82. �x(� � �) � �x(�) � � � ([x]; �) � � � everyx(�, �)
83. ~�x(�; �) � �x(� � ~�) � ~([x]; �; �) � nox(�, �)

Given that the above DPL formulas are tests, they will be translated in Dynamic Ty2 as
conditions, i.e., as terms of type st.

84. det(D, D') := �is. DET(Di, Dom(D')),
 where DET is the corresponding static determiner,
 Di = {js: Dij} and
 Dom(D') := {is: �js(Dij)}.

85. detu(D, D') := det([u]; D, D')

In particular:

86. everyu(D, D') = �is. EVERY(([u]; D)i, Dom(D')),
 i.e., everyu(D, D') = �is. ([u]; D)i � Dom(D').

87. nou(D, D') = �is. no(([u]; D)i, Dom(D')),
 i.e., nou(D, D') = �is. ([u]; D)i�Dom(D')=Ø.

88. u(D � D') = u(D) � D' = ([u]; D) � D' = everyu(D, D')
89. ~ u(D; D') = u(D � ~D') = ~([u]; D; D') = nou(D, D')

6.1. Limitations of Unselectivity: Proportions

90. mostu(D, D') = �is. MOST(([u]; D)i, Dom(D')),
 i.e., mostu(D, D') = �is. |([u]; D)i�Dom(D')| > |([u]; D)i \ Dom(D')|,
 i.e., mostu(D, D') = �is. |([u]; D; [!D'])i| > |([u]; D; [~D'])i|.

91. Most 1u house-elves who fall in love with a 2u witch buy her
2u an 3u alligator purse.

92. [most u ([u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}], [u3 | a.purse{u3}, buy{u1, u2, u3}])]
1

93. �is. |([u1, u2 | h.elf{u1}, witch{u2}, i.l{u1, u2}]; [!([u3 | a.p{u3}, buy{u1, u2, u3}])])i| >
�������|([u1, u2 | h.elf{u1}, witch{u2}, i.l{u1, u2}]; [~([u3 | a.p{u3}, buy{u1, u2, u3}])])i|,
i.e., by Axioms 3 and 4 ("Identity of 'assignments'" and "Enough�'assignments'"),
�is. |{<xe, ye>: h.elf(x)
 witch(y)
 i.l(x, y)
 �ze(a.p(z)
 buy(x, y, z))}| >
������|{<xe, ye>: h.elf(x)
 witch(y)
 i.l(x, y)
 ��ze(a.p(z)
 buy(x, y, z))}|

6.2. Limitations of Unselectivity: Weak / Strong Ambiguities

94. everyu(D, D') = �is. EVERY(([u]; D)i, Dom(D')),
 i.e., everyu(D, D') = �is. ([u]; D)i � Dom(D'),
 i.e., everyu(D, D') = �is. ([u]; D)i � ([u]; D)i�Dom(D'),
 i.e., everyu(D, D') = �is. ([u]; D)i � ([u]; D; !D')i,

95. Every 1u person who has a 2u dime will put it u in the meter.
2

96. [every
1u ([u2 | person{u1}, dime{u2}, have{u1, u2}], [put_in_meter{u1, u2}])]

14

97. �is. ([u1, u2 | person{u1}, dime{u2}, have{u1, u2}])i �
�������([u1, u2 | person{u1}, dime{u2}, have{u1, u2}]; [!([put_in_meter{u1, u2}])])i,
i.e., by Axioms 3 and 4 ("Identity of 'assignments'" and "Enough�'assignments'"),
�is. {<xe, ye>: person(x)
 dime(y)
 have(x, y)} �
������{<xe, ye>: person(x)
 dime(y)
 have(x, y)
 put_in_meter(x, y)}, i.e.
�is. �xe�ye(person(x)
 dime(y)
 have(x, y) � put_in_meter(x, y))

6.3. Conservativity and Unselective Quantification

Assuming that the static determiner DET is conservative, we have:

98. DET(Di, Dom(D')) iff DET(Di, Di�Dom(D')) iff DET(Di, (D; !D')i)

The last formula perspicuously encodes the intuition that a dynamic generalized determiner
relates two sets of info states:

� the first is the set of output states compatible with the restrictor, i.e., Di
� the second is the set of output states compatible with the restrictor that, in addition, can

be further updated by the nuclear scope, i.e., (D; !D')i

The conservative definitions of unselective generalized quantification based on the non-
conservative ones in (84) and (85) above are provided in (99) and (100) below.

