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Chapter 6. Structured Nominal Reference: Quantificational 
Subordination 

 

1. Introduction 

The present chapter proposes an account of the contrast between the interpretations 

of the discourses in (1) and (2) below from Karttunen (1976). 

1. a. Harvey courts au girl at every convention.       

b. Sheu is very pretty. 

2. a. Harvey courts au girl at every convention.        

b. Sheu always comes to the banquet with him.            

[c. Theu girl is usually also very pretty.] 

The initial sentence (1a/2a) by itself is ambiguous between two readings (i.e. two 

quantifier scopings): it "can mean that, at every convention, there is some girl that 

Harvey courts or that there is some girl that Harvey courts at every convention. […] 

Harvey always courts the same girl […] [or] it may be a different girl each time" 

(Karttunen 1976: 377). 

The contrast between the continuations in (1b) and (2b) is that the former allows 

only for the "same girl" reading of sentence (1a/2a), while the latter is also compatible 

with the "possibly different girls" reading. 

Discourse (1) raises the following question: how can we capture the fact that a 

singular anaphoric pronoun in sentence (1b) can interact with and disambiguate 

quantifier scopings in sentence (1a)?  

To see that it is indeed quantifier scopings that are disambiguated, substitute �'������


���� 
��� for ��� 
��� in sentence (1a); this will yield two truth-conditionally independent 

scopings: (i) �'������ 
��� 
���>>������ �
������
�, which is true in a situation in which 

Harvey courts more than one girl per convention, but there is exactly one (e.g. Faye 

Dunaway) that he never fails to court, and (ii) �������
������
�>>�'������
���
���. 



 203 

To see that number morphology on the pronoun ��� is indeed crucial, consider the 

discourse in (3) below, where the (preferred) relative scoping of �������
������
� and ��
��� 

is the opposite of the one in discourse (1). 

3. a. Harvey courts au girl at every convention. b. Theyu are very pretty. 

Discourse (2) raises the following questions. First, why is it that adding an adverb of 

quantification, i.e. ������/�$��""�, makes both readings of sentence (2a) available?  

Moreover, on the newly available reading of sentence (2a), i.e. the ������

�
������
�>>��
��� scoping, how can we capture the intuition that the singular pronoun ��� 

and the adverb ������ in sentence (2b) elaborate on the quantificational dependency 

between conventions and girls introduced in sentence (2a), i.e. how can we capture the 

intuition that we seem to have simultaneous anaphora to two quantifier domains and to 

the quantificational dependency between them? 

The phenomenon instantiated by discourses (1) and (2) is subsumed under the more 

general label of quantificational subordination (see for example Heim 1990: 139, (2)), 

which covers a variety of phenomena involving interactions between generalized 

quantifiers and morphologically singular cross-sentential anaphora. 

One of the main goals of this chapter is to show that the PCDRT system introduced 

in chapter 5 and motivated by mixed reading (weak & strong) donkey sentences receives 

independent empirical justification based on the phenomenon of quantificational 

subordination.  

To account for quantificational subordination, we will only need to modify the 

definition of selective generalized quantification. As already remarked in section 3.5 of 

chapter 5, there are two main strategies for the definition of generalized quantification in 

a dynamic system; the previous chapter explored one of them, namely the one that is 

closer to the DRT / FCS / DPL-style definition, while this chapter explores the other, 
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formally more complex strategy, namely the one that is closer to van den Berg's 

definition of generalized quantification1. 

The chapter is structured as follows. Section 2 informally presents the PCDRT 

analysis of the Karttunen discourses in (1) and (2) above. Section 3 introduces and 

justifies the new definition of dynamic generalized quantification that enables us to 

account for quantificational subordination. Section 4 presents the formal PCDRT analysis 

of the Karttunen discourses based on the novel notion of dynamic quantification 

introduced in section 3. Finally, section 6 briefly compares the PCDRT analysis of 

quantificational subordination with alternative accounts.  

The appendix to the chapter introduces generalized selective distributivity, i.e. 

selective distributivity generalized to arbitrary types, and studies some of the formal 

properties of DRS-level selective distributivity. 

The presentation of the PCDRT analysis of quantificational subordination in 

sections 3 and 4 repeats some of the basic notions and ideas introduced in the previous 

chapters. I hope that the resultant global redundancy is outweighed by the local 

improvement in readability. 

2. Structured Anaphora to Quantifier Domains 

This section shows semi-formally that the semantic framework proposed in the 

previous chapter (chapter 5), i.e. PCDRT, enables us to account for discourses (1) and (2) 

above. In particular, the main proposal will be that compositionally assigning natural 

language expressions finer-grained semantic values (finer grained than the usual 

meanings assigned in static Montague semantics) enables us to capture the interaction 

between generalized quantifiers, singular pronouns and adverbs of quantification 

exhibited by the contrast between the interpretations of (1) and (2). 

                                                 

1 The fact that we are able to reformulate the two kidns of definitions of dynamic generalized quantification 
within the same type-logical system greatly facilitates their formal and empirical comparison, which 
(unfortunately) I must leave for a different occasion. 
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Just as in the previous chapter, the PCDRT semantic values are finer-grained in a 

very precise sense: the 'meta-types' e and t assigned to the denotations of the two kinds of 

'saturated' expressions (names and sentences respectively) are assigned types that are 

complex than the corresponding types in static extensional Montague semantics. That is, 

the 'meta-type' t abbreviates (st)((st)t), i.e. a sentence is interpreted as a DRS, and the 

'meta-type' e abbreviates se, i.e. a name is interpreted as a dref. The denotation of a 

common noun like 
��� will still be of type et – see (4) below – and the denotation of a 

selective generalized determiner like every will still be of type (et)((et)t). 

4. 
��� ���ve. [girlet{v}], i.e. 
��� ���ve.�Ist.�Jst. I=J ∧ girlet{v}J  

Accounting for cross-sentential phenomena in semantic terms (as opposed to purely 

/ primarily pragmatic terms) requires some preliminary justification. First, the same kind 

of finer-grained semantic values are independently motivated by intra-sentential 

phenomena, as shown by the account of mixed weak & strong donkey sentences in the 

previous chapter. 

Second, the phenomenon instantiated by discourses (1) and (2) is as much intra-

sentential as it is cross-sentential. Note that there are four separate components that come 

together to yield the contrast in interpretation between (1) and (2): (i) the generalized 

quantifier �������
������
�, (ii) the indefinite ��
���, (iii) the singular number morphology 

on the pronoun ��� and (iv) the adverb of quantification ������/�������. To derive the 

intuitively correct interpretations for (1) and (2), we have to attend to both the cross-

sentential connections �� 
���–��� and ������ �
������
�–������(������� and the intra-

sentential interactions �������
������
�–��
��� and ������–���. 

I conclude that an account of the contrast between (1) and (2) that involves a 

revamping of semantic values has sufficient initial plausibility to make its pursuit 

worthwhile. 

The PCDRT plural info states enable us to encode discourse reference to both 

quantifier domains, i.e. values, and quantificational dependencies, i.e. structure, as 

shown in the matrix in (5) below.  
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5. Info State I … u u' … 

i1 … x1 (i.e. ui1) y1  (i.e. u'i1) … 

i2 … x2  (i.e. ui2) y2  (i.e. u'i2) … 

i3 … x3  (i.e. ui3) y3  (i.e. u'i3) … 

… … … … … 

 

Quantifier domains (sets): 
{x1, x2, x3, …}, {y1, y2, y3, …} 

Quantifier dependencies (relations): 

{<x1, y1>, <x2, y2>, <x3, y3>, …} 

Just as before, the values are the sets of objects that are stored in the columns of the 

matrix, e.g. a dref u for individuals stores a set of individuals relative to a plural info 

state, since u is assigned an individual by each assignment (i.e. row). The structure is 

distributively encoded in the rows of the matrix: for each assignment / row in the plural 

info state, the individual assigned to a dref u by that assignment is structurally correlated 

with the individual assigned to some other dref u' by the same assignment. 

Thus, plural info states enable us to pass information about both quantifier domains 

and quantificational dependencies across sentential / clausal barriers, which is exactly 

what we need to account for the interpretation of discourses (1) and (2). More precisely, 

we need the following two ingredients.  

First, we need a suitable interpretation for selective generalized determiners, e.g. 

����� in (1a/2a), which needs to do two things: (i) it stores in the plural info state the 

restrictor and nuclear scope sets of individuals that are related by the generalized 

determiner; (ii) it stores in the plural info state the quantificational dependencies between 

the individuals in the restrictor and / or nuclear scope set and any other quantifiers or 

indefinites in the restrictor or nuclear scope of the quantification.  

For example, the indefinite �� 
��� in (1a/2a) is in the nuclear scope of the �����-

quantification, while in the usual donkey examples (Every farmer who owns a
u
 donkey 

beats itu), we have an indefinite in the restrictor of the quantification. 

Given that a plural info state stores (i) sets of individuals and (ii) dependencies 

between such sets, both of them are available for subsequent anaphoric retrieval, e.g. 
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������ and ��� in (2b) are simultaneously anaphoric to (i) �������
������
� and ��
��� on the 

one hand and (ii) the dependency between conventions and girls on the other hand. 

The second ingredient is a suitable interpretation of singular number morphology on 

pronouns, e.g. ��� in (1b) and (2b), that can interact with quantifiers and indefinites in the 

previous discourse, e.g. �������
������
� and ��
��� in (1a/2a), and with quantifiers in the 

same sentence, e.g. the adverb ������ in (2b). 

In particular, I will take the singular number morphology on ��� in (1b) to require 

that the set of individuals stored by the current plural info state relative to u be a 

singleton. This set of individuals is introduced by the indefinite ��
��� in (1a) – irrespective 

of whether the indefinite has wide or narrow scope relative to ������ �
������
�. This is 

possible because we use plural info states, by means of which we store sets of individuals 

and pass them across sentential boundaries – we can thus constrain their cardinality by 

subsequent anaphoric elements like ���. 

If the indefinite �� 
��� has narrow scope relative to ������ �
������
�, the singleton 

requirement contributed by ��� applies to the set of all girls that are courted by Harvey at 

some convention or other. Requiring this set to be a singleton boils down to removing 

from consideration all the plural information states that would satisfy the narrow scope 

�������
������
�>>��
���, but not the wide scope ���
������
�>>������
���.  

We therefore derive the intuition that, irrespective of which quantifier scoping we 

assume for sentence (1a), any plural info state that we obtain after a successful update 

with sentence (1b) is bound to satisfy the representation in which the indefinite ���
��� (or 

a quantifier like �'������
����
���) takes wide scope. 

In the case of discourse (2) however, the adverb of quantification ������ in (2b) – 

which is anaphoric to the nuclear scope set introduced by �������
������
� in (2a) – can 

take scope over the singular pronoun ���. In doing so, the adverb 'breaks' the plural info 

state containing all the conventions into smaller sub-states, each storing a particular 

convention. Then, the singleton requirement contributed by singular morphology on ���� 

is enforced locally, relative to these sub-states, and not globally, relative to the whole 
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plural info state. We therefore end up requiring that the courted girl is unique per 

convention and not across the board (the latter option being instantiated by discourse (1)). 

The following section will introduce, explain and motivate the new definition of 

selective generalized quantification in PCDRT – and the corresponding (minor) 

adjustments of the meanings of indefinites, pronouns and definites. 

3. Redefining Generalized Quantification 

We turn now to the definition of selective generalized quantification in PCDRT.  

3.1. Four Desiderata 

The definition has to satisfy four desiderata, the first three of which are about 

anaphoric connections that can be established internally, within the generalized 

quantification (i.e. between antecedents in the restrictor and anaphors in the nuclear 

scope) and the last of which is about anaphora that can be established externally (i.e. 

between antecedents introduced by or within the quantification and anaphors that are 

outside the quantification). 

First, we want our definition to be able to account for the fact that anaphoric 

connections between the restrictor and the nuclear scope of the quantification can in fact 

be established, i.e. we want to account for donkey anaphora. 

Second, we want to account for such anaphoric connections while avoiding the 

proportion problem which unselective quantification (in the sense of Lewis 1975) runs 

into, i.e. we need the generalized determiner to relate sets of individuals (i.e. sets of 

objects of type e) and not sets of 'assignments' (i.e. sets of objects of type s).  

Sentence (6) below provides a typical instance of the proportion problem: 

intuitively, (6) is false in a situation in which there are ten farmers, nine have a single 

donkey each that they do not beat, while the tenth has twenty donkeys and he is busy 

beating them all. But the unselective formalization of �
��-quantification as 

quantification over 'assignments' incorrectly predicts that (6) is true in the above situation 



 209 

because more than half of the <farmer, donkey> pairs (twenty out of twenty-nine) are 

such that the farmer beats the donkey. 

6. Most farmers who own au donkey beat itu. 

The third desideratum is that the definition of selective generalized quantification 

should be compatible with both strong and weak donkey readings: we want to allow for 

the different interpretations associated with the donkey anaphora in (7) (Heim 1990) and 

(8) (Pelletier & Schubert 1989) below. 

7. Most people that owned au slave also owned hisu offspring. 

8. Every person who has au dime will put itu in the meter. 

Sentence (7) is interpreted as asserting that most slave-owners were such that, for 

every (strong reading) slave they owned, they also his offspring. Sentence (8) is 

interpreted as asserting that every dime-owner puts some (weak reading) dime of her/his 

in the meter.  

We also need to allow for mixed weak & strong relative-clause sentences like the 

one in (9) below (i.e. the kind of sentence we have analyzed in chapter 5). Sentence (9) is 

interpreted as asserting that, for any person that is a computer buyer and a credit card 

owner, for every computer s/he buys, s/he uses some credit card of her/his to pay for the 

computer. 

9. Every person who buys au computer and has au' credit card uses itu' to pay for itu. 

Thus, the first three, internal desiderata simply recapitulate the main points we have 

made in chapters 2 through 5 and they are only meant to ensure that the new definition of 

selective generalized quantification preserves all welcome the results we have previously 

obtained.  

The fourth desideratum, however, is about the novel phenomenon of 

quantificational subordination we have introduced by means of the discourses in (1) and 

(2) above. These discourses indicate that selective generalized determiners need to make 

anaphoric information externally available, i.e. they need to introduce dref's for the 

restrictor and nuclear scope sets of individuals related by the generalized determiner that 
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can be retrieved by subsequent anaphora. Furthermore, we also need to make available 

for anaphoric take-up the quantificational dependencies between different quantifiers 

and/or indefinites (see the discussion of discourse (2) in the previous section). 

In more detail, generalized quantification supports anaphora to two sets: (i) the 

maximal set of individuals satisfying the restrictor DRS, i.e. the restrictor set, and (ii) the 

maximal set of individuals satisfying the restrictor and nuclear scope DRS's, i.e. the 

nuclear scope set
2. Note that the latter set is the nuclear scope set that emerges as a 

consequence of the conservativity of natural language quantification – and, as Chierchia 

(1995) and van den Berg (1996a) (among others) observe, we need to build 

conservativity into the definition of dynamic quantification to account for the fact that the 

nuclear scope DRS can contain anaphors dependent on antecedents in the restrictor3. 

The discourse in (10) below exemplifies anaphora to nuclear scope sets: sentence 

(10b) is interpreted as asserting that the people that went to the beach are the students that 

left the party after 5 am (which, in addition, formed a majority of the students at the 

party). 

10. a. Mostu students left the party after 5 am.       

b. Theyu went directly to the beach. 

The discourses in (11) and (12) below exemplify anaphora to restrictor sets. Both 

examples involve determiners that are right downward monotonic, which strongly favor 

anaphora to restrictor sets as opposed to anaphora to nuclear scope sets. 

                                                 

2 Throughout the paper, I will ignore anaphora to complement sets, i.e. sets obtained by taking the 
complement of the nuclear scope relative to the restrictor, e.g. Very few students were paying attention to 

the lecture. They were hungover. 

3 Thus, in a sense, Chierchia (1995) and van den Berg (1996a) suggest that the conservativity universal 
proposed in Barwise & Cooper (1981) should be replaced by / derived from an 'anaphoric' universal that 
would have the form: the meanings of natural language determiners have to be such that they allow for 
anaphoric connections between the restrictor and nuclear scope of the quantification (I am indebted to 
Roger Schwarzschild, p.c., for making this observation clearer to me). 

In a dynamic system, the 'anaphoric' universal boils down to the requirement that the nuclear scope update 
be interpreted relative to the info state that is the output of the restrictor update. And the two strategies of 
defining dynamic generalized quantification explored in chapter 5 and chapter 6 respectively are two 
different ways of implementing this requirement (see in particular the discussion in section 3.5 of chapter 5 
and section 1 of chapter 6, i.e. the present chapter). 
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11. a. Nou student left the party later than 10 pm.       

b. Theyu had classes early in the morning. 

12. a. Very fewu people with a rich uncle inherit his fortune.     

b. Most of themu don't. 

Consider (11) first: any successful update with a �
� quantification ensures that the 

nuclear scope set is empty and anaphora to it is therefore infelicitous; the only anaphora 

possible in (11) is anaphora to the restrictor set. The same thing happens in (12) albeit for 

a different reason: anaphora to the restrictor set is the only possible one because anaphora 

to the nuclear scope set would yield a contradiction, namely: most of the people with a 

rich uncle that inherit his fortune don't inherit his fortune. 

Thus, a selective generalized determiner will receive a translation of the form 

provided in (13) below, which is in the spirit – but fairly far from the letter – of van den 

Berg (1996a) (see his definition (4.1) on p. 149). 

13. ��	����	� � �Pet.�P'et. max
u(�u�(P(u))); max

u'
	

u(�u'�(P'(u'))); [DET{u, u'}] 

The translation in (13) can be semi-formally paraphrased as follows.  

First note that, as expected, ��	����	� relates a restrictor dynamic property Pet and a 

nuclear scope dynamic property P'et. When these dynamic properties are applied to 

individual dref's, i.e. P(u) and P'(u'), we obtain a restrictor DRS P(u) and a nuclear scope 

DRS P'(u') of type t := (st)((st)t). 

