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Subsymbolic components of declarative memory
Goals for this part:

▶ introduce ‘subsymbolic’ declarative memory components
of ACT-R that are essential for modeling linguistic
performance – i.e., actual human behavior in
experimental tasks

▶ build end-to-end models for one psycholinguistic task:
self-paced reading

▶ evaluate how well these models fit actual data ⇒
quantitative comparison for qualitative theories

▶ end-to-end models:
▶ explicit linguistic analyses primarily encoded in the

production rules, i.e., in procedural memory
▶ realistic model of declarative memory
▶ simple, but reasonably realistic vision and motor modules
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The power law of forgetting
Main idea behind the ACT-R declarative memory architecture:

“[H]uman memory is behaving optimally with respect
to the pattern of past information presentation. Each
item in memory has had some history of past use.

For instance, our memory for one person’s name may
not have been used in the past month but might have
been used five times in the month previous to that.
What is the probability that the memory will be
needed (used) during the conceived current day?

Memory would be behaving optimally if it made this
memory less available than memories that were more
likely to be used but made it more available than less
likely memories.” (Anderson and Schooler, 1991, p. 396)
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Ebbinghaus (1913, Ch. 7) retention data
▶ availability of a dec. mem. chunk – its activation, which

determines probability of retrieval and retrieval latency –
is a function of the past use of that chunk
other factors at work too, e.g., cognitive context; more later

▶ to understand ACT-R formalization, examine the
well-known Ebbinghaus (1913, Ch. 7) retention data

▶ stimuli: ≈ 2300 nonsense CVC syllables; mixed together,
syllables randomly selected to construct lists of syllables

▶ method: learning to criterion; participant repeats the list
as many times as necessary to reach a prespecified level
of accuracy, e.g., one perfect reproduction

▶ retention measure (dependent variable): percent savings
▶ subtracting the number of repetitions required to relearn

material to criterion at a later point (independent
variable: time) from the number of repetitions originally
required to learn the material to the same criterion
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Ebbinghaus (1913, Ch. 7) retention data

>>> import pandas as pd 1
>>> ebbinghaus_data =\ 2
... pd.read_csv('ebbinghaus_retention_data.csv') 3
>>> ebbinghaus_data 4

delay_in_hours percent_savings 5
0 0.33 58.2 6
1 1.00 44.2 7
2 8.80 35.8 8
3 24.00 33.7 9
4 48.00 27.8 10
5 144.00 25.4 11
6 744.00 21.1 12
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Figure: Ebbinghaus retention data: non-transformed

0 100 200 300 400 500 600 700

Delay (hours)

20

30

40

50

60

Sa
vi
ng

s
(%

)

Non-transformed

6



Forgetting curve: exponential? (no)
Could forgetting curve in non-transformed plot reflect an
underlying negative exponential forgetting function?

(1) P = A · e−bT

- P : performance measure (percent savings),
- T : time delay
- A, b: model parameters

(2) Taking logs of both sides: log(P ) = log(A)− bT
P : linear function of T with intercept log(A) and
negative slope −b

Prediction: log-performance is a linear function of time.
▶ we should see a fairly straight line with a negative slope

if we log-transform performance P
▶ we don’t: see plot on next slide
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Figure: Ebbinghaus retention data: log savings
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Figure: Log transformation / compression: intuition

Evenly (linearly) spaced trees, but the further away two trees are
(the larger the numbers), the smaller the distance between them
appears (difference between numbers compressed further)9



Fit exponential model to data

>>> import numpy as np 1
>>> import pymc3 as pm 2
>>> from pymc3.backends import SQLite 3
>>> from pymc3.backends.sqlite import load 4

5
>>> delay = ebbinghaus_data['delay_in_hours'] 6
>>> savings = ebbinghaus_data['percent_savings'] 7

8
>>> exponential_model = pm.Model() 9
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Fit exponential model to data (ctd.)

>>> with exponential_model: 1
... # priors 2
... intercept = pm.Normal('intercept', mu=0, sd=100)3
... slope = pm.Normal('slope', mu=0, sd=100) 4
... sigma = pm.HalfNormal('sigma', sd=100) 5
... # likelihood 6
... mu = pm.Deterministic('mu',\ 7
... intercept + slope*delay) 8
... log_savings = pm.Normal('log_savings', mu=mu, 9
... sd=sigma, observed=np.log(savings)) 10
... # posteriors 11
... #db = SQLite('exponential_model_trace.sqlite') 12
... #trace = pm.sample(draws=5000, trace=db,\ 13
... #n_init=50000, njobs=4) 14
... trace = load('exponential_model_trace.sqlite') 15
... 16
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Fit exponential model to data (ctd.)