99. Built-in 'unselective' dynamic conservativity:
 det(D, D') := �is. DET(Di, (D; [!D'])i)

100. Unselective generalized quantification with built-in dynamic conservativity:
 detu(D, D') := �is. DET(([u]; D)i, ([u]; D; [!D'])i)

Given that the definition of conservative unselective quantification in (100) provides access
to the dref u in both the restrictor and the nuclear scope of the quantification, we will it as the
basis for the CDRT definition of selective generalized quantification.

7. Translating Selective Quantification into Dynamic Ty2

The syntax for selective generalized quantification – the same as above:

� we use abbreviations of the form detu(D, D')
� u is the 'bound' dref (recall that u is a constant of type e := se, so it cannot possibly be

bound in Dynamic Ty2 – hence the scare quotes on 'bound')
� D is the restrictor
� D' is the nuclear scope of the quantification.

The selective determiner detu relates two sets of individuals (type et) and not two sets of
'assignments' (type st), as the unselective determiner det does:

� the fact that detu relates sets of individuals solves the proportion problem

� as far as weak / strong donkey ambiguities are concerned, we account for them by means
of two meanings for generalized determiners: a weak meaning detwk

u(D, D') and a strong
meaning detstr

u(D, D')
� both meanings are defined in terms of the static determiner DET and both of them are

conditions, i.e., terms of type st

101. detwk
u(D, D') := �is. DET(u[Di], u[(D; D')i])

��detstr
u(D, D') := �is. DET(u[Di], u[([D � D'])i]),

 where Di := {js: Dij} and
 u[Di] := {usejs: ([u]; D)ij} (= {xe: �js(([u]; D)ij
 x=uj)}),
 i.e., u[Di] is the image of the set of 'assignments' ([u]; D)i under the function use.

The difference between the weak and the strong lexical entry for the selective generalized
determiners is localized in the nuclear scope of the quantification:

� the weak, 'existential' reading is obtained by simply sequencing (i.e., conjoining) the
restrictor DRS D and the nuclear scope DRS D'

� the strong, 'universal' reading is obtained by means of the universal quantification built
into the definition of dynamic implication that relates the restrictor DRS D and the
nuclear scope DRS D'

Given Axiom 3 ("Identity of 'assignments'") and Axiom 4 ("Enough 'assignments'"), the
weak and strong selective determiners in (101) above can be alternatively defined in terms of
generalized quantification over info states – we just need to make judicious use of the anaphoric
closure operator '!':

102. detwk
u(D, D') := �is. DET(([u | !D])i, ([u | !(D; D')])i)

��detstr
u(D, D') := �is. DET(([u | !D])i, ([u | !([D � D'])])i),16

 where Di := {js: Dij}.

7.1. Accounting for Weak / Strong Ambiguities

103. Every 1u farmer who owns a 2u donkey beats it
2u .

The weak and strong meanings for every are provided in (104) and simplified in (105).

104. everywk
u(D, D') := �is. EVERY(u[Di], u[(D; D')i])

��everystr
u(D, D') := �is. EVERY(u[Di], u[([D � D'])i])

105. everywk
u(D, D') := �is. u[Di] � u[(D; D')i]

��everystr
u(D, D') := �is. u[Di] � u[([D � D'])i]

The weak reading of sentence (103):

106. [everywk
1u ([u2 | farmer{u1}, donkey{u2}, own{u1, u2}], [beat{u1, u2}])]

16 Given that !([D � D']) = D � D', the strong determiner can be more simply defined as detstr
u(D, D') := �is.

DET(([u | !D])i, ([u | D � D'])i).

