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Chapter 5. Structured Nominal Reference: Donkey Anaphora 
 

1. Introduction 

This chapter incrementally introduces a new dynamic system that extends 

CDRT+GQ and within which we can give a compositional account of the multiple 

donkey sentences in (1) and (2) below. This pair of sentences shows that the analysis of 

singular donkey anaphora requires a notion of plural discourse reference, i.e. reference to 

a quantificational dependency between sets of objects (atomic individuals, possible 

worlds etc.), which is established and subsequently referred to in discourse. 

1. Every 1
u  person who buys a 2

u  book on amazon.com and has a 3
u  credit card uses 

it
3

u  to pay for it
2

u
1. 

2. Every 1
u  boy who bought a 2

u  Christmas gift for a 3
u  girl in his class asked her

3
u  

deskmate to wrap it
2

u . 

Both examples contain multiple instances of singular donkey anaphora that are 

semantically correlated: (1) shows that singular donkey anaphora can refer to (possibly 

non-singleton) sets, while (2) shows that singular donkey anaphora can refer to a 

dependency between such sets. 

Sentence (1) is a mixed weak & strong donkey sentence2:  it is interpreted as 

asserting that, for every book (strong) that any credit-card owner buys on amazon.com, 

                                                 

1 Some speakers find the variants in (i) below intuitively more compelling: 

(i) Every person who buys a computer / TV and has a credit card uses it to pay for it. 

2 To my knowledge, the existence of mixed reading relative-clause donkey sentences was observed for the 
first time by van der Does (1993). His example is provided in (i) below – and it is accompanied by the 
observation that "clear intuitions are absent, but a combined reading in which a whip is used to lash all 
horses seems available" (van der Does 1993: 18). The intuitions seem much clearer with respect to example 
(1) above; moreover, it is crucial for our purposes that the weak reading of �� ������� ���� in (1) does not 
require the set of credit cards to be a singleton set (that is, some people might use different credit cards to 
buy different (kinds of) books).  

(i) Every farmer who has a horse and a whip in his barn uses it to lash him. (van der Does 1993: 18, (26)) 
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there is some credit card (weak) that s/he uses to pay for the book. Note in particular that 

the credit card can vary from book to book, e.g. I can use my MasterCard to buy set 

theory books and my Visa to buy detective novels – which means that even the weak 

indefinite � 3
u ������������ can introduce a (possibly) non-singleton set. 

For each buyer, the two sets of objects, i.e. all the books purchased on amazon.com 

and some of the credit cards that the buyer has, are correlated and the dependency 

between these sets is specified in the nuclear scope of the quantification: each book is 

correlated with the credit card that was used to pay for it. The translation of sentence (1) 

in classical (static) first-order logic is provided in (3) below. 

3. ∀x(person(x) ∧ ∃y(book(y) ∧ buy_on_amazon(x, y)) ∧ ∃z(c.card(z) ∧ have(x, z))  

 → ∀y'(book(y') ∧ buy_on_amazon(x, y')      

         → ∃z'(c.card(z') ∧ have(x, z') ∧ use_to_pay(x, z', y')))) 

The challenge posed by this sentence is to compositionally derive its interpretation 

while allowing for: (i) the fact that the two donkey indefinites in the restrictor of the 

quantification receive two distinct readings (strong and weak respectively) and (ii) the 

fact that the value of the weak indefinite �"������������ co-varies with / is dependent on the 

value of the strong indefinite ���	

� although the strong indefinite cannot syntactically 

scope over the weak one, since both DP's are trapped in their respective conjuncts. 

The dependency between the two sets of objects is the most transparent in sentence 

(2). Both instances of donkey anaphora are strong: we are considering every Christmas 

gift and every girl. The restrictor introduces a dependency between the set of gifts and the 

set of girls: each gift is correlated with the girl it was bought for. The nuclear scope of the 

donkey quantification retrieves not only the two sets of objects, but also the structure 

associated with them, i.e. the dependency between them: each gift was wrapped by the 

                                                                                                                                                 

The existence of mixed reading conditional donkey sentences has been observed at least since Dekker 
(1993); his example is provided in (ii) below. 

(ii) If a man has a dime in his pocket, he throws it in the parking meter. (Dekker 1993: 183, (25)). 
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deskmate of the girl that the gift was bought for. Thus, we have here donkey anaphora to 

structure in addition to donkey anaphora to values. 

Importantly, the structure associated with the two sets, i.e. the dependency between 

gifts and girls, is semantically encoded and not pragmatically inferred: the correlation 

between the two sets is not left vague / underspecified and subsequently made precise 

based on various extra-linguistic factors. To see this, consider the following situation. 

John buys two gifts, one for Mary and the other for Helen. The two girls are deskmates 

(note that the deskmate relation is symmetric). Intuitively, sentence (2) is true if John 

asked Mary to wrap Helen's gift and Helen to wrap Mary's gift and it is false if John 

asked each girl to wrap her own gift (i.e. if John asked Mary to wrap the gift bought for 

her and, similarly, he asked Helen to wrap the gift bought for her). But if the relation 

between gifts and girls were vague / underspecified, we would predict that sentence (2) 

should be true even in the second (somewhat odd) situation3,4. 

In sum, we need a semantic framework which can account for reference to non-

singleton structured sets, where the quantificational structure associated with the sets is 

introduced in a (syntactically) non-local manner – for example, in (1), across a 

coordination island – and subsequently accessed in a non-local manner – for example, in 

(2), from outside the relative clause that introduces the structured dependency. 