We use Bayesian methods for data analysis / parameter
estimation / quantitative model comparison.
We compare:

▶ actual observations
▶ predictions made by the theory / hypothesis that

performance (forgetting) is an exponential function of
time

Model components:

▶ low information priors for the intercept, slope, and noise
(familiar from our intro to Bayes slides)

▶ likelihood: direct coding of the exponential theory /
hypothesis
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Figure: The exponential forgetting model
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Power law model of forgetting

Performance: a power function of time

▶ performance: linear function of time only if both
performance and time are log transformed

(3) P = A · T−b

(4) Taking logs of both sides: log(P ) = log(A)− b log(T )

Log-transforming both delay and savings in the Ebbinghaus
data reveals a linear dependency – see plot on next slide.
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Figure: Ebbinghaus retention data: log-log
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Fit power-law model to data
>>> power_law_model = pm.Model() 1
>>> with power_law_model: 2
... # priors 3
... intercept = pm.Normal('intercept', mu=0, sd=100)4
... slope = pm.Normal('slope', mu=0, sd=100) 5
... sigma = pm.HalfNormal('sigma', sd=100) 6
... # likelihood 7
... mu = pm.Deterministic('mu',\ 8
... intercept + slope*np.log(delay)) 9
... log_savings = pm.Normal('log_savings', mu=mu,\ 10
... sd=sigma, observed=np.log(savings)) 11
... # posteriors 12
... #db = SQLite('power_law_model_trace.sqlite') 13
... #trace = pm.sample(draws=5000, trace=db,\ 14
... #n_init=50000, njobs=4) 15
... trace = load('power_law_model_trace.sqlite') 16
... 1716



Figure: The power law model of forgetting
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Power law & ACT-R base activation

Power law of forgetting directly incorporated in ACT-R:

(5) ACT-R base activation: Bi = log
(

n∑
k=1

t−d
k

)
(6) Exponentiating both sides:

eBi =
n∑

k=1

t−d
k = t−d

1 + t−d
2 + · · ·+ t−d

n

▶ Bi: base activation of chunk i, a log-transformed measure
of performance eBi

▶ n: number of presentations / rehearsals of chunk i
▶ tk: time elapsed since presentation k
▶ d: decay (free parameter; default value: 0.5)
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Power law & ACT-R base activation (ctd.)

Example: two presentations, one 40 s ago, one 20 s ago, let’s
compute base activation now – and also need odds and need
probability.

Bi = log(t−d
1 + t−d

2 ) = log(40−0.5 + 20−0.5)

= log( 1
400.5

+ 1
200.5

) = log( 1√
40

+ 1√
20
)

= log( 1
6.325

+ 1
4.472

) = log(0.3817) = −0.9631

Oi = eBi = 0.3817 (odds chunk i is needed now)

Pi =
Oi

1+Oi
= 0.3817

1+0.3817
= 0.276 (prob. chunk i is needed now)
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Power law & ACT-R base activation (ctd.)
▶ “at any point in time, memories vary in how likely they

are to be needed and the memory system tries to make
available those memories that are most likely to be
useful. The memory system can use the past history of
use of a memory to estimate whether the memory is
likely to be needed now.” (Anderson and Schooler, 1991, 400)

▶ memory estimates / computes activations, which reflects
‘need probability:’ the probability that we will need a
particular chunk now

▶ specific predictions about the relationship between
activation, which is an unobserved quantity reflecting
need probability, and observable / measurable quantities:
▶ recall latency (how long remembering / retrieving takes)
▶ recall accuracy (what is the probability of a successful

retrieval)
20



Activation and recall accuracy & latency
Let total activation Ai be just base activation Bi.
▶ another component: spreading activation; we discuss it

when we get to semantic modeling

(7) Pi =
1

1+e−
Ai−τ

s

(s: retrieval noise, τ : retrieval threshold)

(8) Ti = Fe−fAi (F : latency factor, f : latency exponent)

▶ key to connection between activation and recall accuracy
and latency: understand the specific way in which
activation reflects need probability

▶ base activation Bi is the logit (log-odds) transformation
of need probability: Bi = log(Oi).

▶ exponentiated activation eBi is the odds that chunk i is
needed (need odds Oi =

Pi

1−Pi
, where Pi is the need

probability of chunk i)
21



Activation and recall accuracy & latency (ctd.)