Which brings us to the three sequenced updates in (13), namely max
u(�u�(P(u))), 

max
u'
	

u(�u'�(P'(u'))) and [DET{u, u'}]. The first update is formed out of three distinct 

pieces, namely the restrictor DRS P(u), the operator �u�(…) which takes scope over the 

restrictor DRS and, finally, the operator max
u(…) that takes scope over everything else. 

The second update is formed out of the same basic pieces, i.e. the restrictor DRS P'(u'), 

the operator �u'�(…) and the operator max
u'
	

u(…). The last update is a test containing the 

static condition DET{u, u'} contributed by the particular determiner under consideration 

and which relates two individual dref's u and u'. 
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These are the individual dref's introduced by the generalized determiner, more 

exactly by the operators max
u(…) and max

u'
	

u(…): they introduce the dref's u and u' 

respectively and u stores the restrictor set of individuals, while u' stores the nuclear scope 

set of individuals obtained via conservativity, which is encoded by the superscripted 

inclusion u'	u. 

The restrictor set u is the maximal set of individuals (maximality is contributed by 

max
u(…)) such that, when we take each u-individual separately (distributivity is 

contributed by �u�(…)), this individual satisfies the restrictor dynamic property (i.e. P(u)). 

The nuclear scope set u' is obtained in a similar way except for the requirement that 

it is the maximal structured subset of the restrictor set u (i.e. max
u'
	

u(…)). The notion of 

structured subset u'	u is introduced and discussed in the very next section.  

We finally reach the third update, which tests that the restrictor set u and the nuclear 

scope set u' stand in the relation denoted by the corresponding static determiner DET (i.e. 

DET{u, u'}). 

As already mentioned, the three updates in (13) are sequenced, i.e. dynamically 

conjoined. Recall that dynamic conjunction ';' is interpreted as relation composition, as 

shown in (14) below. 

14. D1; D2 := �Ist.�Jst. ∃Hst(D1IH ∧ D2HJ) 4,      

 where D1 and D2 are DRS's of type t := (st)((st)t). 

The remainder of this section is dedicated to formally spelling out the meaning of 

generalized determiners in (13) above and, also, the PCDRT meanings for indefinite 

articles and pronouns.  

We will need: (i) two operators over plural info states, namely a selective 

maximization operator max
u(…) and a selective distributivity operator �u�(…), which will 

                                                 

4 Also, recall the difference between dynamic conjunction ';', which is an abbreviation, and the official, 

classical static conjunction '∧'. 
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enable us to define updates of the form max
u(�u�(…)) and (ii) a notion of structured subset 

between two sets of individuals that requires the subset to preserve the quantificational 

dependencies, i.e. the structure, associated with the individuals in the superset – which 

will enable us to define u'	u and, thereby, updates of the form max
u'
	

u(…). 

3.2. Structured Inclusion 

Let us start with the notion of structured subset. Recall that plural info states store 

both values (quantifier domains) – in the columns of the matrix – and structure (quantifier 

dependencies) – in the rows of the matrix. We can therefore define two different notions 

of inclusion: one that takes into account only values, i.e. value inclusion, and one that 

takes into account both values and structure, i.e. structured inclusion. Let us examine 

them in turn. 

Requiring a dref u3 to simply be a value subset of another dref u1 relative to an info 

state I is defined as shown in (15) below. For example, the info state I in (16) satisfies the 

condition u3⊆u1 because u3I={x1, x2, x3}⊆u1I={x1, x2, x3, x4}. 

15. u3⊆u1 := �Ist. u3I⊆u1I 

16. Info State I u1 u2 u3 

i1 x1 y1 x1 

i2 x2 y2 x3 

i3 x3 y3 x1 

i4 x4 y4 x2 

As the info state I in (16) shows, value inclusion disregards structure completely: 

the correlation / dependency between the u1-individuals and the u2-individuals, i.e. the 

relation {<x1, y1>, <x2, y2>, <x3, y3>, <x4, y4>}, is lost in going from the u1-superset to the 

u3-subset: as far as u3 and u2 are concerned, x1 is still correlated with y1, but it is now also 

correlated with y3; moreover, x2 is now correlated with y4 and x3 with y2. 

If we were to use the notion of value subset in (15) to define dynamic generalized 

quantification, we would make incorrect predictions. To see this, consider the discourse 
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in (17) below, where u1 stores the set of conventions5 and u2 stores the set of 

corresponding girls. Furthermore, assume that ����� 1
u
��
������
� takes scope over � 2

u
�
��� 

and that the correlation between u1-conventions and courted u2-girls is the one 

represented in (16) above. 

17. a. Harvey courts a 2
u  girl at every 1

u  convention.       

b. She
2

u  usually 3 1
u u⊆  comes to the banquet with him. 

Intuitively, the adverb ������� is anaphoric to the set of conventions and sentence 

(17b) is interpreted as asserting that at most conventions, the girl courted by Harvey at 

that convention comes to the banquet with him. The dref u3 in (16) above does store most 

conventions (three out of four), but it does not preserve the correlation between 

conventions and girls established in sentence (17a). 

Note that a similarly incorrect result is achieved for donkey sentences like the one in 

(18) below: the restrictor of the quantification introduces a dependency between all the 

donkey-owning u1-farmers and the u2-donkeys that they own; the nuclear scope set u3 

needs to contain most u1-farmers, but in such a way that the correlated u2-donkeys remain 

the same. That is, the nuclear scope set contains a most-subset of donkey owning farmers 

that beat their respective donkey(s). The info state in (16) above and the notion of value-

only inclusion in (15) are yet again inadequate. 

18. Most , 
1 3 1

u u u⊆  farmers who own a 2
u  donkey beat it

2
u . 

Thus, to capture the intra-sentential and cross-sentential interaction between 

anaphora and quantification, we need a notion of structured inclusion, i.e. a notion of 

value inclusion that preserves structure. That is, the only way to go from a superset to a 

subset should be by discarding rows in the matrix: in this way, we are guaranteed that the 

subset will contain only the dependencies associated with the superset (but not 

necessarily all dependencies – see below). 

                                                 

5 Note that, in the case of a successful �����-quantification, the restrictor and the nuclear scope sets end up 
being identical (both with respect to value and with respect to structure – for more details, see (65) below 
and its discussion), so, for simplicity, I conflate them into dref u1. 
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Following van den Berg (1996a), I will introduce a dummy / exception individual # 

that I will use as a tag for the rows in the matrix that should be discarded in order to 

obtain a structured subset u' of a superset u – as shown by the matrix in (20) below. The 

formal definition is provided in (19). 

19. u3
u1 := �Ist. ∀is∈I(u3i=u1i ∨ u3i=#) 

20. Info State I u1 u2 u3 

i1 x1 y1 x1 

i2 x2 y2 x2 

i3 x3 y3 # 

i4 x4 y4 x4 

Unlike van den Berg (1996a), I will not take the introduction of the dummy 

individual # to require us to make the underlying logic partial, i.e. I will not assigned the 

undefined truth-value to a lexical relation that takes the dummy individual # as an 

argument, e.g. girl(#) or courted_at(#, x1). Instead, I will take such lexical relations to 

simply be false6,7, which will allow us to keep the underlying type logic classical. The 

fact that the dummy individual # always yields falsity (as opposed to always yielding 

truth) is meant to ensure that we do not introduce # as the default value of a dref that 

vacuously satisfies any lexical relation. 

                                                 

6 Conflating undefinedness and falsity in this way is a well-known 'technique' in the presupposition 
literature: a Fregean / Strawsonian analysis of definite descriptions distinguishes between what such 
descriptions contribute to the asserted content and what they contribute to the presupposed content 
associated with any sentence in which they occur. In contrast, the Russellian analysis of definite 
descriptions takes everything to be asserted, i.e. it conflates what is asserted and what is presupposed 
according to the Fregean / Strawsonian analysis. Therefore, if the presupposed content is not true, the 
Russellian will have falsity whenever the Fregean / Strawsonian will have undefinedness. 

While this conflation seems to be counter-intuitive and ultimately incorrect in the case of presupposition, it 
does not seem to be so in the case of structured inclusion. At this point, I cannot see any persuasive 
argument (empirical or otherwise) for a formally unified treatment of structured inclusion and 
presupposition (albeit van den Berg seems to occasionally suggest the contrary, see for example van den 
Berg 1994: 11, fn. 9), so I will work with the simplest possible system that can model structured inclusion. 

7 We ensure that any lexical relation R of arity n (i.e. of type en
t, defined recursively as in Muskens 1996: 

157-158, i.e. as e
0
t := t and em+1

t := e(em
t)) yields falsity whenever # is one of its arguments by letting 

R⊆(De
M

 \{#})n. 
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At the same time, requiring the dummy individual # to falsify any lexical relation 

makes it necessary for us to define lexical relations in PCDRT as shown in (22) below. 

That is, atomic conditions discard / ignore the dummy party of the plural info state, i.e. 

I #
1

u = ∪…∪I #
n

u = , and are interpreted only relative to the non-discarded part of the 

plural info state, i.e. I # #,...,
1 n

u u≠ ≠ . Note also that they are interpreted distributively 

relative to this non-discarded part, i.e. we universally quantify over every 'assignment' i 

in I # #,...,
1 n

u u≠ ≠ . 

21. I # #,...,
1 n

u u≠ ≠  := {is∈I: u1i≠# ∧ … ∧ uni≠#} 

22. R{u1, ..., un} := �Ist. I # #,...,
1 n

u u≠ ≠  ≠ Ø ∧ ∀is∈I # #,...,
1 n

u u≠ ≠ (R(u1i, …, uni)) 

Discarding the 'dummy' part of the info state when we evaluate the condition (as 

shown in (22) above) is crucial: if we were to interpret conditions relative to the entire 

plural info state, the condition would very often be false because the dummy individual # 

yields falsity – and we would not be able to allow for output info states like the one in 

(20) above, which we need to define dynamic quantification. Finally, the non-emptiness 

requirement enforced by the first conjunct in (22) rules out the degenerate cases in which 

a plural info state vacuously satisfies an atomic condition by being entirely 'dummy'. 

Let us return to the notion of structured inclusion needed for dynamic 

quantification. Note that the notion of structured inclusion 
 defined in (19) above 

ensures that the subset inherits only the superset structure – but we also need it to inherit 

all the superset structure, which we achieve by means of the definition in (23) below. 

23. u'	u := �Ist. (u'
u)I ∧ ∀is∈I(ui∈u'Iu'≠# → ui=u'i) 

To see that we need the second conjunct in (23), consider again the donkey sentence 

in (7) above, i.e. Most people that owned a
u
 slave also owned hisu offspring. This 

sentence is interpreted as talking about every slave owned by any given person – 

therefore, the nuclear scope set, which needs to be a most-subset of the restrictor set, 

needs to inherit all the superset structure, i.e., for any slave owner in the nuclear scope 

set, we need to associate with her/him every slave (and his offspring) that s/he owned. 
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3.3. Maximization, Distributivity and Selective Quantification 

We turn now to the definition of the maximization and distributivity operators max
u 

and distu, which are defined in the spirit – but not the letter – of the corresponding 

operators in van den Berg (1996a). Selective maximization plus selective distributivity8 

enable us to dynamize �-abstraction over both values, i.e. individuals, and structure, i.e. 

the quantificational dependencies associated with the individuals. We will consequently 

be able to extract and store the restrictor and nuclear scope structured sets needed to 

define dynamic generalized quantification. 

To see that we need maximization over both values and structure, consider the 

discourse in (24) below. Sentence (24b) elaborates on the relation between students and 

cakes introduced by the first sentence. Note that this relation is the Cartesian product of 

the set of students and the set of cakes, i.e. we want to introduce the set of all students, 

the set of all cakes and the maximal relation / structure associating the two sets. That is, 

we want to introduce the entire set of cakes relative to each and every student. We will 

achieve this by means of a distributivity operator distu over students taking scope over a 

maximization operator max
u' operator over cakes. Note that the distributivity operator is 

anaphoric to the dref u introduced by a preceding maximization operator max
u over 

students, as shown in (25) below. 

24. a. Everyu student ate from everyu' cake. b. Theyu liked themu' (all) 9. 

25. max
u([student{u}]); distu(max

u'([cake{u'}])); [eat_from{u, u'}]; [like{u, u'}] 

Intuitively, the update in (25) instructs us to perform the following operations on a 

given input matrix I:  

• max
u([student{u}]): add a new column u and store all the students in it;  

                                                 

8 Both maximization and distributivity are selective in the sense that they target a particular dref u over 
which they maximize or distribute), i.e. exactly in the sense in which the DPL/FCS/DRT-style dynamic 
generalized quantification introduced in chapters 2, 4 and 5 is selective and, by being so, solves the 
proportion and weak / strong ambiguity problems which mar the notion of unselective quantification 
introduced in Lewis (1975). 

9 Another example with a similar 'Cartesian product' interpretation is Every guest tasted every dish at the 

potluck party. 
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• distu(max
u'([cake{u'}])): look at each u-individual separately – more exactly, for 

each such individual x, look at that subpart of the matrix that has only x in column 

u; relative to each such sub-matrix, add a new column u' and store all the cakes in 

that column; then, take the union of all the resulting matrices: the big union matrix 

will associated every u-individual separately with each and every cake; 

• [eat_from{u, u'}]; [like{u, u'}]: test that, for each row in the big union matrix, the u-

individual stored in that row ate from the u'-individual stored in that row; finally, 

test that, for every rowin the big union matrix, the u-individual stored in that row 

liked the u'-individual stored in that row. 

A different kind of example indicating that we need selective distributivity operators 

over and above the unselective distributivity built into the atomic conditions10 to obtain 

structure maximization is provided by the donkey sentence in (26) below. Intuitively, the 

donkey indefinite receives a strong reading, i.e. every farmer kicked every donkey he saw 

(and not only some). In particular, if two farmers happened to see the same donkeys, each 

one of them kicked each one the donkeys, i.e. we need to consider each farmer in turn 

and introduce every seen donkey with respect to each one of them. Again, this can be 

achieved by means of a distu operator over farmers taking scope over a max
u' operator 

over donkeys, as shown in (27) below. 

26. Everyu farmer who saw au' donkey kicked itu'. 

27. max
u([farmer{u}]; distu(max

u'([donkey{u'}, see{u, u'}]))); [kick{u, u'}] 

Notice that the example in (24) above indicates that we need a distu operator over 

the nuclear scope of every student (since we need to introduce every cake relative to each 

student), while the example (26) above indicates that we need a distu operator over the 

restrictor of every farmer (since we need to introduce every donkey that was seen relative 

to each farmer). We therefore expect our final definition of dynamic generalized 

determiners to contain two distributivity operators – and this is exactly how it will be. 

                                                 

10 Atomic conditions are unselectively distributive because they contain the universal quantifications over 

'assignments' of the form ∀is∈I(…), i.e. they unselectively target 'assignments' (i.e. cases in the sense of 
Lewis 1975) and not individuals or individual dref's, as the selectively distributive operator distu does. 
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The maxu and distu operators are defined in (28) and (31) below. Consider the 

definition of max
u first: the first conjunct in (28) introduces u as a new dref (i.e. [u]) and 

makes sure that each individual in uJ 'satisfies' D, i.e. we store only individuals that 

'satisfy' D. The second conjunct enforces the maximality requirement: any other set uK 

obtained by a similar procedure (i.e. any other set of individuals that 'satisfies' D) is 

included in uJ, i.e. we store all the individuals that satisfy D. 

28. max
u(D) := �Ist.�Jst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uKu≠#⊆uJu≠#) 

29. max
u'
	

u(D) := max
u'([u'	u]; D) 

30. Iu=x := {is∈I: ui=x} 

31. distu(D) := �Ist.�Jst. ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø) ∧ ∀xe(Iu=x≠Ø → DIu=xJu=x), 

 i.e. distu(D) := �Ist.�Jst. uI=uJ ∧ ∀xe∈uI(DIu=xJu=x) 

The basic idea behind distributively updating an input info state I with a DRS D is 

that we first partition the info state I and then separately update each partition cell (i.e. 

subset of I) with D.  

Moreover, the partition of the info state I is induced by the dref u as follows: 

consider the set of individuals uI := {ui: i∈I}; each individual x in the set uI generates 

one cell in the partition of I, namely the subset {i∈I: ui=x}. Clearly, the family of sets 

{{i∈I: ui=x}: x∈uI} is a partition of the info state I. 

Thus, updating an info state I with a DRS D distributively over a dref u means 

updating each cell in the u-partition of I with the DRS D and then taking the union of the 

resulting output info states. The first conjunct in definition (31) above, i.e. uI=uJ, is 

required to ensure that there is a bijection between the partition cells induced by the dref 

u over the input state I and the partition cells induced by u over the output state J; without 

this requirement, we could introduce arbitrary new values for p in the output state J, i.e. 

arbitrary new partition cells11.  

                                                 

11 Nouwen (2003): 87 was the first to observe that the first conjunct in this definition, namely uI=uJ, is 
necessary (the original definition in van den Berg 1996a: 145, (18) lacks it). 
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The second conjunct, i.e. ∀x∈uI(DIu=xJu=x), is the one that actually defines the 

distributive update: every partition cell in the input info state I is related by the DRS D to 

the corresponding partition cell in the output state J. The figure in (32) below 

schematically represents how the input state I is u-distributively updated with the DRS 

D
12. 

32. Updating info state I with D distributively over u. 

 

The definitions of generalized determiners and weak / strong indefinites are 

provided in (36), (37) and (38) below. For the justification of the account of weak / strong 

donkey ambiguities in terms of weak / strong indefinite articles, see chapter 5. 

33. u(D) := �Ist.�Jst. Iu=#=Ju=# ∧ Iu≠#≠Ø ∧ distu(D)Iu≠#Ju≠#  
13 

                                                 

12 Some properties of the distributivity operator (see also the appendix of this chapter):  

(i) distu(D; D') = distu(D); distu(D'), for any D and D' s.t. ∀<I,J>∈D(uI=uJ) and ∀<I,J>∈D'(uI=uJ) (i.e. 
distu distributes over dynamic conjunction) 

(ii) distu(distu' (D)) = distu' (distu(D)) 

(iii) distu(distu(D)) = distu(D). 