The chapter is structured as follows. Section 2 provides a brief outline of the 

proposed account. Section 3 introduces an extension of CDRT+GQ with plural info 

                                                 

3 Note the similarity between example (2) (which crucially involves the symmetric relation deskmate) and 
the 'indistinguishable participants' examples involving symmetric relations due to Hans Kamp, Jan van 
Eijck and Irene Heim (see Heim 1990: 147, fn. 6):  

(i) If a man shares an apartment with another man, he shares the housework with him. (Heim 1990: 147, 
(22)) 

(ii) If a bishop meets a bishop, he blesses him. (Heim 1990: 148, (23)). 

4 The donkey sentence in (2) does not pose problems for CDRT+GQ (or indeed DRT / FCS / DPL) – at 
least to the extent to which CDRT+GQ can provide a suitable analysis of possessive definite descriptions 
like ������������. However, as the remainder of this section will show, the donkey sentence in (2) is an 
important companion to the mixed reading donkey sentence in (1); it is only together that these two 
sentences provide an argument for extending CDRT+GQ with plural information states (i.e. the main 
technical innovation of this chapter) as opposed to a more conservative extension of CDRT+GQ with dref's 
for sets. 
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states, which I dub Plural CDRT (PCDRT)5. Section 4 shows in detail how PCDRT can 

be used to compositionally interpret a variety of donkey sentences, including mixed weak 

& strong relative-clause donkey sentences.  

Section 6 compares PCDRT with alternative approaches to donkey anaphora and 

evaluates how they fare with respect to the proportion problem, the weak/strong donkey 

ambiguity and mixed reading relative-clause donkey sentences. The appendix contains a 

summary of the PCDRT system and some of the more technical results about its formal 

properties. 

2. Outline of the Proposed Account 

The first issue that we need to address is the weak / strong donkey ambiguity. I will 

attribute this ambiguity to the donkey indefinites – and not to any other element involved 

in the donkey anaphora structure, e.g. the generalized determiner, as CDRT+GQ 

(following Rooth 1987, Heim 1990, Kanazawa 1994a) would have it. 

The two basic meanings for the donkey indefinites have the format in (4) below, 

where the max operator taking scope over both the restrictor and the nuclear scope 

properties delivers the strong (maximal) donkey reading. The max operator ensures that, 

after we process a strong indefinite, the output plural info state stores with respect to the 

dref u the maximal set of individuals satisfying both the restrictor dynamic property P' 

and the nuclear scope dynamic property P. 

4. weak indefinites:������ � �P'et. �Pet. [u]; P'(u); P(u)        

strong indefinites: ������ � �P'et. �Pet. max
u(P'(u); P(u)) 

Attributing the weak / strong ambiguity to the donkey indefinites enables us to give 

a compositional account of the mixed weak & strong donkey sentence in (1) above 

because we locally decide for each indefinite article whether it receives a weak or a 

                                                 

5 One possible mnemonic for PCDRT is Politically Correct DRT. The author vigorously denies 
responsibility for any entailments, presuppositions, implicatures or implications of any other kind 
associated with the use of this mnemonic in any discourse and / or utterance context whatsoever. 
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strong reading. Moreover, selective generalized determiners like �����, �
 etc. have the 

kind of dynamic meaning that we would expect them to have based on their static 

Montague-style meanings: they are associated with / 'bind' only one dref (their own) and 

do not need to encode which readings the donkey indefinites in their restrictor have and 

that is the relative (pseudo-)scope of these indefinites.  

 Furthermore, this analysis of the weak / strong donkey ambiguity is couched within 

a framework that enables us to account for the fact that donkey anaphora involves 

reference to (possibly non-singleton) structured sets of individuals. The main innovation 

(relative to CDRT+GQ) is to minimally complicate the notion of info state: instead of 

using singular info states consisting of a single 'assignment' i, j, … (type s), I follow the 

proposal in van den Berg (1994, 1996a) and use plural info states I, J, …, consisting of 

sets of 'assignments' (type st). I will call the resulting system Plural CDRT (PCDRT). 

In PCDRT, individual dref's have the same type as in CDRT+GQ, i.e. type se. A 

dref u (of type se) stores a set of individuals uI with respect to such a plural info state I: 

as shown in (5) below, the set of individuals uI is the image of the set of 'assignments' I 

under the function u. 

5. Abbreviation: uI := use[Ist] = {useis: is∈Ist} = {xe: ∃is∈I(ui=x)} 

Storing a set of individuals by means of a plural info state and not by means of  a 

dref for sets (its type would be s(et)) enables us to access in discourse not only the set of 

individuals, but also the structure associated with it by the plural info state: for example, 

two drefs u and u' store two sets of individuals relative to a plural info state I, i.e. uI = 

{ui: i∈I} and u'I={u'i: i∈I}; but the info state I also stores the dependency (i.e. the binary 

relation) between the two dref's, which is the set of pairs of individuals {<ui, u'i>: i∈I}6. 