ACT-R base activation (exponentiated): eBi =
n∑

k=1

t−d
k

n∑
k=1

: individual presentations 1 through n of a chunk i have a

strengthening impact on the need odds of chunk i
▶ a presentation k additively increases the previous need

odds for chunk i
▶ these impacts are summed up to produce a total strength

/ total need odds for chunk i

t−d
k : the strengthening impact of a presentation k on the total

need-odds for the chunk is a power function of time t−d
k

▶ tk is the time elapsed since presentation k
▶ this encodes the power law of forgetting
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Activation and recall accuracy & latency (ctd.)
Probability of retrieval (ignoring free param.s):

Pi =
1

1+e−Ai
= 1

1+ 1

eAi

= 1
1+ 1

Oi

= Oi

1+Oi

▶ Pi: need probability for chunk i (probability that we need
i at retrieval time)

▶ Oi =
pi

1−pi
: need odds for chunk i (odds that we need i at

retrieval time)
▶ conversely: Pi =

Oi

1+Oi

▶ Ai = log(Oi) = log
(

pi
1−pi

)
: need logits/log-odds for

chunk i (log-odds that we need i at retrieval time)
▶ conversely: Oi = eAi

▶ it follows that: pi = Oi

1+Oi
= 1

1+ 1
Oi

= 1
1+ 1

eAi

= 1
1+e−Ai

Latency of retrieval (ignoring free param.s):
Ti = e−Ai = 1

eAi
= 1

Oi
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Figure: Activation, retrieval prob. and retrieval latency as a function
of time (threshold – dotted black line; 5 presentations – red)
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Linguistic example: self-paced reading

For full paper, see Brasoveanu and Dotlačil (2018, to appeara)
▶ Grodner and Gibson (2005, Exp. 1): self-paced reading,

matrix subject is modified by a subject or
object-extracted relative clause (RC)

(9) The
reporter who sent the photographer to the editor hoped
for a story.

(10) The
reporter who the photographer sent to the editor hoped
for a story.

9 ROIs: word 2 through word 10 (underlined above)
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Demo of an ACT-R model for subj & obj gap RCs
(open the slides with Adobe Acrobat Reader to see the movie)

Red circle is the visual focus. Temporal trace incrementally
produced by the model is visible in the background.
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An eager left-corner parser in ACT-R
Building on Resnik (1992); Lewis and Vasishth (2005)

Left-corner parser components:
▶ lexical knowledge (simulating adult-like experience),

knowledge of already parsed syntactic structures →
declarative memory

▶ knowledge of grammar → procedural memory
(common, e.g., Lewis and Vasishth 2005)

▶ expectations about upcoming syntactic categories, which
guide parsing → goal buffer

▶ information about the current syntactic parse →
imaginal buffer

▶ visual information from environment → visual buffer
▶ key press commands → manual buffer
▶ visual module – EMMA Salvucci (2001)
▶ motor module – EPIC Kieras and Meyer (1996); Meyer and

Kieras (1997) 27



An eager left-corner parser in ACT-R
Rules:
S → NP VP
NP → Det N
VP → V

Visual input:
▶ A boy sleeps.

A --- ------.

Input

▶ Stack: S (Goal)

▶ Found: a, Det
(Visual + Retrieval)

Output

▶ Stack: N NP S (Goal)

▶ Structure: S

NP

Det

a
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An eager left-corner parser in ACT-R
Rules:
S → NP VP
NP → Det N
VP → V

Visual input:
▶ A boy sleeps.

- boy ------.

Input

▶ Stack: N NP S (Goal)

▶ Found: boy, N
(Visual + Retrieval)

Output

▶ Stack: VP (Goal)

▶ Structure: S

VPNP

N

boy

Det

a
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An eager left-corner parser in ACT-R
Rules:
S → NP VP
NP → Det N
VP → V

Visual input:
▶ A boy sleeps.

- --- sleeps.

Input

▶ Stack: VP (Goal)

▶ Found: sleeps, V
(Visual + Retrieval)

Output

▶ Stack: {} (Goal)

▶ Structure: S

VP

V

sleeps

NP

N

boy

Det

a

30



An eager left-corner parser in ACT-R and gaps

(11) The reporter who…

▶ parser postulates subject gap at this moment

(12) The reporter who sent the photographer to the
editor…

(13) The reporter who the photographer sent…

▶ parser postulates object gap for object-relative clause
(i.e., (13))
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An eager left-corner parser in ACT-R and gaps

(11) The reporter who…

▶ parser postulates subject gap at this moment

(12) The reporter who sent the photographer to the
editor…

(13) The reporter who the photographer sent…

▶ parser postulates object gap for object-relative clause
(i.e., (13))
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Flow chart of parsing process per word

attend word retrieve lex.information about word

retrieve syntactic parse
if applicable (e.g., wh-word)

parse

move visual attention

press key
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Parameters – visual encoding (EMMA)