13 Some properties of the u(…) operator: 

(i) u(D; D') = u(D); u(D'), for any D and D' s.t. distu(D; D') = distu(D); distu(D') 

(ii) u(u(D)) = u(D) 

However, note that, in general, u(u'(D)) ≠ u'(u(D)). Consider for example the info state I in (42) below: while 

it is true that <I,I> is in the denotation of u(u'([u
u])), it is not true that <I,I> is in the denotation of 

u'(u([u
u])). Moreover, we can easily construct an info state I' such that <I',I' > is in the denotation of 

u'(u([u
u])), but not in the denotation of u(u'([u
u])). 

Iu=x Iu=x' 

Iu=x'' ... 

Ju=x Ju=x' 

Ju=x'' ... 

Input state I     – update with D distributively over u →→→→     Output state J 

DIu=xJu=x 

DIu= x'Ju=x' 

DIu=x''Ju=x'' 
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34. �u�(D) := �Ist.�Jst. Iu=#=Ju=# ∧ (Iu≠#=Ø → I=J) ∧ (Iu≠#≠Ø → distu(D)Iu≠#Ju≠#) 

35. DET{u, u'} := �Ist. DET(uIu≠#, u'Iu'≠#),       

 where DET is a static determiner. 

36. �������	� � �Pet.�P'et. max
u(�u�(P(u))); max

u'
	

u(�u'�(P'(u'))); [DET{u, u'}] 

37. ����� � �Pet.�P'et. [u]; u(P(u)); u(P'(u)) 

38. ������ � �Pet.�P'et. max
u(u(P(u)); u(P'(u))) 

Note that the max-based definition of selective generalized quantification correctly 

predicts that anaphora to restrictor and nuclear scope sets is always anaphora to maximal 

sets, i.e. E-type anaphora (recall the Evans examples: Few
u
 congressmen admire Kennedy 

and theyu are very junior and Harry bought some
u
 sheep. Bill vaccinated themu

14; see also 

(10), (11) and (12) above). The maximality of anaphora to quantifier sets follows 

automatically as a consequence of the fact that we need maximal sets to correctly 

compute the meaning of dynamic generalized quantifiers. This is one of the major results 

in van den Berg (1996a) and PCDRT preserves it15.  

                                                 

14 See Evans (1980): 217, (7) and (8) (page references are to Evans 1985). 

15 That the restrictor set needs to be maximal is established by every-quantifications: to determiner the truth 
of Every man left, we need to have access to the set of all men. That the nuclear scope set also needs to be 
maximal, namely the maximal subset of the restrictor set that satisfies the nuclear scope update, is 
established by downward monotonic quantifiers (i.e. by determiners that are downward monotonic in their 
right argument); for example, Few men left intuitively means that, among the set of men, the maximal set of 
men that left is a few-subset, i.e. it is less than half of the set of men. In particular, if Few men left is true, 
then Most men left is false – and the use of maximal nuclear scope sets correctly predicts that. 

If we were to use non-maximal subsets of the restrictor set of individuals, we would be able to capture the 
meaning of upward monotonic quantifiers, e.g. Most (some, two, at least two, etc.) men left can be 
interpreted as: introduce the maximal set of men (i.e. the maximal restrictor set); then, introduce some 
subset of the restrictor set that is a most-subset (i.e. it is more than half of the restrictor set) and that also 
satisfies the nuclear scope update. If you can do this, then the quantification update is successful. Note that, 
in this case, the nuclear scope set is not necessarily the maximal subset of the restrictor set that satisfies the 
nuclear scope update. The relevant definition is given in (i) below. 

(i) det
u,u'
	

u � �Pet.�P'et. max
u(�u�(P(u))); [u' | u'	u, DET{u, u'}]; �u'�(P'(u')) 

But this strategy will not work with downward monotonic quantifiers, e.g. Few (no, at most two etc.) 
students left cannot be interpreted as: introduce the maximal set of men (i.e. the maximal restrictor set); 
then, introduce some subset of the restrictor set that is a few-subset (i.e. it is less than half of the restrictor 
set, possibly empty) and that also satisfies the nuclear scope update (if the few-subset that was introduced is 
empty, we can assume that it vacuously satifies the nuclear scope update). We cannot do this because, even 
if we are successful in introducing a few-subset that satisfies the nuclear scope update, it can still be the 
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Moreover, this result is an important argument for a dynamic approach to 

generalized quantification in general and, in particular, for a dynamic approach to 

generalized quantification of the kind pursued in this chapter. 

3.4. The Dummy Individual and Distributivity Operators  

We have already established that the definition of generalized determiners in (36) 

above requires a distributivity operator distu. The distributivity operator is contributed by 

the operators u(D) and �u�(D) defined in (33) and (34) above. The question is: why do we 

need the additional conjuncts in the definition of these operators over and above 

distributivity? 

To see the necessity of the first conjunct Iu=#=Ju=# in (33) and (34), consider the 

simple sentence in (39) below, represented in (40) without the operator u(…)  and in (41) 

with the operator u(…) 16. 

39. Au man fell in love with au' woman. 

40. [u | man{u}]; [u' | woman{u'}, f_i_l{u, u'}] 

41. [u]; u([man{u}]; [u' ]; u'([woman{u'}, f_i_l{u, u'}])) 

After processing sentence (39), we want our output info state to be such that each 

non-dummy u-man loves some non-dummy u'-woman and each non-dummy u'-woman 

loves some non-dummy u-man. However, if the conjunct Iu=#=Ju=# is lacking – as it is 

lacking in (40) above –, we might introduce some u'-women relative to 'assignments' that 

                                                                                                                                                 

case that a most-subset, for example, also satisfies the update, i.e. a successful update with Few men left 
does not rule out the possibility that Most men left, which is intuitively incorrect. 

For the quantification Few men left to rule out the possibility that a most-subset of the restrictor also 
satisfies the nuclear scope update, we need to introduce the maximal nuclear scope set, i.e. the maximal 
subset of the restrictor that satisfies the nuclear scope update and only afterwards test that the two maximal 
sets are related by the static determiner. This is a direct consequence of the proposition relating witness sets 
and quantifier monotonicity in Barwise & Coopeer (1981): 104 (page references to Partee & Portner 2002). 

In conclusion, to correctly computate the truth-conditions of generalized quantifications, the dynamic 
meaning of generalized determiners have to relate two maximal sets of individuals (i.e. the restrictor set 
and the nuclear scope set) – and this automatically and correctly predicts that E-type (i.e. unbound, 
'quantifier external') anaphora to quantificational domains is maximal. 

16 These oversimplified representations are good enough for our current purposes. For the actual PCDRT 
analysis of this example, see (55) and (60) in section 3.6 below. 
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store the dummy individual # with respect to the dref u, see for example 'assignment' i3 in 

(42) below. 

42. Info State I u (men) u' (women) 

i1 x1 y1 

i2 x2 y2 

i3 # y3 

i4 # # 

Given that we ignore both i3 and i4 in the evaluation of the lexical relation f_i_l{u, 

u'}, y3 can be any woman whatsoever (including a woman that is not loved by any man) – 

which can inadvertently falsify subsequent anaphoric sentences, e.g. the follow-up Sheu' 

was pretty, which might actually be true of y1 and y2, but not of y3. The discourse Every
u
 

man fell in love with a
u'
 woman. Theyu' were pretty provides a similar argument for the 

necessity of the first conjunct Iu=#=Ju=# in (33) and (34). 

The second conjunct Iu≠#≠Ø in the definition the operator u(…) in (33) above 

encodes existential commitment. Note that the existential commitment associated with 

dref introduction is built into two distinct definitions: (i) the definition of lexical relations 

(see the conjunct I # #, ...,1 nu u≠ ≠  ≠ Ø in (22) above) and (ii) the definition of the operator 

u(…) (see the conjunct Iu≠#≠Ø in (33)).  

We need the former (i.e. the conjunct I # #, ...,1 nu u≠ ≠ ≠Ø in the definition of lexical 

relations) because the pair <Øst, Øst> belongs to the denotation of [u] for any dref u (since 

both conjuncts in the definition of [u] are universal quantifications). 

We need the latter (i.e. the conjunct Iu≠#≠Ø in the definition of the operator u(…)) 

because the definition of the distu operator is a universal quantification and is therefore 

trivially satisfied relative to the empty input info state Øst; that is, the pair <Øst, Øst> 

belongs to the denotation of distu(D) for any dref u and DRS D. 

Thus, we capture the existential commitment associated with indefinites by using 

the operator u(…) in their translation – see (37) and (38) above. 
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In contrast, there is no such existential commitment in the definition of the the 

operator �u�(…) in (34) above and, therefore, there is no such existential commitment in 

the definition of generalized determiners �������	� in (36). This enables us to capture the 

meaning of both upward and (especially) downward monotonic quantifiers by means of 

the same definition. The problem posed by downward monotonic quantifiers is that their 

nuclear scope set can or has to be empty. 

For example, after a successful update with a �
����	� quantification (e.g. No man 

left), the nuclear scope set is necessarily empty (recall that we use nuclear scope sets with 

built-in conservativity), i.e. the dref u' will always store only the dummy individual # 

relative to the output info state. This, in turn, entails that no lexical relation in the nuclear 

scope DRS that has u' as an argument can be satisfied (because the first conjunct of any 

such lexical relation is I # #, ...,1 nu u≠ ≠  ≠ Ø – see (22) above). Thus, we need the operator 

�u�(…) – more precisely, the second conjunct in its definition in (34) above – to resolve 

the conflict between the emptiness requirement enforced by a no-quantification and the 

non-emptiness requirement enforced by lexical relations.  

Similarly, given that we use the same operator �u�(…) in the formation of restrictor 

sets, we predict that John visited every Romanian colony is true (although it might not 

always be felicitous) in case there are no Romanian colonies, i.e. in case the restrictor set 

of the every-quantification is empty. 

Note that, despite the fact that definition (34) allows for empty restrictor and nuclear 

scope sets, we are still able to capture the fact that subsequent anaphora to such sets is 

infelicitous. This follows from: (i) the fact that lexical relations have a non-emptiness / 

existential requirement built in and (ii) pronouns will be defined by means of the operator 

u(…) (see (44) below), which also has a non-emptiness / existential requirement built in. 

Finally, note that the second conjunct the definition of �u'�(…) in (34) requires the 

identity of the input state I and the output state J. That is, the nuclear scope DRS of a 

successful �
����	� quantification, i.e. �u'�(P'(u')), will always be a test. Consequently, we 

correctly predict that anaphora to any indefinites in the nuclear scope of a �
����	� 
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quantification is infelicitous, e.g. No
u,u'
	

u
 farmer owns a

u''
 donkey. #Itu'' is unhappy / 

#Theyu'' are unhappy (or Harry courts a girl
u''

 at no
u,u'
	

u
 convention. #Sheu'' is very 

pretty.). 

3.5. Singular Number Morphology on Pronouns 

Let us turn now to the last component needed for the account of discourses (1) and 

(2), namely the representation of singular pronouns. Their PCDRT translation, provided 

in (44) below, has the expected Montagovian form: it is the distributive type-lift of the 

dref u, i.e. �Pet. u(P(u)), with the addition of the condition unique{u}, which is 

contributed by the singular number morphology and which requires uniqueness of the 

non-dummy value of the dref u relative to the current plural info state – see (43) below. 

43. unique{u} := �Ist. Iu≠#≠Ø ∧ ∀is,i's∈Iu≠#(ui=ui') 

44. ���� � �Pet. [unique{u}]; u(P(u)) 

In contrast, plural pronouns do not require uniqueness, as shown in (45) below.  

45. ����� � �Pet. u(P(u)) 

Singular and plural anaphoric definite descriptions – we need them to interpret the 

anaphoric DP ����
��� in (2c) above among others – are interpreted as shown in (46) and 

(47) below. They exhibit the same kind of unique/non-unique contrast as the pronouns. 

46. ���)�
� � �Pet.�P'et. [unique{u}]; u(P(u)); u(P'(u)) 

47. ���)��� � �Pet.�P'et. u(P(u)); u(P'(u)) 

The uniqueness enforced by the condition unique{u} is weak in the sense that it is 

relativized to the current plural info state. However, we can require strong uniqueness, 

i.e. uniqueness relative to the entire model, by combining the max
u operator and the 

condition unique{u} – as shown by the Russellian, non-anaphoric meaning for definite 

descriptions provided in (48) below, which, as expected from a Russellian analysis, 
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requires both existence and strong uniqueness. This alternative meaning for definite 

articles is needed to interpret the non-anaphoric DP ����	�� ��� in (2b) above. 

48. ���)�
� � �Pet.�P'et. max
u(u(P(u))); [unique{u}]; u(P'(u)) 17 

The PCDRT translation of proper names is provided in (49) below. The definitions 

of dynamic negation and truth are identical to the ones in chapter 5, as shown by (50) and 

(51) respectively. 

49. $������ � �Pet. [u | u
Harvey]; u(P(u)),       

 where Harvey := �is. harveye. 

50. ~D := �Ist. I≠Ø ∧ ∀Hst≠Ø(H⊆I → ¬∃Kst(DHK)) 18 

51. A DRS D (of type t := (st)((st)t)) is true with respect to an input info state Ist iff 

∃Jst(DIJ). 

3.6. An example: Cross-Sentential Anaphora to Indefinites 

I will conclude this section with the PCDRT analysis of the simple example in (39) 

above. The transitive verb fall in love is translated as shown in (52) below. Also, for 

simplicity, I will assume that both indefinites are weak and are therefore translated as 

                                                 

17 The plural counterpart of the Russellian singular definite article in (48) is provided in (i) below – the only 
difference is that we remove the unique{u} condition from its singular counterpart, just as we did for plural 
pronouns and anaphoric plural definite articles in (45) and (47) above. 

(i) ���)��� � �Pet.�P'et. max
u(u(P(u))); u(P'(u)) 

Note that the Russellian plural definite translation in (i) above is identical to the simplified translation of 
every in (65) below (see section 4.1), which preserves the intuitive equivalence between every-DP's and 
(distributive uses of) plural the-DP's, e.g. Every student left and The students left, already observed and 
captured in Link (1983). 

18 This definition of negation enables us to capture the interaction between negation and intra-sentential 
donkey anaphora in (i), (ii) and (iii) below (as already indicated in section 3.3 of chapter 5) and also 
between negation and cross-sentential anaphora in (iv). 

(i) Most farmers who own au donkey do not beat itu. 

(ii) Every farmer who owns au donkey doesn't feed itu properly. 

(iii) Most house-elves who fall in love with au witch do not buy heru anu' alligator purse. 

(iv) Everyu student bought severalu' books. But theyu didn't read (any of) themu'. 
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shown in (53) below. The semantic composition19 proceeds based on the syntactic 

structure schematically represented in (54) and yields the representation in (55). 

52. fall_in_love ���Q'(et)t.�ve. Q'(�v'e. [f_i_l{v, v'}]) 

53. ��������� � �Pet. [u]; u([man{u}]); u(P(u))        

��������
��� � �Pet. [u']; u'([woman{u'}]); u'(P(u')) 

54. ��������� [����)��)�
�� [��������
���]] 

55. [u]; u([man{u}]); u([u']; u'([woman{u'}]); u'([f_i_l{u, u'}])) 

To simplify the representation in (55), I will introduce the abbreviations in (56) and 

(57) below. The reader can easily check that the identities in (58) and (59) hold. 

56. u(C) := �Ist. Iu≠#≠Ø ∧ ∀x∈uIu≠#(CIu=x),       

 where C is a condition (of type (st)t). 

57. u(u1, …, un) := �Ist.�Jst. Iu=#=Ju=# ∧ Iu≠#[u1, …, un]Ju≠#,     

 where u∉{u1, ..., un} and [u1, ..., un] := [u1]; ...; [un] 
20. 

58. u([C1, …, Cm]) = [u(C1), …, u(Cm)] 

59. u([u1, ..., un | C1, …, Cm]) = [u(u1, ..., un) | u(C1), …, u(Cm)]) 

Based on the identities in (58) and (59) and several fairly obvious simplifications, 

we obtain the final PCDRT translation of sentence (39), provided in (60) below. Based on 

the definition of truth in (51) above, we derive the truth-conditions in (61) below, which 

agree with our intuitions about the truth-conditions of sentence (39). 

60. [u, u(u') | man{u}, u(woman{u'}), u(f_i_l{u, u'})] 

61. �Ist. I≠Ø ∧ ∃xe∃ye(man(x) ∧ woman(y) ∧ f_i_l(x, y)) 

                                                 

19 That is, the type-driven translation of example (39); for the precise definition, see section 5 of chapter 3. 

20 That is: [u1, ..., un] := �Ist.�Jst. ∃H1…∃Hn-1(I[u1]H1 ∧ … ∧ Hn-1[un]J). 
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3.7. The Dummy Info State as Default Discourse Context  

In general, I take the default context of interpretation for all discourses to be the 

singleton info state {i#}, where i# is the 'assignment' that stores the dummy individual # 

relative to all individual dref's. When we apply the truth-conditions in (61) above to the 

default input info state {i#}, we obtain ∃xe∃ye(man(x) ∧ woman(y) ∧ f_i_l(x, y)), i.e. 

precisely the classical first-order truth-conditions assigned to sentence (39). 

Moreover, taking {i#} to be the default context of interpretation enables us to 

capture the infelicity of discourse-initial anaphors, e.g. #Sheu is pretty, because multiple 

meaning components (in particular, the condition unique{u}, the lexical relation 

pretty{u} and the operator u(…)) cannot be satisfied relative to the input info state {i#}.  

Hence, the felicitous deictic use of a pronoun like sheu requires us to non-

linguistically update the default input info state {i#} before processing the sentence 

containing the pronoun; intuitively, this update is contributed by the deixis associated 

with the pronoun (see Heim 1982/1988: 309 et seqq for a similar assumption21). 

4. Quantificational Subordination in PCDRT 

This section presents the PCDRT analysis of the contrast in interpretation between 

the discourses in (1) and (2) above. 