15

107. �is. u1[([u2 | farmer{u1}, donkey{u2}, own{u1, u2}])i] �
��������u1[([u2 | farmer{u1}, donkey{u2}, own{u1, u2}, beat{u1, u2}])i], i.e.,
���is. {xe: farmer(x)
 �ye(donkey(y)
 own(x, y))} �
��������{xe: farmer(x)
 �ze(donkey(z)
 own(x, z)
 beat(x, z))}, i.e.
���is.�xe(farmer(x)
 �ye(donkey(y)
 own(x, y))
 ��� �ze(donkey(z)
 own(x, z)
 beat(x, z)))

The strong reading of sentence (103):

108. [everystr
1u ([u2 | farmer{u1}, donkey{u2}, own{u1, u2}], [beat{u1, u2}])]

109. �is. u1[([u2 | farmer{u1}, donkey{u2}, own{u1, u2}])i] �
��������u1[([[u2 | farmer{u1}, donkey{u2}, own{u1, u2} � [beat{u1, u2}]])i], i.e.,
��is. {xe: farmer(x)
 �ye(donkey(y)
 own(x, y))} �
�������{xe: �ze(farmer(x)
 donkey(z)
 own(x, z) � beat(x, z))}, i.e.
��is.�xe(farmer(x)
 �ye(donkey(y)
 own(x, y))
 ��� �ze(farmer(x)
 donkey(z)
 own(x, z) � beat(x, z))), i.e.
��is.�xe�ze(farmer(x)
 donkey(z)
 own(x, z) � beat(x, z))

7.2. Solving Proportions

110. mostwk
u(D, D') := �is. MOST(u[Di], u[(D; D')i]),

 i.e., mostwk
u(D, D') := �is. |u[Di]�u[(D; D')i]| > |u[Di] \ u[(D; D')i]|

��moststr
u(D, D') := �is. MOST(u[Di], u[([D � D'])i]),

 i.e., moststr
u(D, D') := �is. |u[Di]�u[([D � D'])i]| > |u[Di] \ u[([D � D'])i]|

111. Most 1u house-elves who fall in love with a 2u witch buy her
2u an 3u alligator purse.

112. [moststr
u ([u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}],[u3 | a.purse{u3}, buy{u1, u2, u3}])]

1

113. �is. |{xe: h.elf(x)
 �ye(witch(y)
 i.l(x, y))

������������y'e(witch(y')
 i.l(x, y') � �ze(a.p(z)
 buy(x, y', z)))}| >
��������|{xe: h.elf(x)
 �y'e(witch(y')
 i.l(x, y')
 ��ze(a.p(z)
 buy(x, y', z)))}|

114. Most 1u drivers who have a 2u dime will put it u in the meter.
2

115. [mostwk
u ([u2 | driver{u1}, dime{u2}, have{u1, u2}], [put_in_meter{u1, u2}])]

1

116. �is. |{xe: driver(x)
 �ye(dime(y)
 have(x, y)
 put_in_meter(x, y))}| >
��������|{xe: driver(x)
 �ye(dime(y)
 have(x, y))
 �
������������y'e(dime(y')
 have(x, y') � �put_in_meter(x, y'))}|

8. Extending CDRT with Generalized Quantification (CDRT+GQ)

The syntax is the same. As far as the semantics is concerned, we only need to:

� replace the CDRT meanings for generalized determiners with the newly defined selective
generalized determiners;

� replace the CDRT meaning for dynamic implication with the newly defined unselective
generalized determiners; thus, CDRT+GQ can capture account for conditionals with
overt adverbs of quantification (of course, assigning an unselective meaning to

conditionals fails to account for the fact that they also exhibit weak / strong donkey
ambiguities)

The CDRT+GQ meanings have the same types as the corresponding CDRT meanings, i.e.,
(et)((et)t) for determiners and t(tt) for conditionals / adverbs of quantification.

The meaning of the indefinite determiner a remains the same as in CDRT (redefining it in
terms of selective generalized quantification would make it a test).