                                                 

6 In DRT / FCS / DPL terminology, we can think of the sets of individuals as being contributed by sets of 
variable assignments (or sets of embedding functions) G, G' etc. A set of variable assignments introduces 

both sets of individuals, e.g. a variable x is associated with the set of individuals {g(x): g∈G}, and a 

relation between them, e.g. two variables x and y determine the binary relation {<g(x), g(y)>: g∈G} 

between the two sets of individuals associated with x and y, i.e. between {g(x): g∈G} and {g(y): g∈G}. 
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6. Info State I … u u' … 

i1 … x1 (i.e. ui1) y1  (i.e. u'i1) … 

i2 … x2  (i.e. ui2) y2  (i.e. u'i2) … 

i3 … x3  (i.e. ui3) y3  (i.e. u'i3) … 

… … … … … 

 

Values – sets: {x1, x2, x3, …}, {y1, y2, y3, …} Structure – relations: {<x1, y1>, <x2, y2>, <x3, y3>, …} 

As (6) above shows, plural info states encode discourse reference to both values and 

structure. The values are the sets of objects that are stored in the columns of the matrix, 

e.g. a dref u for individuals stores a set of individuals relative to a plural info state, since 

u is assigned an individual by each assignment (i.e. row). The structure is distributively 

encoded in the rows of the matrix: for each assignment / row in the plural info state, the 

individual assigned to a dref u by that assignment is structurally correlated with the 

individual assigned to some other dref u' by the same assignment. 

Thus, plural info states enable us to capture the structured dependencies between the 

multiple donkey anaphoric connections in (1) and (2) above. Let us start with the PCDRT 

analysis of sentence (2): by the time we are done processing the restrictor of the donkey 

quantification, we will be in an info state I which can be represented as the matrix in (7) 

below. Note that the strong donkey indefinites introduce both values, i.e. the set of gifts 

u2I = {a1, a2, …} and the set of girls u3I = {b1, b2, …}, and structure, i.e. for each 

'assignment' i∈I, the gift u2i was bought for girl u3i. 
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7. Every 1
u  boy who bought a str:

2
u  Christmas gift for a str:

3
u  girl in his class asked 

her
3

u  deskmate to wrap it
2

u . 

Info state I … u2 (all gifts) u3 (all girls) … 

i1 … a1 (=u2i1) b1 (=u3i1) … 

  
                                                  

     
1 1

gift a was bought for girl b

�������������  
 

i2 … a2 (=u2i2) b2 (=u3i2) … 

i3 … a3 (=u2i3) b3 (=u3i3) … 

… … … … … 

When we process the nuclear scope of the donkey quantification, we are anaphoric 

to both values and structure: we require each 'assignment' i∈I to be such that the 

deskmate of girl u3i was asked to wrap gift u2i. Thus, the nuclear scope of the donkey 

quantification elaborates on the structured dependency between the set of gifts u2I and the 

set of girls u3I introduced in the restrictor of the donkey quantification. 

The interpretation of sentence (1) is different in two important respects: (i) the 

indefinite � 3
u � ������� ���� receives a weak reading and (ii) the structural dependency 

between books and credit cards remains implicit in the restrictor and is explicitly 

established only in the nuclear scope. That is, by the time we are done processing the 

restrictor of the donkey quantification in (1), we will be in an info state I like the one in 

(8) below. We introduce the maximal set of books for u2 (the strong indefinite), we non-

deterministically introduce some set of credit cards for u3 (the weak indefinite) and we 

non-deterministically introduce some structure correlating the values of u2 and u3. 
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8. Every 1
u  person who buys a str:

2
u  book on amazon.com and has a wk:

3
u  credit card 

uses it
3

u  to pay for it
2

u . 

Info state I … u2 (all books) u3 (some credit cards) … 

i1 … a1 (=u2i1) b1 (=u3i1) … 

  
                                                                         

  
1 1

book a is somehow correlated with card b

�������������������  
 

i2 … a2 (=u2i2) b2 (=u3i2) … 

i3 … a3 (=u2i3) b3 (=u3i3) … 

… … … … … 

The nuclear scope is again anaphoric to both values and structure; in particular, we 

test that the non-deterministically introduced value for u3 and the non-deterministically 

introduced structure associating u3 and u2 satisfy the nuclear scope condition, i.e., for 

each 'assignment' i∈I, the credit card u3i is used to pay for the book u2i. Yet again, the 

nuclear scope elaborates on the unspecified dependency between u3 and u2 introduced in 

the restrictor of the donkey quantification. Crucially, the credit cards co-vary with / are 

dependent on the books and introducing such a dependency does not require the strong 

indefinite � 2
u � 	

� to scope over the weak indefinite � 3

u � ������� ���� – which cannot 

happen because the two DP's are trapped in their respective conjuncts. 

As the semi-formal paraphrases above indicate, PCDRT follows CDRT+GQ and 

interprets a sentence as a DRS, i.e. as a relation between an input and an output info state. 

The only difference is that the PCDRT info states are plural, hence the type of a DRS is 

(st)((st)t), i.e. a relation between an input info state Ist and an output info state Jst. The 

example in (1) provides the empirical motivation for modeling DRS's as relations 

between plural info states (of type (st)((st)t)), i.e. as non-deterministically updating a 

plural info state. We need the non-determinism to introduce both (i) the value of the weak 

indefinite � 3
u � ������� ���� and (ii) the dependency between the weak indefinite � 3

u � �������

���� and the strong indefinite � 2
u � 	

�: both the plural value of dref u3 and the 

dependency relative to the dref u2 are non-deterministically introduced in the restrictor 

and elaborated upon in the nuclear scope. 
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The structural non-determinism, i.e. the fact that the dynamics of structural 

dependencies is essentially the same as the dynamics of values, is a core design feature of 

PCDRT, which sets it apart from many previous dynamic systems with plural info states 

(including van den Berg 1996a, Krifka 1996b and Nouwen 2003). 

One final observation before turning to the formal development of the account 

sketched in this section. The hypothesis that singular indefinite articles are ambiguous is 

not entirely desirable: for one thing, the two readings of the indefinite are always 

morphologically identical in English; moreover, I do not know of any natural language 

that would systematically reflect the difference between these two readings in the surface 

form of the indefinites. Thus, an analysis that would avoid the ambiguity and would 

derive the two distinct readings solely on the basis of independently motivated semantic 

and pragmatic factors would be preferable. 