4.1. Quantifier Scope 

We start with the two possible quantifier scopings for the discourse-initial sentence 

(1a/2a). For simplicity, I will assume that the two scopings are due to the two different 

lexical entries for the ditransitive verb �
���)��, provided in (62) and (63) below. As 

chapter 5 showed, PCDRT is compatible with Quantifier Raising / Quantifying-In and, in 

                                                 

21 "If something has been mentioned before, there will always be a card for it in the file […] But does the 
file also reflect what is familiar by contextual salience? So far we have not assumed it does, but let us make 
the assumption now. […] An obvious implication is that files must be able to change, and in particular, 
must be able to have new cards added, without anything being uttered. For instance, if halfway through a 
conversation between A and B a dog comes running up to them and draws their attention, then that event 
presumably makes the file increase by a new card" (Heim 1982/1988: 309-310). 
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general, with any of the quantifier scoping mechanisms proposed in the literature, there is 

no need to use any of them for our current purposes. 

Furthermore, I will assume that the syntactic structure of the sentence is the one 

schematically represented in (64) below. 

62. �
���)��* � �Q'(et)t.�Q''(et)t.�ve. Q'(�v'e. Q''(�v''e. [court_at{v, v', v''}])) 

63. �
���)��+ � �Q'(et)t.�Q''(et)t.�ve. Q''(�v''e. Q'(�v'e. [court_at{v, v', v''}])) 

64. $����� [[�
���)��*(+ [��
���]]  [�������
������
�]] 

Thus, �
���)��* assigns the indefinite �� 
��� wide scope relative to ������ �
������
�, 

while �
���)��+ assigns it narrow scope. 

Turning to the meaning of the quantifier ������ �
������
�, note that we can safely 

identify the restrictor dref u and the nuclear scope dref u' of any ���������	�-quantification: 

the definition in (36) above entails that, if J is an arbitrary output state of a successful 

���������	�-quantification, u and u' have to be identical both with respect to value and with 

respect to structure, i.e. we will have that ∀js∈J(uj=u'j). We can therefore conflate the 

two dref's and assume that ����� contributes only one, as shown in (65) below. I will also 

assume that the restrictor set of the ����� 1
u

-quantification is non-empty, so I will replace 

the operator �u�(…) with the simpler operator u(…). 

65. ����� 1
u

 � �Pet.�P'et. max 1
u (

1
u (P(u1))); 

1
u (P'(u1)) 

The PCDRT translations of the generalized quantifier ����� 1
u

��
������
� and of the 

indefinite �
wk: 

2
u
�
��� (which, for the moment, I assume to be weak) are given in (66) and 

(67) below, followed by the compositionally derived representations of the two quantifier 

scopings of sentence (1a/2a), which are provided in (68) and (69). 

To make the representations simpler, I will assume that the PCDRT translation of 

the proper name Harvey is �Pet.P(Harvey) instead of the one provided in (49) above. The 

reader can easily convince herself that this simplification does not affect the PCDRT 

truth-conditions for the two discourses under consideration. 
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66. ����� 1
u

��
������
� � �Pet. max 1
u ([convention{u1}]); 

1
u (P(u1))  

67. �wk: 
2

u
�
��� � �Pet. [u2 | girl{u2}]; 

2
u (P(u2)) 

68. (�wk: 
2

u
�
���>>����� 1

u
��
������
�)         

[u2 | girl{u2}]; 
2

u (max 1
u ([convention{u1}])); [

2
u (court_at{Harvey, u2, u1})] 

69. (����� 1
u
�
������
�>>�

wk: 
2

u
�
���)        

max 1
u ([convention{u1}]); [

1
u (u2) | 

1
u (girl{u2}), 

1
u (court_at{Harvey, u2, u1})] 

The reader can check that the (truth-conditions derived by the) representations in 

(68) and (69) are the intuitively correct ones. I will examine them only in informal terms. 

The "wide-scope indefinite" representation in (68) updates the default input info 

state {i#} as follows. First, we introduce some non-empty (i.e. non-dummy) set of 

individuals relative to the dref u2. Then, we test that each u2-individual is a girl. Then, 

relative to each u2-individual, we introduce the non-empty set containing all and only 

conventions and store it relative to the dref u1. Finally, we test that, for each u2-girl, for 

each of the corresponding u1-conventions (which, in this case, means: for every 

convention), Harvey courted the girl currently under consideration at the convention 

currently under consideration. 

By the time we are done processing (68), the output info state contains a non-empty 

set of u2-girls that where courted by Harvey at every convention and, relative to each u2-

girl, u1 stores the set of all conventions. 

The "narrow-scope indefinite" representation in (69) updates the default input info 

state {i#} as follows. First, we introduce the non-empty set of individuals containing all 

and only conventions relative to the dref u1. Then, for each u1-convention, we introduce a 

u2-set of individuals. Finally we test that, for each u1-convention, each of the 

corresponding u2-individuals are girls and are such that Harvey courted them at the 

convention currently under consideration. 

By the time we are done processing (69), the output info state stores the set of all 

conventions under the dref u1 and, relative to each u1-convention, the dref u2 stores a non-
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empty set of girls (possibly different from convention to convention) that Harvey courted 

at that particular convention. 

4.2. Quantifier scope and Singular Anaphora, Cross-Sententially 

It is now easy to see how sentence (1b) – and, in particular, the singular number 

morphology on the pronoun ���
2u � – forces the "indefinite wide-scope" reading for the 

preceding sentence (1a): the condition unique{u2} effectively conflates the two readings 

by requiring the set of u2-girls obtained after processing (68) or (69) above to be a 

singleton. This requirement leaves untouched the truth-conditions derived on the basis of 

(68) – but makes the truth-conditions associated with (69) above strictly stronger.  

The PCDRT translation of the pronoun and the compositionally derived 

representation of sentence (1b) are provided in (70) and (71) below. For convenience, I 

provide the two complete representations of discourse (1) in (72) and (73) below.  

70. ���
2u  � �Pet. [unique{u2}]; 

2
u (P(u2)) 

71. [unique{u2}, very_pretty{u2}] 

72. (�wk: 
2

u
�
���>>����� 1

u
��
������
�)         

[u2 | girl{u2}]; 
2

u (max 1
u ([convention{u1}]));     

[
2

u (court_at{Harvey, u2, u1}), unique{u2}, very_pretty{u2}] 

73. (����� 1
u
�
������
�>>�

wk: 
2

u
�
���)        

max 1
u ([convention{u1}]);          

[
1

u (u2) | 
1

u (girl{u2}), 
1

u (court_at{Harvey, u2, u1}), unique{u2}, very_pretty{u2}] 

4.3. Quantifier Scope and Singular Anaphora, Intra-Sententially 

In contrast, sentence (2b) contains the adverb of quantification ������, which can 

take scope above or below the singular pronoun ���; in the former case, the u2-

uniqueness requirement is weakened (and, basically, neutralized) by being relativized to 

u1-conventions. 
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More precisely, I take the meaning of ������ to be universal quantification over an 

anaphorically retrieved restrictor, as shown in (74) below. Since ������ is basically 

interpreted as �����, I provide a simplified translation that conflates the restrictor and 

nuclear scope dref's – much like the simplified translation for ����� in (65) above 

conflated them. The general format for the interpretation of quantifiers that anaphorically 

retrieve their restrictor set is provided in (75). 

74. ������
1

u  � �Pet. 
1

u (P(u1)) 

75. ������	� � �Pet. max
u'
	

u(�u'�(P(u'))); [DET{u, u'}] 

The restrictor dref of ������ in (2b) is the nuclear scope dref of the quantifier 

����� 1u �
������
� in the preceding sentence (2a). To see that ������ is indeed anaphoric to 

the nuclear scope and not to the restrictor dref of �����, we need to consider other 

determiners that do not effectively identity them, e.g. �
�� in (76) below. In this case, it is 

intuitively clear that ������ quantifies over the conventions at which Harvey courts a girl 

(the nuclear scope dref) and not over all conventions (the restrictor dref). 

76. a. Harvey courts a girl at most conventions.        

b. She always comes to the banquet with him.  

The definite description ���� 	�� ��� in (2b) is intuitively a Russellian definite 

description (see (48) above), which contributes existence and a relativized (i.e. anaphoric) 

form of uniqueness:  we are talking about a unique banquet per convention. The relevant 

meaning for the definite article is given in (77) below. 

77. ���)�

1

u 3
u

����Pet.�P'et. 
1

u (max 3
u (

3
u (P(u3))); [unique{u3}]; 

3
u (P'(u3))) 

The relativized uniqueness is captured by the fact that the unique{u3} condition is 

within the scope of the 
1

u (…) operator 22. Thus, ���� 	�� ��� is in fact interpreted as a 

                                                 

22 Incidentally, note that the definite article ���)�

1

u 3
u

 is anaphoric to the restrictor set u1 of the �����-

quantification in the preceding sentence (2a) – unlike ������, which is anaphoric to the nuclear scope set. 
To see this, we have to consider determiners like �
�� that do not conflate their restrictor and nuclear scope 
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possessive definite description of the form ���
1u 3u �	�� ���, or, more explicitly, of the form 

���
1u 3u �	�� ����
����

1u , where ��
1u  is anaphoric to u1-conventions. The PCDRT translation 

of the definite description, obtained based on the translations in (77) and (78), is provided 

in (79) below. 

78. 	�� ����
����
1

u  � �ve. [banquet{v}, of{v, u1}] 

79. ���)�

1

u 3
u
�	�� ����
����

1
u  �         

           �Pet. 
1

u (max 3
u ([banquet{u3}, of{u3, u1}]); [unique{u3}]; 

3
u (P(u3)))  

However, to exhibit the interaction between the adverb ������
1

u  and the pronoun 

���
2

u  in a simpler and more transparent way, I will assume that sentence (2b) contributes 

a dyadic relation of the form �
��)����)$�����)�
)���)	�� ���)
� that relates girls and 

conventions. Just like �
���)��, this dyadic relation can be translated in two different 

ways, corresponding to the two possible relative scopes of ���
2

u  and ������
1

u  (that is, I 

employ the same scoping technique as the one used for sentence (1a/2a) in (62) and (63) 

above). The two different translations are provided in (80) and (81) below. The basic 

syntactic structure of sentence (2b) is provided in (82). 

80. �
��)�
)	�� ���)
�* � �Q(et)t.�Q'(et)t.       

              Q'(�v'e. Q(�ve. [come_to_banquet_of{v', v}])) 

81. �
��)�
)	�� ���)
�+ � �Q(et)t.�Q'(et)t.       

              Q(�ve. Q'(�v'e. [come_to_banquet_of{v', v}])) 

82. ��� [[������] �
��)�
)	�� ���)
�*(+] 

The first lexical entry �
��)�
)	�� ���)
�* gives the pronoun ���
2

u  wide scope over 

the adverb ������
1

u , while the second lexical entry �
��)�
)	�� ���)
�+ gives the pronoun 

narrow scope relative to the adverb. The corresponding, compositionally derived PCDRT 

representations are provided in (83) and (84) below. 

                                                                                                                                                 

dref's. So, consider discourse (76) again: intuitively, there is a unique banquet at every convention, not only 
at the majority of conventions where Harvey courts a girl. 
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83. (���
2

u >>������
1

u )         

[unique{u2}, 
2

u (come_to_banquet_of{u2, u1})] 

84. (������
1

u >>���
2

u )          

[
1

u (unique{u2}), 
1

u (come_to_banquet_of{u2, u1})] 

Thus, there are two possible representations for sentence (2a) – see (68) and (69) 

above – and two possible representations for sentence (2b) – given in (83) and (84) 

above. Hence, there are four possible representations for discourse (2) as a whole. 

Out of the four possible combinations, three boil down to effectively requiring the 

indefinite �
wk: 

2
u
� 
��� to take wide scope over the quantifier ����� 1

u
� �
������
�. This can 

happen if: (i) we assign the representation in (68) to sentence (2a), in which case it does 

not matter which of the two representations in (83) and (84) we assign to sentence (2b), 

or (ii) we assign the representation in (83) to sentence (2b), which, as we have already 

shown for discourse (1) (see section 4.2 above), effectively identifies the two possible 

representations of sentence (2a). 

We are left with the fourth combination (69) + (84), i.e. ����� 1
u
�
������
�>>�

wk: 
2

u
�


��� + ������
1

u >>���
2

u , which is given in (85) below and which provides the desired 

"narrow-scope indefinite" reading that is available for discourse (2), but not for (1). 

85. max 1
u ([convention{u1}]); [

1
u (u2)]; [

1
u (girl{u2}), 

1
u (court_at{Harvey, u2, u1})];  

[
1

u (unique{u2}), 
1

u (come_to_banquet_of{u2, u1})] 

Intuitively, the PCDRT representation in (85) instructs us to modify the input info 

state {i#} by introducing the set of all conventions relative to the dref u1, followed by the 

introduction of a non-empty set of u2-individuals relative to each u1-convention. The 

remainder of the representation tests that, for each u1-convention, the corresponding u2-

set is a singleton set consisting of a girl that is courted by Harvey at the u1-convention 

currently under consideration and that comes with him at the banquet of said u1-

convention. 
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5. Summary 

PCDRT enables us to formulate in classical type logic a compositional dynamic 

account of the intra- and cross-sentential interaction between generalized quantifiers, 

anaphora and number morphology exhibited by the quantificational subordination 

discourses in (1) and (2) above from Karttunen (1976). 

The main proposal is that plural info states together with a suitable dynamic 

reformulation of independently motivated denotations for generalized determiners and 

number morphology in static Montague semantics enables us to account for 

quantificational subordination in terms of anaphora to quantifier domains and, 

consequently, for the contrast in interpretation between the discourses in (1) and (2) 

above. 

The cross-sentential interaction between quantifier scope and anaphora, in particular 

the fact that a singular pronoun in the second sentence can disambiguate between the two 

readings of the first sentence, can be captured by plural information states because they 

enable us to store both quantifier domains (i.e. values) and quantificational dependencies 

(i.e. structure), pass them across sentential boundaries and further elaborate on them, e.g. 

by letting a pronoun constrain the cardinality of a previously introduced quantifier 

domain. 

In the process, we were also able to show how the definite descriptions in sentences 

(2b) and (2c) can be analyzed and also how natural language quantifiers enter structured 

anaphoric connections as a matter of course, usually functioning simultaneously as both 

indefinites and pronouns. 

6. Comparison with Alternative Approaches 

6.1. Cross-Sentential Anaphora and Uniqueness 

In this section (and the following one), I will briefly indicate some of the ways in 

which PCDRT relates to the previous literature on uniqueness effects associated with 
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singular anaphora (see Evans 1977, 1980, Parsons 1978, Cooper 1979, Heim 1982/1988, 

Kadmon 1987, 1990, Neale 1990 and Roberts 2003 among others). 

As indicated in section 3.5 of the present chapter (see also section 3.4 of chapter 5), 

the uniqueness enforced by the condition unique{u} is weak in the sense that it is 

relativized to the current plural info state. However, we can require strong uniqueness, 

i.e. uniqueness relative to the entire model, by combining the max
u operator and the 

condition unique{u} – as, for example, in the PCDRT translation for Russellian, non-

anaphoric definite descriptions provided in (48) above. 

The same max
u + unique{u} strategy can be employed to capture the strong 

uniqueness intuitions associated with the "narrow-scope indefinite" reading of the 

quantificational subordination discourse in (2) above, i.e. the fact that discourse (2) as a 

whole implies that Harvey courts a unique girl per convention. 

In more detail: we have assumed throughout this chapter (for simplicity) that the 

indefinite ��
��� in (2a) receives a weak reading – but, if we assume that the indefinite has 

a strong / maximal reading (see the translation in (38) above), we can capture the above 

mentioned uniqueness intuitions. The PCDRT representation of the "narrow-scope strong 

indefinite" reading is provided in (86) below, which differs from the representation in 

(85) above only with respect to the presence of the additional maximization operator 

max 2
u  contributed by the strong indefinite. 

86. max 1
u ([convention{u1}]); 

1
u (max 2

u ([girl{u2}, court_at{Harvey, u2, u1}]));  

[
1

u (unique{u2}), 
1

u (come_to_banquet_of{u2, u1})] 

The strong uniqueness effect emerges as a consequence of the combined meanings 

assigned to the strong indefinite and the singular pronoun: the strong indefinite makes 

sure (by max 2
u ) that, with respect to each u1-convention, the dref u2 stores all the girls 

courted by Harvey at that convention; the singular pronoun subsequently requires (by 

unique{u2}) that the set of u2-individuals stored relative to each u1-individual is a 

singleton set. Together, the strong indefinite and the singular pronoun require that, at 

each u1-convention, Harvey courts exactly one girl, which the dref u2 stores. 
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Thus, PCDRT can capture the intuition that discourse (2) is interpreted as talking 

about conventions at which Harvey courts a unique girl (possibly different from 

convention to convention). Moreover, the fact that, in PCDRT, the uniqueness 

implications are a consequence of combining the meanings of the indefinite and of the 

singular anaphor captures the observation in Kadmon (1990): 279-280 that "[…] 

indefinite NP's don't always have unique referents. […] When anaphora is attempted, 

however, the uniqueness effect always shows up".  

In a sense, this observation is literally captured in PCDRT: singular pronouns 

always contribute a unique{u} condition. However, whether this condition yields strong 

uniqueness depends on the weak / strong reading of the antecedent indefinite. Against 

Kadmon, I take this variation to be a welcome prediction since it converges with the 

wavering uniqueness intuitions that native speakers have with respect to various cases of 

singular cross-sentential anaphora (I will return to this issue presently).  

The very same ingredients employed in PCDRT to derive the (relativized) 

uniqueness effects in quantificational subordination also provide an account of the 

(absolute / non-relativized) uniqueness intuitions associated with the well-known 

example in (87) below.  

87. There is astr:u doctor in London and heu is Welsh.      

(Evans 1980: 222, (26)23) 

88. max
u([doctor{u}, in_London{u}]); [unique{u}, Welsh{u}] 

In contrast, the weak and strong readings for the indefinite article in example (89) 

below (from Heim 1982/1988: 28, (14a)) are truth-conditionally indistinguishable in 

PCDRT24, i.e. there are no strong uniqueness implications – and correctly so. Thus, 

PCDRT can also account for the difference between the interpretations of (87) and (89). 