117. TR 0 (only the revised entries are listed): Basic Meanings (TN).

Lexical Item Translation

Type
e := se
t := s(st)

[detwk,u] / [detstr,u] D D

e.g., everystr,u, nowk,u,
�����moststr,u…
(but not au)

� �P'et. �Pet. [detwk/str
u(P'(u), P(u))], where:

 ��������detwk
u(P'(u), P(u)) := �is. DET(u[P'(u)i], u[(P'(u); P(u))i])

���������detstr
u(P'(u), P(u)) := �is. DET(u[P'(u)i], u[([P'(u) � P(u)])i]),

 where P(u)i := {js: P(u)ij} and u[P(u)i] := {uj: ([u]; P(u))ij}
 and DET is the corresponding static determiner.

(et)((et)t)

[if (+adv. of quant.)] C � �D't. �Dt. [det(D', D)], where:

���������det(D, D') := �is. DET(Di, (D; [!D'])i),

 where Di := {js: Dij} and
 DET is the corresponding static determiner.

t(tt)

[if] (i.e., bare if) C � �D't. �Dt. [every(D', D)] ������� t(tt)

16

8.1. Proportions and Weak / Strong Ambiguities in CDRT+GQ

118. Most , 1ustr house-elves who fall in love with a 2u witch buy her
2u an 3u alligator purse.

VP
[u2 | witch{u2}, in_love{v'', u2}]

 V'
�ve.[u2 | witch{u2}, in_love{v, u2}]

[fall in love]
trV

�Q(et)t.�ve.Q(�v'e.[in_lovee(et){v, v'}])

CP

[a 2u witch] DP
�Pet.[u2 | witch{u2}]; P(u2)

Txt

 IP
[moststr

1u ([u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}], [u3 | a.purse {u3}, buy{u1, u2, u3}])]

[-Ø] I

�Dt. D

VP
[moststr

1u ([u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}], [u3 | a.p{u3}, buy{u1, u2, u3}])]

 V'
�ve.[u3 | a.p{u3}, buy{v, u2, u3}]

buy her
2u an 3u alligator purse

 DP
�Pet.[moststr

1u ([u2 | h.elf{u1}, witch{u2}, in_love{u1, u2}], P(u1))]

[most 1u] D

�P'et.�Pet.[moststr
1u (P'(u1), P(u1))]

NP
�ve.[u2 | h.elf{v}, witch{u2}, in_love{v, u2}]

[house-elf] N
�ve.[h.elfet{v}]

CP
�v''e.[u2 | witch{u2}, in_love{v'', u2}]

[who] DP
v''

�Pet.P

CP

 IP
[u2 | witch{u2}, in_love{v'', u2}]

[-Ø] I

�Dt. D

[tv''] DP
�Pet.P(v''e)

9. Anaphora and Generalized Coordination in CDRT+GQ

Goals:

� provide the dynamic counterparts of the definitions of conjoinable types and generalized
conjunction and disjunction in Partee & Rooth (1983);

� show that CDRT / CDRT+GQ can account for the DP-conjunction donkey example in
(119) below, from Chierchia (1995): 77, (38).

119. Every 1u boy who has a 2u dog and every 3u girl who has a 2u cat must feed it
2u .

� this is one of the central examples used in Chierchia (1995) to argue for an approach to
natural language that builds (part of) the dynamics into the semantic value of natural
language expressions as opposed to syntactic operations on the LF of sentences /
discourses

� so, mutatis mutandis, his argument that discourse dynamics should be captured
semantically and not syntactically also supports CDRT+GQ.

9.1. Generalized Dynamic Conjunction and Disjunction

120. Dynamically Conjoinable Types (DCTyp).
The set of dynamically conjoinable types DCTyp is the smallest subset of Typ s.t.
t�DCTyp (where t := s(st)) and, if ��DCTyp, then (��)�DCTyp for any ��Typ.