However, the proposed analysis of the weak / strong ambiguity gets fairly close to 

achieving this goal: the only difference between a weak and a strong indefinite article is 

the presence vs. absence of a maximization operator. We can therefore think of the 

singular indefinite article as underspecified with respect to the presence vs. absence of 

this maximization operator: the decision to introduce it or not is made online depending 

on the discourse and utterance context of a particular donkey sentence – much like 

aspectual coercion7 or the selection of a particular type for the denotation of an 

expression8 are context-driven online processes. 

3. CDRT+GQ with Plural Information States: Plural CDRT 
(PCDRT) 

This section incrementally develops Plural CDRT (PCDRT), i.e. the promised 

extension of CDRT+GQ with plural info states. Section 3.1 gives the new definition of 

atomic conditions, section 3.2 the definition of new dref introduction, section 3.3 defines 

                                                 

 

7 For example, the iterative interpretation of John sent a letter to the company for years or of The light is 

flashing. 

8 For example, when proper names are conjoined with generalized quantifiers. 
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negation, section 3.4 introduces maximization and, finally, section 3.5 defines selective 

and unselective generalized quantification in PCDRT. I provide the empirical and 

theoretical motivation for the formal innovations as I introduce them. 

3.1. Atomic Conditions 

No changes need to be made to our underlying logic Dynamic Ty2, i.e. our 'low-

level programming language': we will be working with the same bivalent total logic with 

no non-atomic individuals. And the changes to our DRT-style abbreviation system, i.e. 

our 'high-level programming language', are minimal: we introduce plural info states I, J, 

K, … of type st and we consequently reset the type t of (saturated) sentences to (st)((st)t): 

t is still the type of a binary relation between info states, it's just that the info states 

themselves are plural9.  

9. Plural info states (type st): Hst, Ist, Jst, Kst, H'st, I'st, J'st, K'st, …;      

'Saturated' expressions in PCDRT:       

 - sentences (DRSs) – relations between plural info states: t := (st)((st)t);  

 - names (individual dref's) – the same as in CDRT+GQ:  e := se. 

Just as in CDRT+GQ, the atomic conditions are sets of info states. However, given 

that we are now working with plural info states, their type will be (st)t. Moreover, the 

atomic conditions will be unselectively distributive, where 'unselective' is used in the 

sense of Lewis (1975), i.e. the atomic conditions are distributive over the plural info 

states they accept: they accept a set of 'assignments' iff they accept, in a pointwise 

manner, every single 'assignment' in the set. 

This is implemented by means of universal quantification over the set of 

assignments in a plural info state Ist, as shown in (10) below. The requirement of non-

emptiness I≠Ø rules out the 'degenerate' case in which the universal quantification 

∀is∈I(…) is vacuously satisfied. 

                                                 

9 Incidentally, note that t is the type of generalized determiners over entities of type s, parallel to static 
(extensional) determiners of type (et)((et)t). 
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10. Atomic conditions – type (st)t.        

 R{u1, …, un} := �Ist. I≠Ø ∧ ∀is∈I(R(u1i, …, uni)),     

  for any non-logical constant R of type en
t,     

  where en
t is defined as follows: e0

t := t and em+1
t := e(em

t).  

 u1=u2 := �Ist. I≠Ø ∧ ∀is∈I(u1i=u2i) 

As already suggested, the requirement enforced by an atomic condition can be 

intuitively depicted by means of a matrix, as shown in (11) below. 

11. Info state I … u1 … un … 

i … a1 (=u1i) … an (=uni) … 

  
( , ..., ), ( , ..., )

                                                        

 i.e. 1 n 1 nR u i   u i R a   a
���������������  

 

i' … a1' (=u1i') … an' (=uni') … 

i'' … a1'' (=u1i'') … an'' (=uni'') … 

… … … … … … 

The unselectively distributive structure of the atomic conditions endows the set of 

plural information states characterized by them with a lattice-theoretic ideal structure. 

12. ℑ is an ideal with respect to the partial order induced by set inclusion ⊆ on the 

power set of the domain of 'assignments' ℘(Ds
M) (i.e. <℘(Ds

M), ⊆>) iff:   

a. ℑ⊆℘(Ds
M);           

b. for any Ist and Jst, if I∈ℑ and J⊆I, then J∈ℑ (closure under subsets);    

c. for any Ist and Jst, if I∈ℑ and J∈ℑ, then (I∪J)∈ℑ (closure under finite unions).            

ℑ is a complete ideal iff (a) and (b) are as above and, instead of (c), we require 

closure under arbitrary unions. 

A complete ideal ℑ has a supremum, namely ∪ℑ. Given the requirement of closure 

under subsets and closure under arbitrary unions, a complete ideal ℑ is a complete 

Boolean algebra, as stated in (13) below. 

13. ℑ = ℘(∪ℑ),   for any complete ideal ℑ (in the atomic lattice ℘(Ds
M)). 
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We introduced the notation in (14) below to handle the non-emptiness requirement 

in the definition of atomic conditions. 

14. Let ℘+(Ds
M) be the power set of the domain of 'assignments' without the empty 

set Ø. A (complete) ideal without a bottom element is defined just as in (12) 

above, except that, instead of (12a), we require inclusion in ℘+(Ds
M) and, instead 

of (12b), we require closure under non-empty subsets. 