                                                 

23 Page references are to Evans (1985). 

24 The weak / strong contrast associated with an indefinite has truth-conditional effects only if there is 
anaphora to that indefinite. 
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89. There is a doctorwk/str:u who is Welsh in London. 25 

Finally, given that indefinite articles are associated with both a weak and a strong 

meaning enables us to account for the observation in Heim (1982): 31 that singular cross-

sentential anaphora is not necessarily associated with uniqueness implications, as shown 

by the narration-type example in (90) below (from Heim (1982): 31, (29)). 

90. There was awk:u doctor in London. Heu was Welsh… 

Summarizing, the hypothesis that the indefinite article is ambiguous between a weak 

and a strong reading together with proposal that singular number morphology on 

pronouns contributes a unique condition enables PCDRT to capture the three-way 

contrast between (87), (89) and (90) above. In particular, the contrast between (87) and 

(90) is due to what reading is associated with the indefinite in each particular case. 

PCDRT does not have anything to say about this choice – and, I think, rightfully so: as 

much of the literature observes (Heim 1982/1988, Kadmon 1990, Roberts 2003 among 

others), the choice is sensitive to various factors that are pragmatic in nature and / or have 

related to the global structure of the discourse (e.g. that (90) is a narrative, while (87) is 

not). 

Thus, unlike Heim (1982) and classical DRT / FCS / DPL in general, PCDRT can 

capture the uniqueness intuitions (sometimes) associated with cross-sentential singular 

anaphora – and the ingredients of the analysis, in particular the two meanings associated 

with the indefinite article, are independently motivated by mixed reading donkey 

sentences (see chapter 5 above).  

Moreover, the overall account is compositional and the unique{u} condition 

contributed by singular number morphology on anaphors is a local constraint of the same 

kind as ordinary lexical relations, in contrast to the non-local and non-compositional26 

                                                 

25 PCDRT also makes correct predictions with respect to the similar examples in (i) and (ii) below, due to 
Heim (1982): 28, (27) and (27a). 

(i) A wine glass broke last night. It had been very expensive. 

(ii) A wine glass which had been very expensive broke last night. 

26 At least, not compositional in any obvious way. 
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uniqueness condition proposed in Kadmon (1990) to account for such uniqueness 

effects27. 

Also, unlike Kadmon (1990) (see the contrast between the preliminary and the final 

version of the uniqueness condition in Kadmon 199028), PCDRT captures the constrast 

between the absolute and relativized uniqueness effects instantiated by (87) (where the 

doctor is absolutely unique) and (2) above (where there is a unique girl per convention) 

without any additional stipulations.  

In particular, relativized uniqueness is a consequence of the distributivity operators 

contributed by the quantifier taking scope over the singular pronoun – and these 

distributivity operators are independently motivated by the scopal interaction between 

multiple quantifiers and by the interaction between generalized quantification and donkey 

anaphora (see the discussion in section 3.3 above). 

Finally, the fact that indefinite articles are analyzed in PCDRT as being associated 

with both a weak and a strong meaning (independently motivated by mixed reading 

donkey sentences) adds the needed flexibility to account for the observation that cross-

sentential anaphora is not always associated with uniqueness implications, as shown by 

the contrast between (87) and (90) above. 

6.2. Donkey Anaphora and Uniqueness 

The uniqueness implications associated with intra-sentential singular donkey 

anaphora are, by and large, just as unstable as the ones associated with cross-sentential 

singular anaphora. 

                                                 

27 This is the preliminary (simpler) version of the uniqueness condition in Kadmon (1990): 284, (30): "A 
definite NP associated with a variable X in DRS K is used felicitously only if for every model M, for all 
embedding functions f, g verifying K relative to M, f(X)=g(X)". 

28 The preliminary version of the uniqueness condition is provided in fn. 27 above. The final version of the 

uniqueness condition is as follows: "Let α be a definite NP associated with a variable Y, let Kloc be the local 

DRS of α, and let K be the highest DRS s.t. K is accessible from Kloc and Y∈UK. α is used felicitously only 

if for every model M, for all embedding functions f, g verifying K relative to M, if ∀X∈BK f(X)=g(X) then 

f(Y)=g(Y)" (Kadmon 1990: 293, (31)), where BK := {X: ∃K' accessible from K s.t. K'≠K and X∈UK'}. 
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On the one hand, the examples in (91) and (92) below exhibit uniqueness effects – 

more precisely: uniqueness effects relativized to each particular value of 'main' 

generalized determiner of each sentence (i.e. �
��, ����� and ����� respectively). 

91. Every man who has au son wills himu all his money.     

(Parsons 1978: 19, (4), attributed to B. Partee) 

92. Every man who has au daughter thinks sheu is the most beautiful girl in the world.  

(Cooper 1979: 81, (60)) 

On the other hand, the examples in (93), (94), (95) and (96) below do not seem to 

exhibit uniqueness effects29. Note in particular that there are no uniqueness effects 

associated even with the weak donkey anaphora ���� ������� ����-���� in (96) (for more 

discussion of this observation, see chapter 5 above). 

93. Every farmer who owns au donkey beats itu. 

94. Most people that owned au slave also owned hisu offspring.     

(Heim 1990: 162, (49)) 

95. No parent with au son still in high school has ever lent himu the car on a 

weeknight.            

(Rooth 1987: 256, (48)) 

96. Every person who buys au TV and has au' credit card uses itu' to pay for itu. 

In general, previous accounts of donkey anaphora are designed to account either for 

the first set of examples, which exhibit uniqueness (e.g. Parsons 1978, Cooper 1979, 

Kadmon 1990 among others), or for the second set of examples, which do not (e.g. Kamp 

1981, Heim 1982/1988, 1990, Neale 1990, Kamp & Reyle 1993 among others). This is 

not to say that these approaches cannot be amended to account for a broader range of data 

– the point is only that the basic architecture of the theory is such that either uniqueness 

or non-uniqueness follows from it. 

                                                 

29 Kadmon (1990): 307 takes examples like (93) and (94) above to exhibit uniqueness – see also example 
(48) in Kadmon 1990: 307, repeated in (i) below. At the same time, Kadmon (1990): 308-309 mentions that 
some informants disagree and "treat [(i)] as if it said 'at least one dog'; for them, [(i)] doesn't display a 
uniqueness effect". 

(i) Most women who own a dog talk to it. 
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In this section, I argue that the PCDRT combination of plural information states 

(plus maximization) on the one hand and the unique condition (plus distributivity) on the 

other hand makes for a flexible theory that can accommodate both kinds of donkey 

examples in a natural way. The main idea will be that all these resources enable us to 

'partition' the restrictor of a generalized quantification in various ways and, depending on 

this 'partitioning', the morphologically singular anaphors in the nuclear scope of the 

generalized quantification contribute uniqueness or not. 

The intuition that the uniqueness effects associated with donkey anaphora are 

dependent on how we 'think' about the restrictor of the generalized quantification is by no 

means new – it underlies the notion of cases in Lewis (1975), the use of minimal 

situations in Heim (1990) (among others) and the quantification over instances in 

Kadmon (1990) (see Kadmon 1990: 301). Thus, in this section, I argue that PCDRT 

enables us to formulate in a new and intuitive formalization of this familiar intuition. 

Singular Donkey Anaphora Does Not Always Imply Uniqueness 

The assumption that singular donkey anaphora can involve non-singleton sets has 

been repeatedly challenged because singular donkey anaphora seems to be intuitively 

associated with a kind of uniqueness implication30. Relative-clause donkeys in particular 

(like (1) and (2) above) are claimed to be associated with uniqueness presuppositions: 

some authors (e.g. Kanazawa 2001: 391, fn. 5) actually distinguish between relative-

clause and conditional donkey sentences and claim that the former but not the latter 

contribute some form of uniqueness. 

However, this is not the whole story. First, the uniqueness intuitions associated with 

relative-clause donkeys are much weaker (if at all present) when we consider examples 

with multiple donkey indefinites like (96) above, i.e., in a sense, relative-clause donkey 

sentences that are closer in form to conditional donkey sentences. 

Second, even the proponents of uniqueness have to concede that donkey uniqueness 

is of a rather peculiar kind. One of the main debates revolves around the 'sage plant' 

                                                 

30 For recent discussion, see Kanazawa (2001) and Geurts (2002). 
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example in (97) below which, on the face of it, strongly argues against donkey 

uniqueness. 

97. Everybody who bought au sage plant here bought eight others along with itu. 

(Heim 1982/1988: 89, (12)) 

Kadmon (1990): 317 conjectures that the donkey anaphora in (97) still contributes a 

uniqueness  presupposition, but the "speakers accept this example because it can't make 

any difference to truth conditions which sage plant the pronoun it stands for, out of all the 

sage plants that a buyer x bought (for each buyer x)". 

But, as Heim (1990): 161 points out, Kadmon's 'supervaluation'31 analysis makes 

incorrect predictions with respect to the example in (95) above from Rooth 1987: 

intuitively, sentence (95) is falsified by any parent who has a son in high school and who 

has lent him the car on a weeknight even if said parent has another son who never got the 

car – which is to say that it does make a difference in this case which son the pronoun 

���� in (95) stands for32. 

This being said, example (91) above does seem to exhibit uniqueness implications – 

so, an empirically adequate account of donkey anaphora should be flexible enough to 

accommodate the wavering nature of the uniqueness intuitions associated with it. 

Capturing the Wavering Nature of the Uniqueness Intuitions 

As it now stands, the revised version of PCDRT introduced in this chapter predicts 

that donkey anaphora is associated with relativized uniqueness implications, i.e. it can 

account for the uniqueness intuitions associated with (91) above. As shown in (98) 

below, relativized uniqueness emerges as a consequence of the interaction between: (i) 

the distributivity operators contributed by selective generalized determiners, (ii) the 

maximization contributed by the strong reading of the indefinite and (iii) the unique 

condition contributed by the singular pronoun. 

                                                 

31 The connection with supervaluation treatments of vagueness is due to Mats Rooth – see Heim (1990): 
160, fn. 11. 

32 For more discussion, see also Geurts (2002): 145 et seqq. 
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98. Everyu' man who has astr:u son wills himu all his money.     

max
u'(u'([man{u'}]; max

u([son{u}, have{u', u}])));     

u'([unique{u}, will_all_money{u', u}])33 

Parsons (1978) considers the uniqueness effects associated with the donkey sentence 

in (91) above and suggests two different ways to capture them. The above PCDRT 

analysis can be seen as an implementation of the first suggestion: 

"One might suggest that the feeling of inappropriateness [of sentence (91) when 
taken to be talking about men that have more than one son] comes explicitly from 
the use of the pronoun. How would that work? Well, one purported meaning of 'a' 
is 'one', in the sense of 'exactly one'. Usually this is thought to be a presupposition, 
implication, or implicature of the utterance rather than part of the content of what 
is said. But perhaps the use of a singular pronoun can make the import part of the 
official content.           
The suggestion then is that 'a' can mean either 'at least one' or 'exactly one'. 
Normally it means the former, but certain grammatical constructions force the 
latter reading. The former reading is the 'indefinite' one, and the latter is the 
'definite' one."          
(Parsons 1978: 19) 

Interestingly, Parson's second suggestion is the one that is taken up by D-/E-type 

approaches that take pronouns to be numberless Russellian definite descriptions (e.g. 

Neale 1990)34. 

                                                 

33 An unfortunate consequence of the fact that the unique{u} condition contributed by the pronoun is taken 
to be part of the assertion is that the PCDRT representation in (98) is true only if every man has exactly one 
son, while, intuitively, the quantification should be restricted to men that have only one son. That is, the 
intuitively correct representation for (91) is the one in (i) below, where the unique{u} condition occurs in 
the restrictor. This representation can be obtained if we assume that the unique{u} condition is 
presupposed and that presuppositions triggered in the nuclear scope of tripartite quantificational structures 
can be accommodated in the restrictor (both assumptions, i.e. that number morphology on pronouns is 
presuppositional and that nuclear scope presuppositions can be accommodated in the restrictor, are 
independently assumed and motivated in the literature – see for example Beaver & Zeevat 2006, Heim 
2005 and references therein). 

(i) max
u'(u'([man{u'}]; max

u([son{u}, have{u', u}]); [unique{u}])); u'(will_all_money{u', u}]). 

34 "Sometimes 'the' doesn't mean 'exactly one', but rather 'at least one' or 'every'. It means 'at least one' in 
everyone must pay the clerk five dollars and it means 'every' in you should always watch out for the other 

driver. Or something like this. So perhaps the treatment of pronouns as paraphrases is correct, but we have 
to tailor the meaning of 'the' for the situation at hand. For example, in our sample sentence we need to read 
the donkey he owns as every donkey he owns. This response would involve specifying some method for 
determining which reading of the is appropriate in a given paraphrase; I haven't carried this out" (Parsons 
1978: 20). 
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Thus, the version of PCDRT proposed in this chapter (chapter 6) sides with the 

"uniqueness" approaches (e.g. Parsons 1978, Cooper 1979, Kadmon 1990 among others) 

– and therefore accounts for only one of the two sets of data. In contrast, the version of 

PCDRT proposed in the previous chapter (chapter 5), which does not take singular 

pronouns to contribute a unique condition, sides with the "non-uniqueness" approaches 

(e.g. Kamp 1981, Heim 1982/1988, 1990, Neale 1990, Kamp & Reyle 1993 among 

others).  

The trade-off is as follows. On the one hand, chapter 5 accounts for a variety of 

donkey sentences, i.e. cases of intra-sentential anaphora, including mixed reading 

examples like (96) above. On the other hand, chapter 6 accounts for a variety of 

uniqueness effects with cross-sentential and intra-sentential anaphora, i.e. forcing the 

"wide-scope indefinite" reading for discourse (1) above, deriving the relativized 

uniqueness effects for the "wide-scope indefinite" reading of discourse (2) and deriving 

the relativized uniqueness effects for the donkey sentence in (91) above. 

I will now show that there is a straightforward way to recover the results of chapter 

5 within the version of PCDRT introduced in the present chapter. The main observation 

is that unique{u} conditions are vacuously satisfied under distributivity operators like 

distu, so, to cancel the uniqueness effects, we only need to assume that selective 

generalized determiners introduce such distributivity operators relative to their nuclear 

scope update. 

The simplest such operator is the unselective distributivity operator defined in (99) 

below, which is used in the definition of generalized quantification in (103). Note that 

this definition of generalized quantification differs from the one introduced in (36) above 

(see section 3.3) only with respect to the nuclear scope distributivity operator. 

99. (D) := �IstJst. ∃Rs((st)t)(I=Dom(R) ∧ J=∪Ran(R)  ∧ ∀<is,Jst>∈R(D{i}J),  

 where D is of type t := (st)((st)t). 

100. u(D) := �IstJst. uI=uJ ∧ ∀xe∈uI( (D)Iu=xJu=x) 

101. u D  := �Ist.�Jst. Iu=#=Ju=# ∧ Iu≠#≠Ø ∧ u(D)Iu≠#Ju≠# 

102. �u� D  := �Ist.�Jst. Iu=#=Ju=# ∧ (Iu≠#=Ø → I=J) ∧ (Iu≠#≠Ø → u(D)Iu≠#Ju≠#) 
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103. ����� �	� � �Pet.�P'et. max
u(�u�(P(u))); max

u'
	

u(�u'� P'(u') ); [DET{u, u'}] 

The distributivity operator (D) is unselective because any input info state I is 

updated with the DRS D in a pointwise manner, i.e. we update each of the 'assignments' 

is∈I with D.  

This way of updating a set of 'assignments' is unselective in same sense as the 

generalized quantification over cases proposed in Lewis (1975) is unselective: the 

definition in (103) instructs us to take each 'assignment'  delivered by the restrictor of the 

quantification separately and check that it satifies the nuclear scope of the quantification, 

where 'assignments' are also known as: "cases" in the terminology of Lewis (1975), 

"minimal situations" in the terminology of Heim (1990) and "instances" in the 

terminology of Kadmon (1990). 

Note that the use of unselective distributivity in the definition of dynamic 

generalized quantification does not endanger our previous results: the definition in (103) 

does not have a proportion problem (because DET relates the relevant sets of inviduals) 

and can account for weak / strong ambiguities, including mixed reading donkey 

sentences. For example, sentence (96) is represented as shown in (104) below. The 

unique{u'} and unique{u} conditions contributed by the singular donkey pronouns ���� 

and ��� are vacuously satisfied because the unselective  operator 'feeds' them only 

singleton informations states {i}35.  

104. Everyu'' person who buys astr:u TV and has awk:u' c.card uses itu' to pay for itu. 

 max
u''(u''([pers{u''}]; max

u([TV{u}, buy{u'', u}]); [u' | c.card{u'}, hv{u'', u'}])); 

  u'' [unique{u'}, unique{u}, u'(use_to_pay{u'', u', u})]   

                                                 

35 More precisely: the second conjunct of the definitions of unique{u'} or unique{u} is indeed vacuously 
satisfied with respect to any singleton info state {i} whatsoever, but the first conjunct of their definitions 

fails for any {i} such that ui=# or u'i=# (i.e. {i}u'≠#≠Ø is false or {i}u≠#≠Ø is false). Therefore, the nuclear 
scope update u'' [unique{u'}, unique{u}, u'(use_to_pay{u'', u', u})]  fails for any input info state I where 

there is at least one is∈Iu''≠# such that ui=# or u'i=#. But this does not affect the truth-conditions derived by 
the representation in (104), which are the intuitively correct ones for mixed reading donkey sentence in 
(96). And, as far as the anaphoric potential goes (both with respect to value and with respect to structure), it 
seems to me that the above mentioned consequence of the u'' …  operator is in fact desirable. 
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Thus, our strategy is to neutralize the uniqueness effects associated with intra-

sentential singular anaphora by introducing suitable distributivity operators that take the 

nuclear scope of the main generalized quantification as argument. This (as opposed to, 

for example, making the unique condition contributed by the singular pronoun optional) 

has the desirable consequence that we leave untouched the uniqueness effects associated 

with cross-sentential anaphora in general and with quantificational subordination in 

particular; that is, we preserve all the results previously obtained in this chapter (see 

sections 4 and 6.1 above). 