121. Generalized Pointwise Dynamic Conjunction � and Disjunction �.
For any two terms 	 and
 of type �, for any ��DCTyp:
 	 �
 := (;
) if �=t and 	 �
 := �v�. 	(v) �
(v) if �=(��);
 	 �
 := [�
] if �=t and 	 �
 := �v�. 	(v) �
(v) if �=(��).
Abbreviation. 	1 � 	2 � … � 	n := (…(1 � 	2) � … � 	n);
 	1 � 	2 � … � 	n := (…(1 � 	2) � … � 	n).

� the translation rule GSeq (Generalized Sequencing) we have introduced in chapter 3
above is simply a restricted form of generalized dynamic conjunction �.

The basic meanings for and and or:

122. TR 0 (only the revised entries are listed): Basic Meanings (TN).

Lexical Item Translation Type
e := se t := s(st)

[and] Conj � �v1. … �vn. v1 � … � vn �(…(��)…)

[or] Conj � �v1. … �vn. v1 � … � vn �(…(��)…)

17

9.2. Revising the Coordination Rule: Generalized Coordination

123. TR 5 (revised) – Generalized Coordination (GCo).
If A1 � 	1, …, An � 	n, Conj �
, An+1 � 	n+1 and A1, …, An, Conj and An+1 are the
only daughters of A in that order (i.e., A � A1 … An Conj An+1),
then A �
(1)…(n)(n+1), provided this a well-formed term and has the same type as
	1, …, 	n, 	n+1.

9.3. Catching and Eating a Fish in CDRT+GQ

Consider the sentences in (124) and (125) (Partee & Rooth 1983: 338, (12) and (13))17.

124. John caught and ate a 1u fish.
125. John hugged and kissed three 1u women.

Under the most salient reading of sentence (124), John catches and eats the same fish.
Similarly for (125), John hugs and kisses the same three women.

We can obtain this reading in CDRT / CDRT+GQ only by quantifying-in the direct object
indefinite a fish. That is, CDRT+GQ incorrectly predicts that the default reading (the one
without quantifying-in) should be one in which the fish that John catches and the fish that John
eats are possibly different.

1u

This is a consequence of the fact that, following Montague, transitive verbs are interpreted
as taking a GQ as direct object (a term of type (et)t) and not an individual dref (a term of type e)
– recall that the empirical motivation for this was that the preferred relative scope of the subject
and direct object is the one in which the subject scopes over the object.

What to do? Here's a possibility: translate transitive verbs as binary relations and give a
type-shifting semantics for case – e.g., Accusative case on quantifiers in direct object position
'glues' together such quantifiers and transitive verbs.

What would an appropriate meaning for Accusative case be in static Montagovian
semantics? How about CDRT?

The two for sentence (124) are schematically represented in (126) and (129) below,
together with their respective translations and truth conditions.

126. John 2u [Vtr caught and ate] a 1u fish.
127. [u2 | u2=John]; [u1 | fish{u1}, catch{u2, u1}]; [u1 | fish{u1}, eat{u2, u1}]

17 Page references are to Partee & Portner (2002).

128. �is. �xe(fish(x)
 catch(john, x))
 �ye(fish(y)
 eat(john, y))

129. [a 1u fish]v'' [John 2u [Vtr caught and ate] tv''].
130. [u1 | fish{u1}]; [u2 | u2=John]; [catch{u2, u1}, eat{u2, u1}],

 i.e., [u1, u2 | fish{u1}, u2=John, catch{u2, u1}, eat{u2, u1}]
131. �is. �xe(fish(x)
 catch(john, x)
 eat(john, x))

9.4. Coordination and Discourse Referent Reassignment

The 'possibly distinct fish' representation in (127) above and its interpretation are unlike
anything in classical DRT / FCS:

� reintroducing a dref in DRT / FCS, e.g., dref u1 in (127), is either banned or, if it is
allowed, it is not interpreted as reassigning a value to that dref – the output info state
assigns the same value to the dref as the input info state

� in contrast, CDRT+GQ allows dref reintroduction and interprets it as reassignment of
value to the dref

It seems that classical DRT / FCS is empirically better than CDRT+GQ, since the surface-
based representation in (127) yields the 'same fish' interpretation in a DRT / FCS-like system.