Since we are concerned here only with complete ideals without a bottom element, I 

will henceforth use "c-ideal" instead of the longer "complete ideal without a bottom 

element". The most important fact is that, for any c-ideal ℑ, we have that ℑ=℘+(∪ℑ), i.e. 

c-ideals are complete Boolean algebras without a bottom element. 

The definition of atomic conditions in (10) above ensures that they always denote c-

ideals (in the atomic lattice ℘(Ds
M)). We can in fact characterize them in terms of the 

supremum of their denotation. 

15. Atomic Conditions as C-Ideals.        

For any non-logical constant R of type en
t and sequence of unspecific10 dref's <u1, 

…, un>, let (R, <u1, …, un>) := �is. R(u1i, …, uni), abbreviated R whenever the 

sequence of dref's can be recovered from context. Then, R{u1, …, un} = ℘+( R) 11. 

The fact that atomic conditions denote c-ideals will be useful in showing that 

PCDRT has a range of desirable properties and it will guide several design choices we 

have to make on the way. 

3.2. New Discourse Referents 

We turn now to defining the introduction of new dref's in PCDRT. I will consider 

only two candidate definitions, both given in (16) below, and I will argue that the first 

                                                 

10 For the notion of unspecific dref, see definition 4 in section 2.2 of chapter 3 above. 

11 Convention: ℘+(Øst) = Ø(st)t. 
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one, namely (16a), is the empirically and theoretically better choice. Both definitions 

relate two plural info states Ist and Jst in terms of the pointwise relation is[u]js. 

16. Introducing new dref's in PCDRT – two candidate definitions:   

 a. [u] := �Ist.�Jst. ∀is∈I(∃js∈J(i[u]j)) ∧ ∀js∈J(∃is∈I(i[u]j))    

 b. {u} := �Ist.�Jst. ∃Xet≠Ø(J= { : [ ] }   
s

si I
j i u j uj X

∈
∧ ∈� ),    

      equivalently: {u} := �Ist.�Jst. ∃Xet≠Ø(J={js: ∃is∈I(i[u]j ∧ uj∈X)}). 

Definition (16a) is the more general and logically weaker one: it simply requires any 

'assignment' i in the input info state I to have a successor 'assignment' j in the output state 

J and, similarly, any 'assignment' j in the output info state J  should have an ancestor 

'assignment' i in the input state I. In this way, we will necessarily preserve all the 

discourse information12 in the input state I when we non-deterministically update it and 

obtain the output state J. 

Definition (16b) has an extra-requirement over and above definition (16a): we need 

to uniformly reassign the value of the dref u for all the 'assignments' is in the input info 

state Ist, i.e. there is some random set Xet of new values for u and each input 'assignment' i 

is updated (relative to u) with each and every single value in X. The effect of definition 

(16b) is shown in (17) below: the input state Ist contains two 'assignments' i and i' and the 

set Xet of new values for u contains two individuals a and b. 

 

    

17. I{u}J, where Xet={a, b} 
I{u}J Output state Jst … u … 

Input state Ist … ia … a (=u(ia)) … 

i … 
 

ib … b (=u(ib)) … 

i' … i'a … a (=u(i'a)) … 

 
 

i'b … b (=u(i'b)) … 

                                                 

12 Recall that, in PCDRT, the preserved discourse information consists of: (i) the previously established 
values for all the dref's other than u and (ii) the previously established structured dependencies between the 
dref's other than u. 
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The choice between the two definitions in (16)13,14 boils down to how we want to 

handle the new component of our information states, i.e. the structure associated with the 

values of the dref's. The singular info states of CDRT+GQ encode only values – and we 

non-deterministically assign new values to a particular dref. Thus, for each particular info 

state, the value of the dref is determined, but throughout the entire discourse context, i.e. 

throughout the space of all possible output info states for the random assignment [u], the 

value of the dref is not determined: for every possible value that the dref u can take, there 

will be some output info state that assigns that value to u. 

The plural info states of PCDRT encode values and, in addition, structure, i.e. they 

encode dependencies between the values of the dref's in a pointwise manner ('assignment' 

by 'assignment'). Our first definition I[u]J treats the structural component in parallel to 

the value component of the info state: we non-deterministically introduce both new 

values for u and new structure, as the values for u in the output state can be stored in a 

particular configuration of pointwise associations with the other dref's.  

Thus, in each info state, the value and the structure of dref u are determined, but 

throughout the entire discourse context, i.e. throughout the space of all possible plural 

output states, the value and the structure of dref u are not determined: for every possible 

non-empty set of values, for every possible structure (i.e. pointwise distribution) of that 

set, there is some plural output state that assigns to u that particular value with that 

particular associated structure. 

The second definition I{u}J does not treat the two components of a plural info state, 

i.e. value and structure, in a parallel way: we are still non-deterministic with respect to 

the value, but we are deterministic with respect to the structure – for any set of 

                                                 

13 Both definitions appear in van den Berg's work: an equivalent of (16a) is used in van den Berg (1994): 
15, fn 12 and in van den Berg (1996b): 18, (49), while van den Berg (1996a): 134-135, (2.7) & (2.8) uses a 
version of (16b). The two definitions I consider differ from van den Berg's definitions in several respects: 
first, (16a) and (16b) are formulated in type logic, unlike van den Berg's, which are formulated in DPL 
terms; second, the definitions of random assignment in van den Berg are more complex because he works 

with a three-valued logic and also countenances a dummy / 'undefined' individual �. To my knowledge, 
there is no comparison of the two alternative definitions in van den Berg's work. 