Summarizing, the increased flexibility of the theoretical architecture of PCDRT 

(when compared to previous approaches) enables it to account for the unstable 

uniqueness intuitions associated with donkey anaphora. The account makes crucial use of 

plural info states and distributivity operators. More precisely, in any tripartite 

quantificational structure, we have a choice between selective and unselective nuclear 

scope distributivity. The decision to use one or the other depends on how we 'think about' 

the relation between the restrictor and the nuclear scope of the quantification on a 

particular occasion (which, in turn, is determined by the global discourse context, world 

knowledge etc., i.e. by various pragmatic factors):  

• if we focus on the individuals contributed by the restrictor, we predicate the nuclear 

scope of each such individual separately, so we use a selective distributivity 

operator distu and we obtain uniqueness effects (relativized to u); 

• if we focus on the (minimal) cases / situations contributed by the restrictor, we 

predicate the nuclear scope of each such case separately, so we use an unselective 

distributivity operator  and we neutralize / cancel all uniqueness effects. 

These two choices, i.e. distu and , are the two extremes of a possibly much 

richer spectrum: if we use distu, we are as coarse-grained as possible when we predicate 

the nuclear scope update; if we use ,, we are as fine-grained as possible. In between 

these extremes, we can define a family of of multiply selective distributivity operators as 
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shown in (105) and (106) below (see also appendix 0 below). I leave their investigation 

for future research36. 

105. u,u',…(D) := �Ist.�Jst. (Iu=#=Ju=# ∧ Iu'=#=Ju'=# ∧ …) ∧  Iu≠#,u'≠#,…≠Ø ∧    

    distu,u',…(D)Iu≠#,u'≠#,…Ju≠#,u'≠#,…  

106. �u,u',…�(D) := �Ist.�Jst. (Iu=#=Ju=# ∧ Iu'=#=Ju'=# ∧ …) ∧ (Iu≠#,u'≠#,…=Ø → I=J) ∧  

     (Iu≠#,u'≠#,…≠Ø → distu,u',…(D)Iu≠#,u'≠#,…Ju≠#,u'≠#,…) 

6.3. Telescoping 

The phenomenon of telescoping is exemplified by discourses (107) and (108) 

below, where a singular pronoun seems to be cross-sententially anaphoric to a quantifier. 

The term is due to Roberts (1987, 1989) and is meant to capture the fact that, in such 

discourses, "from a discussion of the general case, we zoom in to examine a particular 

instance" (Roberts 1987: 36). 

107. a. Eachu candidate for the space mission meets all our requirements.  

 b. Heu has a PhD in Astrophysics and extensive prior flight experience.   

 (Roberts 1987: 36, (38)37) 

108. a. Eachu degree candidate walked to the stage.     

 b. Heu took hisu diploma from the Dean and returned to hisu seat.   

 (Roberts 1987: 36, (34), attributed to B. Partee) 

The main observation about this phenomenon (which can be traced back to a pair of 

examples due to Fodor & Sag 1982 and to Evans 1980) is that "the possibility of 

anaphoric relations in such telescoping cases depends in part on the plausibility of some 

sort of narrative continuity between the utterances in the discourse" (Roberts 1987: 36). 

Thus, Evans (1980) observes that the discourse in (109) below is infelicitous. The 

examples in (110) and (111) from Poesio & Zucchi (1992) are similarly infelicitous. 

                                                 

36 The analysis of the interaction between donkey anaphora and quantificational adverbs (always, usually 
etc.) in conditionals might require such multiply selective distributivity operators. 

37 Page references to Roberts (1990). 
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109. #Everyu congressman came to the party and heu had a marvelous time.  

 (Evans 1980: 220, (21)38) 

110. #Everyu dog came in. Itu lay down under the table.     

 (Poesio & Zucchi 1992: 347, (1)) 

111. #Eachu dog came in. Itu lay down under the table.     

 (Poesio & Zucchi 1992: 360, (39c)) 

The challenge posed by telescoping is to account both for the felicity of (107) and 

(108) and for the infelicity of (109), (110) and (111), as Poesio & Zucchi (1992) and 

Roberts (1995, 1996) among others emphasize. 

In this respect, DRT / FCS / DPL approaches (Kamp 1981, Heim 1982/1988, Kamp 

& Reyle 1993 among others) fail because they can account only for the infelicity of 

(109), (110) and (111), but not for the felicity of (107) and (108). This is a direct 

consequence of the fact that generalized quantifiers are externally static in this kind of 

systems (such systems also fail to account for the quantificational subordination 

discourse in (2) above).  Dynamic Montague Grammar (DMG, see Groenendijk & 

Stokhof 1990) and systems based on it (e.g. Dekker 1993) define generalized quantifers 

as externally dynamic and, therefore, fail in the opposite way: they can account for the 

felicity of (107) and (108), but not for the infelicity of (109), (110) and (111). Moreover, 

DMG does not derive the correct truth-conditions for all telescoping and quantificational 

subordination discourses (see the discussion in Poesio & Zucchi (1992): 357-359). 

The analyses of telescoping in Poesio & Zucchi (1992), Roberts (1995, 1996)39 and 

Wang et al (2006) (among others – see the detailed discussion in Wang et al 2006) are 

more flexible and they can account for both kinds of examples. These accounts make 

crucial use of more general, pragmatic notions having to with world knowledge and 

global discourse structure: (i) accommodation (for Poesio & Zucchi 1992 and Roberts 

1995, 1996) and (ii) rhetorical relations (for Wang et al 2006). These accounts differ with 

                                                 

38 Page references to Evans (1980). 

39 See also the modal subordination accounts in Geurts (1995/1999) and Frank (1996), which could be 
generalized to quantificational subordination following the same basic strategy as Poesio & Zucchi (1992) 
and Roberts (1995, 1996). 
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respect to their main strategy of analysis: Poesio & Zucchi (1992) and Roberts (1995, 

1996) take the infelicitous examples as basic and then devise special mechanisms to 

account for the felicitous examples, which extract and pass on the relevant discourse 

information; Wang et al (2006) take the felicitous examples as basic, assume that the 

relevant discourse information is always available, but that it has to accessed in a 

particular way. 

The PCDRT account of telescoping I will sketch below falls in the same category as 

the Wang et al (2006) account: plural information states ensure that the relevant 

information is always available, but the singular number morphology on the anaphoric 

pronoun constrains the way in which it can be accessed. At the same time, I will make 

limited use of accommodation – and, in this respect, the account is similar to Poesio & 

Zucchi (1992) and Roberts (1995, 1996). 

The PCDRT account is a development of the suggestion made in Evans (1980): 220 

with respect to the infelicity of (109). Evans conjectures that the infelicity is a 

consequence of a clash in semantic number between the antecedent and the anaphor (note 

that there is no clash in morphological number): on the one hand, the quantificational 

antecedent contributes a non-singleton condition on its restrictor set; on the other hand, 

the singular pronoun anaphoric to the restrictor set requires it to be a singleton.  

I will formalize the non-singleton requirement contributed by selective generalized 

determiners by means of the non-unique condition defined in (112) below40. 

112. non-unique{u} := �Ist. Iu≠#≠Ø ∧ ∃is,i's∈Iu≠#(ui≠ui') 

In addition, I will make use of two ingredients independently motivated by the 

uniqueness effects associated with donkey anaphora (see the previous section), namely: 

(i) the unique{u} condition contributed by the singular number morphology on a 

                                                 

40 Green (1989) and Chierchia (1995) (among others) argue that this non-singleton condition has 
presuppositional status. In contrast, Neale (1990) suggests that it is in fact an implicature. I find the 
arguments in Green (1989) more persuasive, but I leave a more careful investigation of this issue for future 
research. For simplicity, I will take the non-unique{u} condition contributed by generalized determiners to 
be part of the assertion. 
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pronoun and (ii) the fact that a distu or  operator that takes scope over such a 

condition ensures that it is vacuously satisfied.  

More concretely, I will assume that the global accommodation of a distributivity 

operator u(…) is licensed in the case of the felicitous example analyzed in (113) below, 

but it is not licensed in the case of the infelicitous example analyzed in (114). 

113. Eachu candidate meets all our requirements. u( Heu has a PhD in Astrophysics ).

 max
u([candidate{u}]); u([meet_requirements{u}]); [non-unique{u}];  

 u([unique{u}, have_PhD{u}]) 

114. Eachu dog came in. #Itu lay down under the table.     

 max
u([dog{u}]); u([come_in{u}]); [non-unique{u}];    

 [unique{u}, lay_under_table{u}] 

Of course, nothing in the above analysis specifies when we can and when we cannot 

accommodate such a distributivity operator. I will return to this issue below. For now, 

note only that accommodating such an operator should not come for free because we 

introduce a new meaning component in the discourse representation that is not associated 

with any morpho-syntactic realization.  

The account of the felicitous example in (113) above captures in a direct way the 

'telescoping' intuitions associated with it, i.e. the fact that, as Roberts (1987) puts it, the 

second sentence "zooms in" from a discussion of the general case to a particular instance: 

the distributivity operator partitions a particular domain of quantification and each cell of 

the partition is associated with a particular individual; after the domain is partitioned in 

this way, we update each cell in the partition separately, i.e. "instance by instance". 

Note also that the PCDRT account correctly predicts that telescoping cases with 

plural pronouns are felicitous (or at least better than their singular counterparts), as shown 

by (115) and (116) below. The reason is that plural pronouns like ����� do not contribute a 

unique{u} condition, hence there is no need to accommodate a distributivity operator 

u(…) to neutralize / cancel the effects of such a condition. 

115. a. Everyu dog came in. b. (?)Theyu lay down under the table. 
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116. a. Everyu congressman came to the party. b. (?)Theyu had a marvelous time. 

 (Evans 1980: 220, (22)) 

Similarly, PCDRT can account for the plural anaphora example in (117), which 

combines quantificational subordination and telescoping – and, also, for the variation on 

this example in (118). Note in particular that PCDRT can capture the relativized 

uniqueness effects in (118), i.e. the fact that, intuitively, every man loves exactly one 

woman; this is due to the fact that the unique{u'} condition contributed by the singular 

pronoun ����� is within the scope of the distributivity operator u(…) contributed by the 

pronoun �����. 

117. a. Everyu man loves au' woman. b. Theyu bring themu' flowers to prove this. 

 (van den Berg 1996a: 168, (16)) 

118. a. Everyu man loves au' woman. b. Theyu bring heru' flowers.   

 (Wang et al 2006: 7, (20)) 

Moreover, PCDRT can capture the relativized uniqueness associated with the cross-

sentential anaphora ��������������-���� in example (119) below from Sells (1985) (see also 

Kadmon 1990 for discussion). We only need to assume that a distributivity operator u(…) 

with scope over the second sentence in (119) is accommodated. At the same time, 

PCDRT correctly predicts that the restrictive relative clause example in (120) (also from 

Sells 1985) does not have relativized uniqueness implications associated with it. 

119. a. Everyu chess set comes with astr:u' spare pawn.     

 b. u( Itu' is taped to the top of the box ). 

120. Everyu chess set comes with awk/str:u' spare pawn that is taped to the top of the 

box. 

Using the same ingredients, PCDRT can also account for the contrast in 

acceptability between (121) and (122) below, from Roberts (1996) (examples (1) and (1') 

on p. 216) – we only need to assume that the accommodation of a distributivity operator 

u(…) is possible in the case of (122) but not in the case of (121).  

121. a. Everyu frog that saw anu' insect ate itu'. #Itu' was a fly. 

122. a. Everyu' frog that saw anu' insect ate itu'. b. u( Itu' disappeared forever ). 
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The infelicity of (121) is derived as follows: given that it is not possible for multiple 

frogs to eat the same insect (this is world knowledge), after we process the update 

contributed by the first sentence in (121), there should be at least as many eaten insects as 

there are frogs. But the unique{u'} condition contributed by the pronoun ���� in the second 

sentence of (121), which is not in the scope of any distributivity operator, requires that 

there is only one such eaten insect (which, by the way, was a fly).  Since there are at most 

as many insects as there are frogs, this means that the set of frogs is (at most) a singleton, 

which contradicts the non-unique{u} condition contributed by  the determiner ������. 

Finally, the same ingredients also enable us to account for the examples in (123) and 

(124) below from Wang et al (2006) (examples (2) on p. 1 and (19) on p. 7 respectively) 

– and for the relativized uniqueness effects associated with (123). 

123. a. Everyu hunter that saw au' deer shot itu'. b. u( Itu' died immediately. ) 

124. a. Everyu hunter that saw au' deer shot itu'. b. Theyu' died immediately. 

The problem left unaddressed by the account sketched above is how to decide when 

we can and when we cannot accommodate such distributivity operators. – and which 

distributivity operator it is, i.e. which quantificational domain we "zoom in". PCDRT, 

which is a semantic framework, does not (have to) say any thing about this – but I want 

to suggest that it offers the two things that we can expect from a semantic theory, namely: 

(i) it provides a precisely circumscribed way in which a more general pragmatic theory 

can interface with the semantic theory and (ii) when the pragmatic 'parameters' / factors 

are specified, it delivers the intuitively correct truth-conditions.  

The previous literature uncovered two important factors that determine whether a 

distributivity operator can be accommodated or not in PCDRT: (i) the rhetorical structure 

of the discourse – see Wang et al (2006) and (ii) general world knowledge – see the 

notion of script in Poesio & Zucchi (1992). As I have suggested, PCDRT needs to be 

supplemented with the same kind of pragmatic theory that these alternative approaches 

assume; there are, however, certain differences between PCDRT and these alternative 

approaches. 
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Compared to the accommodation theories proposed in Poesio & Zucchi (1992) and 

Roberts (1995, 1996)41, which involve accommodation of discourse referents, conditions, 

DRS's etc. (triggered by the presuppositional nature of quantifier domain restriction in the 

case of Roberts 1995, 1996), the PCDRT accommodation procedure is much simpler and 

involves a clearly circumscribed alteration of the discourse representation, namely: the 

global accommodation of a distributivity operator with the purpose of satisfying the 

unique{u} presupposition42 contributed by singular number morphology on pronouns. 

Therefore, I expect that the over-generation problem faced by PCDRT is milder than the 

one faced by these theories. 

Compared to Wang et al (2006) and van den Berg (1996a) (and also Poesio & 

Zucchi 1992 and Roberts 1987, 1989, 1995, 1996), PCDRT has the advantage that, given 

its underlying type logic, a Montagovian compositional interpretation procedure can be 

easily specified, as the present chapter and the previous one have shown. 

Moreover, PCDRT simplifies the system in van den Berg (1996a) both with respect 

to the underlying logic (which is not partial anymore) and with respect to various 

definitions (e.g. the definitions of the maximization and distributivity operatos) and 

translations (e.g. the translation of indefinite articles and pronouns).  

Finally, unlike the account proposed in Wang et al (2006) (see p. 17 et seqq), the 

PCDRT account of telescoping is more modular, in the sense that its semantic 

interpretation procedure (i.e. type-driven translation) is separated from the more global 

pragmatics of discourse (which involves world knowledge, rhetorical relations etc.). The 

separation of the semantic and pragmatic interpretive components in PCDRT enables us 

to simplify multiple aspects of the semantic theory: its underlying logic, the notion of 

                                                 

41 Roberts (1995, 1996) build on the more explicit account in Roberts (1987, 1989), which involves 
accommodation of DRS's. 

42 The condition unique{u} contributed by number morphology on pronouns is clearly presuppositional – I 
treat it as an assertion throughout the present dissertation only for simplicity. 

See Heim (2005) and reference therein for more discussion of the presuppositional contributions of 
pronominal morphology. See Beaver & Zeevat (2006) for a recent discussion of accommodation. See 
Kramer (1998) for a systematic investigation of presupposition in a framework based on CDRT (Muskens 
1996), hence closely related to PCDRT. 
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info state that we use, the operators that we need to access the information stored in these 

states and the translations given for various lexical items. 

I will conclude with the observation that the brief comparison with the previous 

literature in the last three sections can only be preliminary – and for at least three reasons: 

• uniqueness implications are taken to have presuppositional status in much of the 

previous literature (and for good reason), while I have assumed (for simplicity) that 

the unique{u} condition is part of the assertion; thus, a more thorough comparison 

will be possible only when PCDRT is extended with a theory of presupposition (see 

Krahmer 1998 for an extensive investigation of presupposition within a framework 

that also builds on the CDRT of Muskens 1996); 

• the import of various design choices specific to different theoretical architectures 

can be properly evaluated only in the context of a precise investigation of the factors 

that affect uniqueness in particular instances of singular intra- and cross-sentential 

anaphora – and such an investigation is beyond the scope of the present dissertation 

(but see Roberts 2003 and Wang et al 2006 for two recent discussions); 

• the uniqueness implications associated with singular cross-sentential anaphora are 

closely related to the maximality implications associated with plural cross-sentential 

anaphora – and a proper comparison needs to take into account how any given 

theory fares with respect to both of them; the present investigation, however, 

focuses on morphologically singular anaphora and on the arguments it provides for 

a notion of plural information state43. 

Given the primarily foundational purpose of the present investigation, such issues 

can be addressed only partially – but I hope to have at least shown that PCDRT provides 

a promising framework within which it is possible to formulate simpler and, in certain 

respects, better analyses of quantificational subordination, donkey anaphora and 

telescoping and the uniqueness effects associated with them. 

                                                 

43 For more discussion of the distinction between plural information states and morphologically plural 
anaphora, see chapter 8 below and Brasoveanu 2006c. 