But we cannot easily obtain a representation of the 'distinct fish' interpretation, which is the
preferred one for conjunctions of intensional transitive verbs, e.g., John needed and bought a
new coat (as Partee & Rooth 1983: 338 observe).

We would have to postulate a mechanism whereby the indefinite object a fish occurs twice
in the LF of sentence (124) and contributes distinct drefs – i.e., we would have to syntactically
simulate the semantic Montagovian analysis in (127) above.

Moreover, the necessary syntactic operations on LFs become increasingly stipulative as
soon as we turn to more complex examples like the coordination donkey sentence in (119) above
– which receives a straightforward reassignment-based analysis in CDRT+GQ.

Thus, it seems that we need some form of dref reassignment.

The formalization of dref reassignment in CDRT+GQ (or DPL) ultimately makes incorrect
predictions – because reassignment is destructive: the previous value of the dref is lost and
cannot be later accessed in discourse.

Consider for example the DP conjunction Mary and Helen in discourse (132-133) below.

132. Mary 1u and Helen 2u (each) bought an 3u alligator purse.
133. They u were (both) fluorescent green.

3

134. [u1, u3 | u1=Mary, a.purse{u3}, buy{u1, u3}];
��[u2, u3 | u2=Helen , a.purse{u3}, buy{u2, u3}];
��[fluorescent_green{u3}]

18

Under the most salient reading of (132), Mary and Helen buy a purse each.

But if we analyze this sentence as shown in (134), we are able to retrieve only the purse
mentioned last, i.e., Helen's purse: the destructive CDRT+GQ reassignment renders Mary's purse
inaccessible for subsequent anaphora.

Summary of the problem:

� we need to provide an account of the interaction between anaphora and generalized
coordination exhibited by sentence (119) and, for that, we need to allow for dref
reintroduction – or, more exactly, index reusability – so that both donkey indefinites a
dog and a 2u cat can be anaphorically associated with the donkey pronoun it u .

2u

2

� the only way to capture index reusability in CDRT+GQ is as dref reintroduction, i.e., as
destructive random (re)assignment.

Solution: index reusability does not have to be interpreted as destructive reassignment

We could in principle associate a new value with a previously used index while, at the same
time, saving the old value for later retrieval by associating it with another index.

This idea can be implemented in various ways, e.g., by taking information states to be
referent systems (see e.g., Vermeulen 1993 and Groenendijk, Stokhof & Veltman 1996) or stacks
(see e.g., Dekker 1994, van Eijck 2001, Nouwen 2003 or Bittner 2006) – and not total variable
assignments as in DPL.

Such information states are formally more complex than our current ones, so we will
continue to employ total 'variable assignments' and the current notion of (destructive) random
assignment.

9.5. Anaphora across VP- and DP-Conjunctions

The following three sentences are from Muskens (1996): 177-180, (52), (54) and (58).

135. A 1u cat [V'[V'caught a 2u fish] and [V'ate it u]].
2

136. [u1, u2 | cat{u1}, fish{u2}, catch{u1, u2}, eat{u1, u2}]
137. �is. �xe�ye(cat(x)
 fish(y)
 catch(x, y)
 eat(x, y))

138. John 4u has [DP[DPa 1u cat which caught a 2u fish] and [DPa 3u cat which ate it

2u]].
139. [u4 | u4=John]; [u1, u2 | cat{u1}, have{u4, u1}, fish{u2}, catch{u1, u2}];

 [u3 | cat{u3}, have{u4, u3} eat{u3, u2}]
140. �is. �xe�ye�ze(cat(x)
 have(john, x)
 fish(y)
 catch(x, y)

 cat(z)
 have(john, z)
 eat(z, y))

141. John 3u admires [DP[DPa 1u girl] and [DPa 2u boy who loves her u]].
1

142. [u3 | u3=John]; [u1 | girl{u1}, admire{u3, u1}];
 [u2 | boy{u2}, admire{u3, u2}, love{u2, u1}]

143. �is. �xe�ye(girl(x)
 admire(john, x)
 boy(y)
 admire(john, y)
 love(y, x))

Given that CDRT+GQ interprets all generalized quantifiers as conditions / tests, the
anaphoric connections in the structurally identical examples in (144), (145) and (146) below are
correctly predicted to be infelicitous.