14 Nouwen (2003) follows van den Berg (1996a) and assumes the definition of {u} in (16b); the alternative 
option is not mentioned. 
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individuals that is randomly assigned as a value, there is only one possible structure (i.e. 

pointwise distribution) of that set throughtout the output discourse context (i.e. 

throughout the space of output info states).  

This choice seems to be preferable if we want to make the system computationally 

more efficient because it would significantly cut down the number of possible output info 

states for any given instance of new dref introduction (a.k.a. plural random assignment). 

Moreover, a more constrained system (presumably) runs a lower risk of over-generation. 

Finally, the structure we choose for every random value is the least 'biased' one: we 

introduce the entire set assigned to u with respect to each input 'assignment' i, so there is 

no 'biased' correspondence / dependency between the values of some other dref u' and the 

values newly assigned to u. That is, although the update is structurally deterministic, it 

always associates the least possible amount of structural information with each new 

value. 

Despite the fact that the second definition {u} is more constrained (hence, ceteris 

paribus, more desirable), I will provide three reasons, one empirical and two theoretical, 

for preferring the first definition, namely [u]. The first, empirical reason is provided by 

our mixed weak & strong donkey sentences, repeated below for convenience. 

18. Every 1
u  person who buys a 2

u  book on amazon.com and has a 3
u  credit card uses 

it
3

u  to pay for it
2

u . 

19. Every 1
u  man who wants to impress a 2

u  woman and who has an 3
u  Arabian horse 

teaches her
2

u  how to ride it
3

u . 

Recall that, intuitively, we want to allow for credit cards that vary from book to 

book and also for Arabian horses that vary from woman to woman. Consider now the 

definition in (16a), i.e. [u], and its effect on the interpretation of the quantification in (19) 

(the same reasoning applies to (18)). By the time we process the second conjunct in the 

restrictor, i.e. ��
� ���� �� 3
u � !��	���� �
���, we have already processed the first one ��
�

������ �
� �������� � 2
u ��
��� and, therefore, the dref u2 has already been introduced and 

was assigned appropriate womanly values. Now we introduce u3 by means of the update 
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[u3] and we non-deterministically assign it a set of equine values and non-

deterministically associate a structure with this set of values, i.e. we non-deterministically 

associate each u3-horse with some u2-woman.  

The nuclear scope subsequently filters the non-deterministically assigned values and 

structure: we require the u3-horses to stand in the 'u2 rides u3' relation to the u2-set of 

women and this requirement has to be satisfied in a pointwise manner, i.e. relative to each 

individual 'assignment' in the plural info state. 

In contrast, the definition of random assignment in (16b), i.e. {u3}, requires us to 

introduce the same set of horses with respect to each and every u2-woman.  This yields 

intuitively incorrect, overly strong truth-conditions since, for sentence (19) to be 

intuitively true, we do not have to require each and every woman to ride the same horse 

or the same set of horses as the other women. 

Thus, the structural non-determinism built into the definition of random assignment 

in (16a) allows us to introduce a value and a structure for u3 that can verify sentence (19) 

without imposing overly strong truth-conditions.  

The second, theoretical reason in favor of I[u]J and against I{u}J is that I[u]J 

preserves the formally desirable properties of the pointwise relation i[u]j, while I{u}J 

doesn't. More exactly, I[u]J is an equivalence relation15, just as i[u]j, while the relation 

I{u}J is neither reflexive nor symmetric (as the reader can easily check). 

The third and final reason in favor of I[u]J and against I{u}J is that the relation [u], 

but not the relation {u}, preserves the c-ideal structure that the atomic conditions have16 

                                                 

15 The reflexivity, symmetry and transitivity of the relation I[u]J follow from the reflexivity, symmetry and 
transitivity of i[u]j in a straightforward way. 

16 A relation  between plural info states (of type t := (st)((st)t)) preserves c-ideals under images iff if ℑ is a 

c-ideal, then ℑ'={Jst: ∃Ist( IJ ∧ I∈ℑ} is a c-ideal. A relation  between plural info states preserves c-ideals 

under pre-images iff if ℑ' is a c-ideal, then ℑ={Ist: ∃Jst( IJ ∧ J∈ℑ'} is a c-ideal. The relation [u] preserves 
c-ideals under both images and pre-images. 
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(again, the reader can easily verify this statement). I conclude that the relation I[u]J is the 

empirically most adequate and theoretically most natural generalization of i[u]j 17. 

20. Introducing new dref's in PCDRT:       

 [u] := �Ist.�Jst. ∀is∈I(∃js∈J(i[u]j)) ∧ ∀js∈J(∃is∈I(i[u]j))   

Introducing new dref's by means of [u] has an immediate benefit. We now have a 

clear understanding of the denotation of a DRS D containing only atomic conditions or of 

arbitrary dynamic conjunctions of such DRS's. The relevant definitions are provided in 

(21) below. 

21. Atomic DRS's (DRS's containing only one atomic condition) – type (st)((st)t). 

 [R{u1, …, un}] := �Ist.�Jst. I=J ∧ R{u1, …, un}J     

 [u1=u2] := �Ist.�Jst. I=J ∧ (u1=u2)J                 

DRS-level connectives (dynamic conjunction):      

 D1; D2 := �Ist.�Jst. ∃Hst(D1IH ∧ D2HJ),         

  where D1 and D2 are DRSs (type (st)((st)t))      

Tests (generalizing atomic DRS's):       

 [C1, …, Cm] := �Ist.�Jst. I=J ∧ C1J ∧ … ∧ CmJ 
18,     

  where C1, …, Cm are conditions (atomic or not) of type (st)t. 