 255 

Appendix 

A1. Extended PCDRT: The New Definitions and Translations 

125. Structured Inclusion, Maximization and Distributivity Operators.   

a. u'
u := �Ist. ∀is∈I(u'i=ui ∨ u'i=#)        

b. u'	u := �Ist. (u'
u)I ∧ ∀is∈I(ui∈u'Iu'≠# → ui=u'i)      

c. max
u(D) := �Ist.�Jst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uKu≠#⊆uJu≠#)   

d. max
u'
	

u(D) := max
u'([u'	u]; D)        

e. distu(D) := �Ist.�Jst. ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø) ∧ ∀xe(Iu=x≠Ø → DIu=xJu=x),   

  i.e. distu(D) := �Ist.�Jst. uI=uJ ∧ ∀xe∈uI(DIu=xJu=x),     

  where Iu=x := {is∈I: ui=x}        

f. u(D) := �Ist.�Jst. Iu=#=Ju=# ∧ Iu≠#≠Ø ∧ distu(D)Iu≠#Ju≠#     

g. �u�(D) := �Ist.�Jst. Iu=#=Ju=# ∧ (Iu≠#=Ø → I=J) ∧ (Iu≠#≠Ø → distu(D)Iu≠#Ju≠#)  

h. u(C) := �Ist. Iu≠#≠Ø ∧ ∀x∈uIu≠#(CIu=x),   where C is a condition (of type (st)t)  

i. u(u1, …, un) := �Ist.�Jst. Iu=#=Ju=# ∧ Iu≠#[u1, …, un]Ju≠#,     

  where u∉{u1, ..., un} and [u1, ..., un] := [u1]; ...; [un] 

126. Distributivity-based Equivalences.       

a. u([C1, …, Cm]) = [u(C1), …, u(Cm)]        

b. u([u1, ..., un | C1, …, Cm]) = [u(u1, ..., un) | u(C1), …, u(Cm)]) 

127. Atomic Conditions.         

a. R{u1, ..., un} := �Ist. I # #,...,
1 n

u u≠ ≠  ≠ Ø ∧      

   ∀is∈I # #,...,
1 n

u u≠ ≠ (R(u1i, …, uni)),     
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  where I # #,...,
1 n

u u≠ ≠  := {is∈I: u1i≠# ∧ … ∧ uni≠#}    

b. DET{u, u'} := �Ist. DET(uIu≠#, u'Iu'≠#),   where DET is a static determiner.  

c. unique{u} := �Ist. Iu≠#≠Ø ∧ ∀is,i's∈Iu≠#(ui=ui') 

128. Translations.          

a. �������	� � �Pet.�P'et. max
u(�u�(P(u))); max

u'
	

u(�u'�(P'(u'))); [DET{u, u'}]   

b. ������	� � �Pet. max
u'
	

u(�u'�(P(u'))); [DET{u, u'}]      

c. ����� � �Pet.�P'et. [u]; u(P(u)); u(P'(u))       

d. ������ � �Pet.�P'et. max
u(u(P(u)); u(P'(u)))       

e. ��� � �Pet. [unique{u}]; u(P(u))        

f. ����� � �Pet. u(P(u))         

g. ���)�
� � �Pet.�P'et. [unique{u}]; u(P(u)); u(P'(u))     

h. ���)��� � �Pet.�P'et. u(P(u)); u(P'(u))       

i. ���)�
� � �Pet.�P'et. max
u(u(P(u))); [unique{u}]; u(P'(u))    

j. ���)��� � �Pet.�P'et. max
u(u(P(u))); u(P'(u))      

k. ���)�
��� � �Pet.�P'et. u(max
u'(u'(P(u'))); [unique{u'}]; u'(P'(u')))    

l. $������ � �Pet. [u | u
Harvey]; u(P(u)),   where Harvey := �is. harveye   

m. ������ � �Pet.�P'et. max
u (u(P(u))); u(P'(u))      

n. ������� � �Pet. u(P(u)) 
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A2. Generalized Selective Distributivity 

First, we need to generalize our abbreviation for partition cells induced by dref's 

over plural information states, as shown in (129) below. 

129. Iu=x := {is∈Ist: ui=x} and Ip=w := {is∈Ist: pi=w}.              

In general:            

I
, n1� ...,�1 nf f= =  := {is∈Ist: α1i=f1 ∧ … ∧ αni=fn},      

 where the types of the terms α1,…,αn are in DRefTyp and   

 for each m s.t. 1≤m≤n, if the type of αm is (sτ), then fm is of type τ∈STyp. 

Second, we generalize DRS-level distributivity to multiple dref's, as shown in (130) 

below. 

130. DRS-level selective distributivity (i.e. distributivity over type t := (st)((st)t)).   

distu(D) := �IstJst. uI=uJ ∧ ∀xe∈uI(DIu=xJu=x),     

 where u is of type e := se and D is of type t := (st)((st)t).      

In general:                     

dist
n1� ,...,� (D) := �IstJst. (α1I=α1J ∧ … ∧ αnI=αnJ) ∧     

 ∀f1∈α1I…∀fn∈αnI(I , n1� ...,�1 nf f= = ≠Ø ↔ J
, n1� ...,�1 nf f= = ≠Ø) ∧ 

 ∀f1∈α1I…∀fn∈αnI(I , n1� ...,�1 nf f= = ≠Ø → DI
, n1� ...,�1 nf f= = J

, n1� ...,�1 nf f= = ),  

 where the types of the terms α1, …, αn are in DRefTyp     

  and for each m s.t. 1≤m≤n, if the type of αm is (sτ), then fm is of type τ∈STyp 

  and D is of type t := (st)((st)t). 
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The general version of DRS-level selective distributivity is more complicated 

because we work simultaneously with n partitions induced by the drefs α1, …, αn on both 

the input state I and the output state J. The intersection of two partitions is another 

partition, but we are not guaranteed than the intersection of any two cells in the two 

partitions is non-empty – hence the antecedent of the conditional in the third conjunct of 

the generalized definition in (130), i.e. I
, n1� ...,�1 nf f= = ≠Ø. 

Moreover, we want to ensure that there is a bijection between the intersection of the 

n partitions over the input state I and the intersection of the n partitions over the output 

state J, hence the first two conjuncts in the generalized definition in (130): the first one 

ensures that the values of the n drefs that we distribute over are the same; the second 

conjunct ensures that there is a bijection between the non-empty, n-distributive cells in 

the input state partition and the non-empty, n-distributive cells in the output state 

partition. 

Note that the first two conjuncts in the generalized definition in (130) could be 

replaced with the biconditional ∀f1…∀fn(I , n1� ...,�1 nf f= = ≠Ø ↔ J
, n1� ...,�1 nf f= = ≠Ø), which 

would make clear the parallel between the general case dist
n1� ,...,� (D) and the special 

case distu(D) – since the first conjunct of the special case definition in (130) can be 

replaced with ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø)44. We can now easily see that the identity in (131) 

below holds. 

                                                 

44 Thus, the two most compact (and completely parallel) definitions are: 

(i) distu(D) := �IstJst. ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø) ∧ ∀xe(Iu=x≠Ø → DIu=xJu=x) 

(ii) dist
n1� ,...,� (D) := �IstJst. ∀f1…∀fn(I , n1� ...,�1 nf f= = ≠Ø ↔ J

, n1� ...,�1 nf f= = ≠Ø) ∧    

       ∀f1…∀fn(I , n1� ...,�1 nf f= = ≠Ø → DI
, n1� ...,�1 nf f= = J

, n1� ...,�1 nf f= = ) 
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131. distα(distα'(D)) = distα,α'(D)45           

 (in more detail: distα(distα'(D)) = distα,α'(D) = distα',α(D) = distα'(distα(D))) 

Finally, we define generalized selective distributivity, i.e. distributivity generalized 

to arbitrary distributable types as shown in (132) below. The distributable types are the 

same as the dynamically conjoinable types DCTyp (see definition (62) in section 4 of 

chapter 5). 

132. Generalized Selective Distributivity.              

For any term β of type τ, for any τ∈DCTyp:          

n1:{� ,...,� }δ β := dist
n1� ,...,� (β)        

  if τ=t and the types of the terms α1,…,αn are in DRefTyp.       

n1:{� ,...,� }δ β := �vn+1. ,n1:{� ,...,� }n+1vδ β(vn+1)       

  if τ=(σρ), vn+1 is of type σ and σ∈ DRefTyp.    

Abbreviation. δ:Øβ := δβ 

To understand the intuition behind the above definition of generalized distributivity, 

we need to begin with the end, i.e. with the abbreviation. Let us assume that our term β is 

a dynamic property Pet, i.e. an object that can be an argument for an extensional 

generalized determiner. We want to distribute over this property P, i.e. we want to define 

a distributed property δP of type et based on property P.  

                                                 

45 Proof. I use the definitions of distα(D) and distα,α'(D) in the immediately preceding footnote. 

distα(distα'(D))IJ = ∀f(Iα=f≠Ø ↔ Jα=f≠Ø) ∧ ∀f(Iα=f≠Ø → distα'(D)Iα=fJα=f) =  

(since distα'(D)Iα=fJα=f = ∀f'(Iα=f,α'=f'≠Ø  ↔ Jα=f,α'=f'≠Ø) ∧ ∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f')) 

∀f(Iα=f≠Ø ↔ Jα=f≠Ø) ∧ ∀f(Iα=f≠Ø → ∀f'(Iα=f,α'=f'≠Ø  ↔ Jα=f,α'=f'≠Ø) ∧ ∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f')) =  

∀f∀f'(Iα=f,α'=f'≠Ø  ↔ Jα=f,α'=f'≠Ø) ∧ ∀f(Iα=f≠Ø → ∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f') =  

∀f∀f'(Iα=f,α'=f'≠Ø  ↔ Jα=f,α'=f'≠Ø) ∧ ∀f∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f') = distα,α'(D)IJ.   
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By the second clause of definition (132), we have that: 

133. δP = δ:ØP = �ve. δ:{v}P(v),     where P(v) is a DRS. 

Since P(v) is a DRS, i.e. of type t, we can apply the first clause of definition (132). 

Therefore: 

134. δP = δ:ØP = �ve. δ:{v}P(v) = �ve. distv(P(v)) 

Thus, the distributed property δP is obtained by distributing over the DRS P(v) with 

respect to the dref variable v. For example, if we distribute over the extensional properties 

denoted by ��� and �����, we obtain the distributed properties in (135) below. 

135. δ��� = δ(�ve. [manet{v}]) = �ve. distv([manet{v}])          

δ����� = δ(�ve. [leaveet{v}]) = �ve. distv([leaveet{v}]) 

A3. DRS-Level Selective Distributivity: Formal Properties 

This appendix investigates the basic formal properties of DRS-level selective 

distributivity. Crucially, I will assume throughout this chapter the simpler PCDRT system 

introduced in chapter 5 that does not countenance the dummy individual #. The simpler 

PCDRT system assigns semantic values to atomic conditions, DRS's etc. that are 

formally much better behaved than the ones assigned by the PCDRT system of chapter 6 

which has to introduce the dummy individual # in order to define structured inclusion. 

Let us first define what it means for a DRS D to be closed under arbitrary unions. 

136. The union ∪  of a set  of pairs of info states <I, J> is defined as the pair of 

info states <∪Dom( ), ∪Ran( )>. 

137. A DRS D (of type t := (st)((st)t)) is closed under arbitrary unions iff, given a 

set  of info state pairs s.t. ⊆D, we have that D(∪Dom( ))(∪Ran( )), i.e. 

∪ ∈D. 
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The following kinds of DRS's are closed under arbitrary unions – again, if we 

assume their simpler definitions according to the PCDRT system of chapter 5 that does 

not countenance the dummy individual: 

138. a. Tests that contain only conditions denoting c-ideals (e.g. atomic conditions, 

dynamic negations of DRS's whose domains are c-ideals etc.) are closed under 

arbitrary unions since c-ideals are closed under arbitrary unions.            

b. A DRS D of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm 

are c-ideals, is closed under arbitrary unions46.               

c. A DRS max
u(D), where D is of the form [u1, …, un | C1, …, Cm] and the 

conditions C1, …, Cm are c-ideals, is closed under arbitrary unions47.            

                                                 

46 Proof. Recall that the denotation of a DRS D of the form [u1, …, un | C1, …, Cm], where the conditions 
C1, …, Cm are c-ideals, can be defined as shown in (ii) below based on the relation in (i). 

(i) D := {<is, js>: i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}; 

(ii) D = {<Ist, Jst>: ∃ s(st)≠Ø(I=Dom( ) ∧ J=Ran( ) ∧ ⊆ D)}. 

Now take an arbitrary set  of info state pairs s.t. ⊆D. For any pair of info states <I, J>∈ , there is some 

⊆ D s.t. I=Dom( ) and J=Ran( ). If we take the union of all such relations , we will obtain a relation 

* s.t. *⊆ D and s.t. ∪Dom( )=Dom( *) and ∪Ran( )= Ran( *). Hence, we have that 

D(∪Dom( ))(∪Ran( )).   

47 Proof. Consider a DRS of the form max
u(D), where D is of the form in the immediately preceding proof. 

Then the DRS D' = ([u]; D) = [u, u1, …, un | C1, …, Cm] is of the same form and has a similar kind of 
denotation in terms of the relation D' defined in (i) below. 

(i) D' := {<is, js>: i[u, u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)} 

Note that, in this case, the following identities hold: Dom(max
u(D)) = Dom([u]; D) = Dom(D') – because, 

for any info state I∈Dom([u]; D), there is a maximal state J in the set of output states ([u]; D)I: this 
maximal state is the image of I under the relation D'; since J is the supremum info state, it follows that uJ 
is also the supremum set of individuals. 

Now take an arbitrary set  of info state pairs s.t. ⊆max
u(D). We show that 

max
u(D)(∪Dom( ))(∪Ran( )), i.e.: (i) D'(∪Dom( ))(∪Ran( )) and (ii) ∀K(D'(∪Dom( ))K → 

uK⊆u(∪Ran( ))).  

We know that max
u(D)⊆D', therefore ⊆D' and (i) follows because D' is closed under arbitrary unions (by 

the previous proof). 

Now suppose (ii) does not hold, i.e. there is a K s.t. D'(∪Dom( ))K and s.t. uK⊄u(∪Ran( )). Based on the 

observation above, the set of output states corresponding to ∪Dom( ), i.e. the set D'(∪Dom( )), has a 

supremum info state, i.e. the image of ∪Dom( ) under the relation D'. Let's abbreviate it as *. Now, 

since * is the supremum info state, the set u * is also the supremum set of individuals, so uK⊆u * and, 

therefore, u *⊄u(∪Ran( )).  

I will now show that u * = u(∪Ran( )), which yields a contradiction. Consider an arbitrary pair of info 

states <I, J>∈ ; given that ⊆max
u(D), we have that max

u(D)IJ, i.e. that ∀K(D'IK → uK⊆uJ). In 
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d. A DRS D; D' is closed under arbitrary unions if D and D' are closed under 

arbitrary unions, i.e. dynamic conjunction preserves closure under arbitrary 

unions48.                    

e. A DRS distα(D) is closed under arbitrary unions for any dref α if D is closed 

under arbitrary unions49. 

                                                                                                                                                 

particular, we have that uJ = u I, where I is the image of I under the relation D', i.e. the supremum output 
state in the set of output states D'I. The union of all such supremum output states I corresponding to some 

input state I∈Dom( ) is precisely *, i.e. *=∪I∈Dom( )
I and, therefore, u * is the union of all the sets u I. 

Thus, we have that u * = ∪I∈Dom( )u
I = ∪J∈Ran( )uJ = u(∪J∈Ran( )J) = u(∪Ran( )). Contradiction.   

48 Proof. Take an arbitrary set  of info state pairs s.t. ⊆(D; D'). This means that for any <I, J>∈ , there 

is an H s.t. DIH and D'HJ. For every pair <I, J>∈ , choose two other pairs IH and HJ s.t. DIH and D'HJ. 
Abbreviate the union of all the IH pairs ' and the union of all the HJ pairs ''. We have that Dom( ) = 
Dom( '), Ran( ) = Ran( '') and Ran( ') = Dom( ''). 

Since '⊆D and ''⊆D' and D and D' are closed under arbitrary unions, we have that 

D(∪Dom( '))(∪Ran( ')) and D'(∪Dom( ''))(∪Ran( '')). Given that Ran( ') = Dom( ''), we have 

that (D; D')(∪Dom( '))(∪Ran( '')), i.e. (D; D')(∪Dom( ))(∪Ran( )), i.e. D; D' is closed under 

arbitrary unions.   

49 Proof. First note that, in general, distα(D) is not closed under arbitrary unions; selective distributivity is 
based on unions, but not on arbitrary unions of info states. Assume, for example, that we have two pairs <I, 

J>∈D and <I', J'>∈D s.t.  αI=αJ, αI'=αJ', |αI|=|αI'|=1 and, in addition, αI=αI'. Both pairs will be in 

distα(D), but the union of these two pairs, i.e. <I∪I', J∪J'> is not necessarily in the distributed DRS 

distα(D) – not unless it is in the DRS D itself. This is where the assumption that D is closed under arbitrary 

unions becomes useful: it entails that <I∪I', J∪J'>∈D and, since α(I∪I')=α(J∪J')=αI (because we know 

that αI=αJ=αI'=αJ') and |α(I∪I')|=|α(J∪J')|=1, we have that <I∪I', J∪J'>∈ distα(D). The proof 
generalizes this observation to arbitrary sets of pairs (i.e. there is no more insight to be gained from it). I 
provide it here for completeness.  

Suppose we have a set  of info states pairs s.t. ⊆ distα(D). We have to show that <∪Dom( ), 

∪Ran( )>∈distα(D). By the definition of distα(D), any pair <I, J>∈  has one of the following two forms: 

(i) <I, J>∈D, αI=αJ and |αI|=1; (ii) arbitrary unions of sets of pairs of the kind specified in (i), under the 

condition that, for any two such pairs <I, J> and <I', J'>, αI≠αI'. Therefore, <∪Dom( ), ∪Ran( )> is the 
result of taking the union of some arbitrary set of pairs of info states of the kind specified in (i), i.e. pairs of 

the form <I, J> s.t. <I, J>∈D, αI=αJ and |αI|=1. 