144. #A 1u cat [V'[V'caught no 2u fish] and [V'ate it u]].
2

145. #John 4u has [DP[DPa 1u cat which caught no 2u fish] and [DPa 3u cat which ate it
2u]].

146. #John 3u admires [DP[DPno 1u girl] and [DPa 2u boy who loves her
1u]].

9.6. DP-Conjunction Donkey Sentences

147. [[Every , 1ustr boy who has a 2u dog] and [every ,str 3u girl who has a 2u cat]] must feed
it

2u .18
148. every , 1ustr boy who has a 2u dog �

���Pet. [everystr
1u ([u2 | boy{u1}, dog{u2}, have{u1, u2}], P(u1))]

149. every ,str 3u girl who has a 2u cat �
���Pet. [everystr

3u ([u2 | girl{u3}, cat{u2}, have{u3, u2}], P(u3))]
150. every , 1ustr boy who has a 2u dog and every ,str 3u girl who has a 2u cat �

���Pet. [everystr
1u ([u2 | boy{u1}, dog{u2}, have{u1, u2}], P(u1)),

 everystr
u ([u2 | girl{u3}, cat{u2}, have{u3, u2}], P(u3))] 3

151. must feed it
2u � �ve. [must_feed{v, u2}]

152. every , 1ustr boy who has a 2u dog and every ,str 3u girl who has a 2u cat must feed it
2u �

�� [everystr
1u ([u2 | boy{u1}, dog{u2}, have{u1, u2}], [must_feed{u1, u2}]),

����everystr
3u ([u2 | girl{u3}, cat{u2}, have{u3, u2}], [must_feed{u3, u2}])]

153. �is. �xe�ye(boy(x)
 dog(y)
 have(x, y) � must_feed(x, y))

���������x'e�y'e(girl(x')
 cat(y')
 have(x', y') � must_feed(x', y'))

18 In contrast, the corresponding translation in Chierchia (1995): 96, (76b) delivers the weak truth-conditions (i.e.,
the donkey indefinites are assigned the weak readings), which are arguably incorrect for the most salient reading of
this type of example.

In all fairness, it should be noted that Chierchia (1995): 96 aims to interpret the slightly different example: Every
boy that has a dog and every girl that has a cat will beat it (see Chierchia (1995): 96, (76a)). Therefore, his implicit
claim might be that this particular example is preferably interpreted by accommodating an 'anger management' kind
of scenario wherein the children are advised to beat their pets rather than each other – which would favor the weak
reading of the sentence.

19

Structurally similar sentences like (154) are infelicitous (as Chierchia 1995: 96 observes).

154. ??[[Every , 1ustr boy who has a 2u dog] and [a 3u girl]] must feed it
2u .

155. [everystr
1u ([u2 | boy{u1}, dog{u2}, have{u1, u2}], [must_feed{u1, u2}])];

��[u3 | girl{u3}, must_feed{u3, u2}]

Following Chierchia (1995): 96, we explain their infelicity should be explained just as the
infelicity of examples (144), (145) and (146) above:

� given that generalized quantifiers are conditions / tests in CDRT+GQ, the anaphoric
connection between the pronoun it

2u and the indefinite a 2u dog cannot be successfully
established in the second conjunct of the translation in (155)

Alternatively, the infelicity of sentences like (154) above can be attributed to the fact that
they fail to establish a discourse-level parallelism between the two DP-conjuncts relative to the
anaphor in the VP.

� besides accounting for the infelicity of (154), this hypothesis provides an explanation for
the particular indexing exhibited by the felicitous example in (147): the indefinites a
dog and a 2u cat receive the same index as a consequence of the fact that the two DP-
conjuncts (or the two resulting DRSs) are related by a Parallel rhetorical relation.