We know that the domain and the range of any atomic DRS are c-ideals. We also 

know that the domain and the range of an arbitrary dynamic conjunction of atomic DRSs 

                                                 

17 We can in fact define {u} in terms of [u] and the closure condition enough_assignments defined in (i) 
below. The name of the condition indicates the formal similarity between this PCDRT condition and 
Axiom 4 ("Enough 'assignments'") of Dynamic Ty2, repeated in (ii) below. The definition {u} in terms of 
[u] is provided in (iii). 

(i) enough_assignments{u} := �Ist. ∀xe∈uI∀is∈I(∃i's∈I(i[u]i' ∧ ui'=x)) 

(ii) Axiom4: ∀is∀vsτ∀fτ(udref(v) → ∃js(i[v]j ∧ vj=f)), for any type τ∈ STyp. 

(iii) {u} := �IstJst. I[u]J ∧ enough_assignments{u}J,       
 i.e. [u | enough_assignments{u}] in DRT-style abbreviation. 

18 Alternatively, [C1, …, Cm] can be defined using dynamic conjunction as follows:  

[C1, …, Cm] := �IstJst. ([C1]; …; [Cm])IJ, where [C] := �IstJst. I=J ∧ CJ. 
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are c-ideals because the intersection of a set of c-ideals is a c-ideal (assuming that the 

intersection is non-empty). This is summarized in (22) below. 

22. Dom([C]) = Ran([C]) = C = ℘+(∪C), for any condition C that is a c-ideal.  

Dom([C1, …, Cm]) = Ran([C1, …, Cm]) = C1∩ … ∩Cm     

         = ℘+((∪C1)∩ … ∩(∪Cm)),     

 for any conditions C1, …, Cm that are c-ideals. 

These results are generalized to DRS's in which new dref's are introduced: they are 

defined in (23) below and the general form of their denotation is provided in (24). 

23. Multiple random assignment.        

 [u1, …, un] := [u1]; …; [un]         

DRS's with new dref's – type (st)((st)t).     

 [u1, …, un | C1, …, Cm] := �Ist.�Jst. ([u1, …, un]; [C1, …, Cm])IJ,   

  where C1, …, Cm are conditions,     

 i.e. [u1, …, un | C1, …, Cm] := �Ist.�Jst. I[u1, …, un]J ∧ C1J ∧ … ∧ CmJ. 

24. DRS's in terms of C-Ideals over Relations.      

Given a DRS D of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, 

Cm are c-ideals, we have that:         

 Ran(D) = C1∩ … ∩Cm = ℘+((∪C1)∩ … ∩(∪Cm));    

 Dom(D) = ℘+({is: ∃js(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm))}).       

Note that, since i[u1, …, un]j is reflexive, Ran(D)⊆Dom(D).    

Let D := {<is, js>: i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}. Then:   

 D = {<Ist, Jst>: ∃ s(st)(I=Dom( ) ∧ J=Ran( ) ∧ ∈℘+( D))},  

 i.e. D = {<Ist, Jst>: ∃ s(st)≠Ø(I=Dom( ) ∧ J=Ran( ) ∧ ⊆ D)}.   

That is:          

 D := �is.�js. i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)    

 D := �Ist.�Jst. ∃ s(st)∈℘+( D)(I=Dom( ) ∧ J=Ran( )). 

The properties of DRS denotations identified in (22) and (24) above will prove 

useful when we decide how to define negation in PCDRT. Two final observations before 

we address negation. First, just as in CDRT+GQ, the existential force of the random 
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assignment [u] (see (20) above) is an automatic consequence of the way it is defined 

when coupled with the PCDRT definition of truth for DRS's, provided in (25) below. 

25. Truth: A DRS D (type (st)((st)t)) is true with respect to an input info state Ist iff 

∃Jst(DIJ), i.e. iff I∈Dom(D), where Dom(D) := {Ist: ∃Jst(DIJ)}. 

Second, note that we can already translate discourse (7-8) below in PCDRT 

(assuming that all the indefinites are weak). Given the definition of truth for DRS's in 

(25) above, the translation in (10) below derives the intuitively correct truth-conditions, 

as shown in (29). 

26. A wk:
1

u  house-elf fell in love with a wk:
2

u  witch. 

27. He
1

u  bought her
2

u  an wk:
3

u  alligator purse. 

28. [u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];              

[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

29. �Ist. ∃Jst(([u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];    

     [u3 | alligator_purse{u3}, buy{u1, u2, u3}])IJ), i.e.                 

�Ist. I≠Ø ∧ ∃xe∃ye∃ze(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y) ∧    

   alligator_purse(z) ∧ buy(x, y, z)) 

3.3. Negation 

Let us turn now to the definition of negation in PCDRT. The fact that plural info 

states encode both values and structure makes the issue non-trivial. A first attempt would 

be to simply import the CDRT+GQ definition, which is basically the DRT / FCS / DPL 

one, as shown in (30) below 19. 

30. Negation – first attempt:        

 ~D := �Ist. I≠Ø ∧ ¬∃Kst(DIK),     where D is a DRS (type (st)((st)t)), 

 i.e. ~D := �Ist. I≠Ø ∧ I∉Dom(D),     where Dom(D) := {Ist: ∃Jst(DIJ)} . 

                                                 

19 Factoring out various complications, i.e. the fact that van den Berg's Dynamic Plural Logic is intended to 
handle anaphora to dref's introduced within the scope of negation and the fact that it is a partial logic, the 
DPL-style definition in (30) is the one used in van den Berg's Dynamic Plural Logic – see van den Berg 
(1994): 10, (27), van den Berg (1996a): 136, (6), van den Berg (1996b): 18, Definition D, (e). 
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However, given the PCDRT definition of atomic conditions, the definition in (30) 

yields incorrect truth-conditions for the negation example in (31) below. 