We will partition this sets of pairs into equivalence classes as follows: the equivalence class of a given pair 

<I, J> is the set <I,J>={<I', J'>∈D: αI'=αJ' ∧ |αI'|=1 ∧ αI=αI'}. For each such equivalence class of pairs 
<I,J>, we take its union ∪ <I,J>, where the union is defined as in (136) above, i.e. as the pair of info states 

∪ <I,J>=<∪Dom( <I,J>), ∪Ran( <I,J>)> This pair is in the denotation of the DRS D, i.e. <∪Dom( <I,J>), 

∪Ran( <I,J>)>∈D, because <I,J>⊆D and, by assumption, D is closed under arbitrary unions. Moreover, 

each pair <∪Dom( <I,J>), ∪Ran( <I,J>)> satisfies the conditions α(∪Dom( <I,J>)=α(∪Ran( <I,J>)) 

(because α(∪Dom( <I,J>))=αI=αJ=α(∪Ran( <I,J>)) and |α(∪Dom( <I,J>))|=1 (because |αI|=1). Therefore, 

for each pair <I, J>, we have that <∪Dom( <I,J>), ∪Ran( <I,J>)>∈ distα(D). Moreover, for any two distinct 

equivalence classes of pairs <I,J> and <K,L>, their unions  <∪Dom( <I,J>), ∪Ran( <I,J>)> and  

<∪Dom( <K,L>), ∪Ran( <K,L>)> satisfy the additional condition α(∪Dom( <I,J>))≠α(∪Dom( <K,L>)). 
Therefore, the union of such pairs (i.e. of all pairs resulting from unions of equivalence classes) is also in 
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For example, the DRS max
u'([happy_for{u', u}]) is closed under arbitrary unions in 

the following sense. Suppose that this DRS contains the pairs of info states <I1, J1> and 

<I2, J2> in (139) below. The two pairs of info states record the following: given an input 

state I1 such that uI1 is John, the set of individuals that are happy for him are Jessica, 

Mary and Sue; similarly, given an input state I2 such that uI2 is Bill, the set of individuals 

that are happy for him are Jane and Jessica. Then, the DRS max
u'([happy_for{u', u}]) 

also contains the pair of info states <I1∪I2, J1∪J2>, since, given the set of individuals 

u(I1∪I2), i.e. John and Bill, the set of individuals that are happy for at least one of the two 

is Jane, Jessica, Mary and Sue. 

      139. max
u'([happy_for{u', u}]) is 

closed under arbitrary unions. 
max

u'([h.f{u', u}])I1J1 Output state J1 … u u' … 

Input state I1 … u … j1 … john jess … 

i1  john  j2 … john mary … 

    
 

j3 … john sue … 

          

    max
u'([h.f{u', u}])I2J2 Output state J2 … u u' … 

Input state I2 … u … j4 … bill jane … 

i2 … bill … 

 

j5 … bill jess … 

We can now state the following observation. 

140. Selective distributivity and closure under arbitrary unions.             

If a DRS D is closed under arbitrary unions, then distα(D)⊆D, for any term α 

whose type is in DRefTyp
50.            

                                                                                                                                                 

distα(D). But this big union is precisely <∪Dom( ), ∪Ran( )>, i.e. <∪Dom( ), ∪Ran( )>∈ distα(D) 

and we have that distα(D) is closed under arbitrary unions.   

50 Proof. It follows directly from the observation about distα(D) in (i) below and the assumption that D is 

closed under arbitrary unions.   

(i) The denotation of a DRS distα(D) contains all and only:  

(a) those pairs <I, J>∈D such that αI=αJ and |αI|=1;  
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More generally (since distα(D) is closed under arbitrary unions for any dref α if D 

is closed under arbitrary unions – see (138e) above):              

If a DRS D is closed under arbitrary unions, then dist
n1� ,...,� (D)⊆D, for any terms 

α1, …, αn whose types are in DRefTyp. 

The inclusion distα(D)⊆D can be strengthened to equality, i.e. we can also show 

that D⊆distα(D), if we require closure under subsets over and above closure under 

unions. 

141. A DRS D (of type t := (st)((st)t)) is closed under subsets iff, for any pair of info 

states <I, J>∈D, there is a set ⊆D of info state pairs such that:             

(i) all the pairs in  are of the form <{is}, {js}>, i.e. they contain only singleton 

info states;                  

(ii) ∪ =<I, J>, where ∪ =<∪Dom( ), ∪Ran( )> (see (136) above), i.e. 

I=∪Dom( ) and J=∪Ran( );               

(iii) for any set of info state pairs '⊆ , we have that D(∪Dom( '))(∪Ran( ')), 

i.e. ∪ '∈D (note that this condition follows automatically if D is also closed 

under unions). 

142. The following kinds of DRS's are closed under subsets (if we assume their 

denotations according to the PCDRT system of chapter 5):      

a. Tests that contain only conditions denoting c-ideals (e.g. atomic conditions, 

dynamic negations of DRS's whose domains are c-ideals etc.) are closed under 

subsets since c-ideals are closed under subsets.              

b. A DRS D of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm 

are c-ideals, is closed under subsets51. 

                                                                                                                                                 

(b) arbitrary unions of sets of pairs of the kind specified in (a) above, under the condition that, for 

any two such pairs <I, J> and <I', J'>, αI≠αI' – hence, given that αI=αJ, αI'=αJ' and |αI|=|αI'|=1, 
we have that I and I' are disjoint and J and J' are disjoint. 

51 Proof: Recall that the denotation of a DRS D of the form [u1, …, un | C1, …, Cm], where the conditions 
C1, …, Cm are c-ideals, can be defined as shown in (ii) below based on the relation in (i). 

(i) D := {<is, js>: i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}; 
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We can now state the very useful observation in (143) below, which shows that 

PCDRT with selective distributivity properly extends the PCDRT system of chapter 5 

without selective distributivity only when maximization operators or generalized 

determiners are involved. 

143. Selective distributivity and closure under arbitrary unions and subsets.  

If a DRS D is closed under arbitrary unions and subsets, then distα(D)=D, for any 

term α whose type is in DRefTyp and any DRS D s.t. ∀<I, J>∈D(αI=αJ)52.     

More generally (this follows directly from the special case distα(D)=D and from 

the fact that distα,α'(D) = distα(distα'(D)) – see (131) above):             

If a DRS D is closed under arbitrary unions and under subsets, then 

dist
n1� ,...,� (D)=D, for any terms α1, …, αn whose types are in DRefTyp and any 

DRS D s.t. ∀<I, J>∈D (α1I=α1J ∧ … ∧ αnI=αnJ). 

                                                                                                                                                 

(ii) D = {<Ist, Jst>: ∃ s(st)≠Ø(I=Dom( ) ∧ J=Ran( ) ∧ ⊆ D)}. 

Now take an arbitrary pair of info states <I, J>∈D; by (ii), there is some ⊆ D s.t. I=Dom( ) and 

J=Ran( ). Take the set  of info states pairs to be as follows  := {<{is}, {js}>: <is, js>∈ }. For every pair 

of info states <{i}, {j}>∈ , there is the singleton relation {<i, j>}⊆ ⊆ D s.t. {i}=Dom({<i, j>}) and 

{j}=Ran({<i, j>}), therefore ⊆D. Moreover, ∪ = <∪Dom( ), ∪Ran( )> = <Dom( ), Ran( )> 

= <I, J>. The last condition, namely that for any set of info state pairs '⊆ , it is the case that 

D(∪Dom( '))(∪Ran( ')), i.e. that ∪ '∈D, follows directly from (ii), the fact that, for any '⊆ , 

<Dom( '), Ran( ')>∈D.   

52 Proof. Since D is closed under arbitrary unions, we have that distα(D)⊆D by observation (140). We just 

have to prove that D⊆ distα(D).  

Take an arbitrary pair <I, J>∈D. Since D is closed under subsets, we know that there is a ⊆D s.t. ∪  

=<∪Dom( ), ∪Ran( )> = <I, J> and  contains only info state pairs of the form <{is}, {js}>. Take a pair 

<{i}, {j}>∈ ⊆D. We know that α{i}=α{j} because, by assumption, ∀<I, J>∈D(αI=αJ). Moreover, 

|α{i}|=|{αi}|=1. Therefore, any pair <{i}, {j}>∈  is s.t. <{i}, {j}>∈ distα(D). 

We now apply the same technique as the one we used in the proof of (138e). We partition the set  of pairs 

into equivalence classes; the equivalence class of a pair <{i}, {j}>∈  is <{i},{j}> := {<{i'}, {j'}>∈ : 

αi'=αi}; thus, ∪ <{i},{j}>=<∪Dom( <{i},{j}>), ∪Ran( <{i},{j}>)> and, since  = ∪<{i},{j}>∈
<{i},{j}>, we have 

that ∪ , i.e. <I, J>, is the union of the set of pairs formed ∪ <{i},{j}>. 

Since D is closed under arbitrary unions and <{i},{j}>⊆ ⊆D, we have that ∪ <{i},{j}>=<∪Dom( <{i},{j}>), 

∪Ran( <{i},{j}>)>∈D. Moreover, α(∪Dom( <{i},{j}>)) = α({i}) = α{j} = α(∪Ran( <{i},{j}>)) and, therefore, 

we also have that |α(∪Dom( <{i},{j}>))|=1. Thus, ∪ <{i},{j}>=<∪Dom( <{i},{j}>), ∪Ran( <{i},{j}>)>∈ 

distα(D) for any pair <{i}, {j}>∈ . Moreover, since for any two distinct equivalence classes <{i},{j}> and 
<{i'},{j'}>, we have that α(∪Dom( <{i},{j}>))≠α(∪Dom( <{i'},{j'}>)),  the union of all ∪ <{i},{j}> is also in 

distα(D). But this big union is precisely ∪  = <∪Dom( ), ∪Ran( )> = <I, J>. Thus, <I, J>∈distα(D) and 

therefore D⊆distα(D).   
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It follows from the observation in (143) above that selective distributive operators 

are vacuous when applied to tests containing only conditions denoting c-ideals or to 

DRS's of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm are c-ideals – 

if, in the latter case, we distribute over a dref α different from u1, …, un. 

The equivalence in (144) below shows that, in PCDRT / IP-CDRT, selective 

distributivity operators distribute over dynamic conjunction. 

144. distα(D; D') = distα(D); distα(D'),        

  for any term α whose type is in DRefTyp and any DRS's D and D' s.t. 

  ∀<I, J>∈D(αI=αJ) and ∀<I, J>∈D'(αI=αJ)53 

Finally, we show that we can extend our previous results about the reduction of 

multiply embedded max
u operators to more complex representations involving selective 

distributivity in addition to embedded max
u operators. In particular, the statement in 

(145) below is a theorem of PCDRT (or IP-CDRT) with selective distributivity. The 

conditions are identical to the ones needed to reduce structures with multiply embedded 

max
u operators that do not contain selectively distributive operators (see the Appendix to 

the previous chapter). 

145. Simplifying 'Max-under-Max' Representations with selective distributivity: 

  max
u(D; distu(max

u'(D'))) = max
u(D; distu([u']; D')); distu(max

u'(D')), 

 if the following three conditions obtain:       

 a. u is not reintroduced in D';        

                                                 

53 Proof:  

(distα(D); distα(D'))IJ = ∃H(distα(D)IH ∧ distα(D')HJ)  

= ∃H(αI=αH ∧ ∀f∈αI(DIα=fHα=f) ∧ αH=αJ ∧ ∀f∈αH(D'Hα=fJα=f)) 

= ∃H(αI=αH=αJ ∧ ∀f∈αI(DIα=fHα=f ∧ D'Hα=fJα=f))  

= (given that ∀<I, J>∈D(αI=αJ) and ∀<I, J>∈D'(αI=αJ)) αI=αJ ∧ ∀f∈αI(∃H(DIα=fH ∧ D'HJα=f))  

= αI=αJ ∧ ∀f∈αI((D; D')Iα=fJα=f) = distα(D; D')IJ.   
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 b. ∀Ist∀Xet (∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(max
u'(D')IJ ∧ X=uJ));   

 c. max
u'(D') = [u']; D'; max

u'(D')54. 

                                                 

54 Proof. 

Claim1.  If ∀Ist∀Xet(∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(max
u'(D')IJ ∧ X=uJ)), then ∀Ist∀Xet(∃Jst(distu([u']; 

D')IJ ∧ X=uJ) ↔ ∃Jst(distu(max
u'(D'))IJ ∧ X=uJ)). 

Proof of Claim1. ∀Ist∀Xet(∃Jst(distu([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(distu(max
u'(D'))IJ ∧ X=uJ)) = 

∀Ist∀Xet(∃Jst(uI=uJ ∧ ∀xe∈uI(([u']; D')Iu=xJu=x) ∧ X=uJ) ↔ ∃Jst(uI=uJ ∧ ∀xe∈uI(max
u'(D')Iu=xJu=x) ∧ 

X=uJ)) =  

∀Ist(∃Jst(uI=uJ ∧ ∀xe∈uI(([u']; D')Iu=xJu=x)) ↔ ∃Jst(uI=uJ ∧ ∀xe∈uI(max
u'(D')Iu=xJu=x))) 

LR����: Assume that, for an arbitrary I, we find some J s.t. uI=uJ ∧ ∀xe∈uI(([u']; D')Iu=xJu=x). Pick an 

arbitrary x; we have that ([u']; D')Iu=xJu=x. By hypothesis, we have that ∀Ist∀Xet(∃Jst(([u']; D')IJ ∧ X=uJ) ↔ 

∃Jst(max
u'(D')IJ ∧ X=uJ)). Instantiate I with Iu=x and X with {x}. We therefore have that: 

∃Jst(([u']; D')Iu=xJ ∧ {x}=uJ) ↔ ∃Jst(max
u'(D')Iu=xJ ∧ {x}=uJ) 

The left hand-side is true because ([u']; D')Iu=xJu=x is true and, obviously, uJu=x={x}. We can therefore find 

a state Jx s.t. max
u'(D')Iu=xJ

x ∧ {x}=uJ
x. Thus, for all xe∈uI, there is some Jx s.t. max

u'(D')Iu=xJ
x ∧ {x}=uJ

x. 

Take the union of all these states, i.e. ∪x∈uIJ
x. Clearly, uI=u(∪x∈uIJ

x) and ∀xe∈uI(max
u'(D')Iu=xJ

x). 

Therefore ∃Jst(uI=uJ ∧ ∀xe∈uI(max
u'(D')Iu=xJu=x)). 

RL����: the reasoning is parallel. End of proof of Claim1. 

Thus, max
u(D; distu(max

u'(D')))IJ =  

∃H(([u]; D)IH ∧ distu(max
u'(D'))HJ) ∧ ∀K(∃H(([u]; D)IH ∧ distu(max

u'(D'))HK) → uK⊆uJ)  

By condition (145b) and Claim1, we have that: ∀Ist∀Xet(∃Jst(u([u']; D')IJ ∧ X=uJ) ↔ 

∃Jst(distu(max
u'(D'))IJ ∧ X=uJ)). 

Therefore, max
u(D; distu(max

u'(D')))IJ =  

∃H(([u]; D)IH ∧ distu(max
u'(D'))HJ) ∧ ∀K(∃H(([u]; D)IH ∧ distu([u']; D')HK) → uK⊆uJ) =  

∃H(([u]; D)IH ∧ distu(max
u'(D'))HJ) ∧ ∀K(([u]; D; distu([u']; D'))IK → uK⊆uJ) 

We have that max
u'(D') = [u']; D'; max

u'(D') (condition (145c)). Hence: max
u(D; distu(max

u'(D')))IJ = 

∃H(([u]; D)IH ∧ distu([u']; D'; max
u'(D'))HJ) ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uJ) 

Since u is not reintroduced in D' (condition (145a)), we have by fact (144) that distu([u']; D'; max
u'(D')) = 

distu([u']; D'); distu(max
u'(D')). Therefore: max

u(D; distu(max
u'(D')))IJ =  

∃H(([u]; D; distu([u']; D'))IH ∧ distu(max
u'(D'))HJ) ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uJ) = 

∃H(([u]; D; distu([u']; D'))IH ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uJ) ∧ distu(max
u'(D'))HJ) 

Since u is not reintroduced in D' (condition (145a)), we have that uJ=uH. Hence: max
u(D; 

distu(max
u'(D')))IJ = 

∃H(([u]; D; distu([u']; D'))IH ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uH) ∧ distu(max
u'(D'))HJ)  =  

∃H(max
u(D; distu([u']; D'))IH ∧ distu(max

u'(D'))HJ) = (max
u(D; distu([u']; D')); distu(max

u'(D')))IJ. �  
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Just as before, we can further simplify the three conditions in (145). First, given the 

first condition, i.e. (145a), the second condition is equivalent to Dom([u']; D') = 

Dom(max
u'(D')). Moreover, based on the two facts in (146) (see the appendix of chapter 

5 for their proofs), we can further simplify condition (145c). 

146. a. If D' is of the form [u1, …, un | C1, …, Cm],      

    then ∀IstJst(([u']; D')IJ → ([u']; D')I=([u']; D')J).            

b. If ∀IstJst(([u']; D')IJ → ([u']; D')I=([u']; D')J),      

    then max
u'(D') = [u']; D'; max

u'(D'). 

Thus, we have the corollary in (147) below. 

147. Simplifying 'Max-under-Max' Representations with selective distributivity 

(corollary):           

 max
u(D; distu(max

u'(D'))) = max
u(D; distu([u']; D')); distu(max

u'(D')),         

if the following three conditions obtain:       

 a. u is not reintroduced in D';        

 b. Dom([u']; D') = Dom(max
u'(D'));       

 c. D' is of the form [u1, …, un | C1, …, Cm]. 

The right handside of the identity can be further simplified if the DRS [u']; D' is 

closed under unions and subsets, in which case we can omit the distributive operator 

embedded under max
u since distu([u']; D') = [u']; D' – this holds because, by (147a), u is 

not reintroduced in D' and, therefore, ∀<I, J>∈([u']; D')(uI=uJ). Consequently, we have 

the additional corollary in (148) below, which is useful for the simplification of 

derivations. 

148. Simplifying 'Max-under-Max' Representations with selective distributivity 

(corollary2):           

 max
u(D; distu(max

u'(D'))) = max
u(D; [u']; D'); distu(max

u'(D')),          

if the following three conditions obtain:       

 a. u is not reintroduced in D';        



 269 

 b. Dom([u']; D') = Dom(max
u'(D'));       

 c. D' is of the form [u1, …, un | C1, …, Cm]       

 and C1, …, Cm are c-ideals.        

Moreover, (148b) actually follows from (148c) because C1, …, Cm are c-ideals. 

 