2u

10. Limitations of CDRT+GQ: Mixed Weak & Strong Donkey
Sentences

156. Every 1u person who buys a 2u book on amazon.com and has a 3u credit card uses it
3u to

pay for it u .
2

157. Every 1u man who wants to impress a 2u woman and who has an 3u Arabian horse
teaches her

2u how to ride it
3u .

The problem with the weak and strong CDRT+GQ meanings for determiners is that they do
not distinguish between the indefinites in the restrictor: all of them receive either a weak or a
strong reading.

Possible solution: we can make generalized determiners even more ambiguous, i.e.,
redefine them as determiners binding a sequence of drefs and specifying for each dref different
from the 'primary' one whether it receives a weak or a strong reading.

� for example, a determiner of the form detu
wk:u',str:u''(D, D') quantifies over three drefs u, u'

and u''; the 'primary' dref is u and the drefs u' and u'' are introduced by donkey indefinites
in the restrictor of the quantification and are weak and strong respectively

Such determiners can be defined by combining the weak and strong determiner meanings
that we have introduced in CDRT+GQ. But, just as in the case of DPL+GQ, the CDRT+GQ
meaning for generalized determiners has to further specify the relative scope of the donkey
indefinites. For example:

158. detu
str:u'>>wk:u''(D1, D2) := �is. DET(u[D1i], u[([D3 � (D4; D2)])i])

��detu
str:u'<<wk:u''(D1, D2) := �is. DET(u[D1i], u[(D4; [D3 � D2])i]),

 where D3 is the subpart of D1 constraining dref u'
 and D4 is the subpart of D1 constraining dref u''.

CDRT+GQ faces the same basic kind of problems with respect to conditionals that exhibit
asymmetric readings, i.e., weak / strong ambiguities.

Kadmon's generalization – a multi-case conditional with two indefinites in the antecedent
generally allows for three interpretations:

� one where the QAdverb (which is a covert always or usually in the case of bare
conditionals) quantifies over pairs

� one where it quantifies over instances of the first indefinite
� one where it quantifies over instances of the second indefinite

159. If au village is inhabited by au' painter, itu is usually pretty. (Kadmon 1987)
160. If au drummer lives in anu' apartment complex, itu' is usually half empty.

(Bäuerle & Egli 1985, apud Heim 1990: 151, (29))
161. If au woman owns au' cat, sheu usually talks to itu'. (Heim 1990: 175, (91))

� the most salient reading of (159) is an asymmetric one in which we quantify over villages
u inhabited by a painter; thus, that conditional is translated in CDRT+GQ by means of
the selective determiner mostwk

u (moststr
u is equally adequate in this case)

� the most salient reading of (160) is an asymmetric one in which we quantify over
apartment complexes u' inhabited by a drummer; hence, the conditional is translated in
CDRT+GQ by means of the selective determiner mostwk

u' (moststr
u' is equally adequate in

this case)
� the most salient reading of (161) is one where we quantify over woman-cat pairs;

therefore, the conditional is translated in CDRT+GQ by means of the unselective
determiner most

Various factors influence what is the most salient reading of a donkey conditional:

� Bäuerle & Egli (1985) notice that it depends on which indefinites from the antecedent are
anaphorically picked up in the consequent

� Rooth (1985) and Kadmon (1987) (see also Heim 1990 and Chierchia 1995 among
others) observe that the focus-background structure of the sentence also determines
which indefinites receive which reading, the generalization being that the non-focused
indefinite in the antecedent is the one that is bound by the if+QAdverb quantification

Even more complex conditionals can occur – the most salient reading of (162) is one in
which we quantify over most woman-man pairs that have some son or other (i.e., the indefinite
au' son receives a weak reading).

162. If au woman has au' son with au'' man, sheu usually keeps in touch with himu''.

(I. Heim, apud Chierchia 1995: 67, (14b))

20