▶ Visual encoding (Tenc) dependent on visual distance d and
object properties, D

Tenc = K ·D · ekd(parameter k – angle)

▶ D = word length, K = 0.01

▶ k – estimated to show that parameters for peripherals
can be estimated at the same time as the more
commonly estimated parameters associated with
declarative and procedural memory
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Parameters – rule firing and memory recall

▶ Rule firing = r (parameter r)

How much time does each rule take? (default: 50 ms)
▶ Retrieval latency, modulated by parameters F (latency

factor) and f (latency exponent)

T = F · e−f ·A

▶ latency exponent f – estimated because crucial in
estimating latencies in lexical decision tasks (cf.
Brasoveanu and Dotlačil to appearb)
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Estimation

▶ The model is fit to data by estimating the 4 free
parameters (k, r, F , f )

▶ pyactr enables us to easily interface ACT-R models with
standard statistical estimation methods implemented in
widely-used Python3 libraries

▶ we use ACT-R models as the likelihood component of full
Bayesian models, and fit the ACT-R parameters to
experimental data
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Data

>>> import pymc3 as pm 1
2

>>> subj_extraction = np.array(\ 3
... [360.2, 349.8, 354.8, 334.3, 384,\ 4
... 346.5, 318.4, 403.6, 404.6]) 5

6
>>> obj_extraction = np.array(\ 7
... [373.1, 343, 348.1, 357.6, 422.1,\ 8
... 375.8, 338.6, 482.9, 401.1]) 9
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Model implementation

>>> parser_with_bayes = pm.Model() 1
>>> with parser_with_bayes: 2
... # priors for latency 3
... F = pm.HalfNormal('F', sd=0.3) 4
... f = pm.HalfNormal('f', sd=0.5) 5
... r = pm.HalfNormal('r', sd=0.05) 6
... k = pm.HalfNormal('k', sd=1.0) 7
... # latency likelihood -- this is where pyactr is used8
... pyactr_rt = actrmodel_latency(F, f, r, k) 9
... subj_rt_observed = pm.Normal(\ 10
... 'subj_rt_observed', mu=pyactr_rt[0], sd=10,\ 11
... observed=subj_extraction) 12
... obj_rt_observed = pm.Normal(\ 13
... 'obj_rt_observed', mu=pyactr_rt[1], sd=10,\ 14
... observed=obj_extraction) 15
... 16
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Bayesian model structure

k
halfnormal(0;1)

r
halfnormal(0;0.05)

F
halfnormal(0;0.3)

f
halfnormal(0;0.5)

ACT-R(k; r;F ; f) ⇒ Latency

RT
normal(Latency; 10)

=

∼ ∼∼∼
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The power law of forgetting

Results

Conclusion

39



Posterior predictions (Model 1)
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Posterior predictions (Model 1)
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Posterior predictions (Model 1)
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Model 2: no postulated subject gaps
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Model 2: no postulated subject gaps
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Model 2: no postulated subject gaps
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Model 2: no postulated subject gaps
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Model 3: parallel reader
attend word retrieve lex.information about word

retrieve syntactic parse
if applicable (e.g., wh-word)

parse press key move visual attention

▶ Model 1 completes all available parsing before key press
(serial)

▶ Model 3: first lexical retrieval, then structure building &
key press in parallel

▶ Outcome: spillover on word after object gap captured

48
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attend word retrieve lex.information about word

retrieve syntactic parse
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Model 3: spillover after object gap captured
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Model 3: spillover after object gap captured
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WAIC-based model comparison

WAIC1 WAIC2

Model 1 (subject gaps) 388 1469
Model 2 (no subject gaps) 433 1613
Model 3 (‘parallel’ reader) 390 553

▶ Model 1 is better than Model 2 with respect to both
WAIC1 and WAIC2

▶ increase in precision for Model 3 is clearly visible in its
much lower WAIC2 value (which is variance based)
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Conclusion
▶ we introduced a modular and extensible framework for

mechanistic processing models

▶ case study: an incremental left-corner parser with visual
and motor interfaces for subject/object gap relative
clauses

▶ framework used to quantitatively compare hypotheses
about processing, e.g., predictively postulating subject
gaps

▶ systematic across-the-board model comparison via Bayes
factors is possible in this framework

▶ framework can model other tasks (eye tracking, lexical
decision – for the latter, see Brasoveanu and Dotlačil to
appearb)
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Model 1: parameter estimates

▶ k = 0.87, sd = 0.32

▶ F = 0.01, sd = 0.03

▶ f = 0.23, sd = 0.47

▶ r = 0.02, sd = 0.006
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