31. Every 1
u  farmer who owns a str:

2
u  donkey doesn't feed it

2
u  properly. 20 

Consider example (31) more closely: intuitively, the indefinite � str:
2

u � �
���� is 

strong (hence the notation � str:
2

u ) and the interpretation of (31) is that no donkey-owning 

farmer feeds any of his donkeys properly. Thus, by the time we process the restrictor of 

the quantification in (31), we have a plural information state I of the form shown in (32) 

below in which, for a given donkey-owning farmer a, every 'assignment' i∈I stores some 

donkey d1, d2 etc. that a owns. 

32. Info state I … u1 (one farmer)  u2 (all donkeys) … 

i1 … a (=ui1) 1a owns d
→  d1 (=u'i1) … 

i2 … a (=ui2) 2a owns d
→  d2 (=u'i2) … 

i3 … a (=ui3) 3a owns d
→  d3 (=u'i3) … 

… … …  … … 

Now, we reach the nuclear scope condition in (33) below, interpreted according to 

the definition of negation in (30) above. 

33. (~[feed_proper{u1, u2}])I   =   I≠Ø ∧ ∃is∈I(¬feed_proper(u1i, u2i)) 

The truth-conditions derived by (33) are too weak: they only require farmer a to 

feed some donkey he owns poorly and they allow for cases in which he feeds properly all 

his other donkeys – while intuitively we should require him to feed all his donkeys 

poorly. We see that the DPL-style definition of negation in conjunction with the PCDRT 

definition of atomic conditions, which is unselectively distributive, yields overly weak 

                                                 

20 See also the example in (i) below from van der Does (1993): 18, (27c). 

(i) Awk/str:u boy who had anstr:u' apple in his rucksack didn't give itu' to his sister. 
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truth-conditions. I will therefore give a stronger definition for negation, provided in (34) 

below. 

34. Negation in PCDRT.        

 ~D := �Ist. I≠Ø ∧ ∀Hst(H≠Ø ∧ H⊆I → ¬∃Kst(DHK)),    

  where D is a DRS (type (st)((st)t)),      

 i.e. ~D := �Ist. I≠Ø ∧ ∀Hst≠Ø(H⊆I → H∉Dom(D)). 

The PCDRT definition of negation in (34) requires that: 

I is not in Dom(D) – just as the DPL-style definition (30); 

no singleton subset of I is in Dom(D) – which enables us to account for the donkey 

sentence in (31) above, since the nuclear scope condition (~[feed_proper{u1, 

u2}])I is 'unpacked' as I≠Ø ∧ ∀is∈I(¬feed_proper(u1i, u2i)), which yields the 

intuitively correct, strong truth-conditions; 

all the other non-empty subsets of I are not in Dom(D).  

The third and final requirement ensures that the denotation of a negative condition 

preserves the c-ideal structure of the negated DRS. For example, if the negated DRS D is 

of the form given in (23) above, its domain Dom(D) is a c-ideal and, if Dom(D) is a c-

ideal, ~D is the maximal c-ideal disjoint from Dom(D). This is stated in (35) below. 

35. If Dom(D) is a c-ideal, ~D is the unique maximal c-ideal disjoint from Dom(D)21.   

That is, ~D = ℘+(Ds
M\∪Dom(D)) if Dom(D) = ℘+(∪Dom(D)). 

                                                 

21 ~D is a c-ideal if Dom(D) is a c-ideal.  

Proof: (i) ~D⊆℘+(Ds
M); (ii) for any Ist and Jst, if I∈~D and J⊆I and J≠Ø, then J∈~D (this follows directly 

from definition (34)); (iii) if ϒ⊆~D, then ∪ϒ∈~D. (Proof: suppose (iii) doesn't hold, i.e. ϒ⊆~D and 

∪ϒ∉~D. Then, there is an H s.t. H≠Ø and H⊆∪ϒ and H∈Dom(D). Since H⊆∪ϒ and H≠Ø, there must be 

at least one I∈ϒ s.t. H∩I≠Ø. Let I'=H∩I. Since I'⊆H and H∈Dom(D) and Dom(D) is a c-ideal, we have 

that I'∈Dom(D). But I'⊆I and I∈ϒ⊆~D, so, by definition (34), I'∉Dom(D). Contradiction. � ). �  

~D is maximal.  

Proof: Suppose ~D is not maximal. Then, there is a c-ideal ℑ s.t. ℑ∩Dom(D)=Ø and ~D⊂ℑ. Then, there is 

some I∈ℑ s.t. I∉~D; hence, there is an H s.t. H≠Ø and H⊆I and H∈Dom(D). Since ℑ is a c-ideal, I∈ℑ and 

H⊆I, we have that H∈ℑ. Hence, ℑ∩Dom(D)≠Ø. Contradiction. � . 

~D is unique.  
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In sum, given the properties of the denotations of DRS's in PCDRT, the dynamic 

negation defined in (34) above is as well-behaved as possible22. 

We can now represent the discourse in (36-37) below. The representation, provided 

in (38), derives the intuitively correct truth-conditions, given in (39): there is a house-elf 

that fell in love with some witch and that bought her no alligator purse. 

36. A wk:
1

u  house-elf fell in love with a wk:
2

u  witch. 

37. (Surprisingly) He
1

u  didn't buy her
2

u  an wk:
3

u  alligator purse. 

38. [u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];              

[~[u3 | alligator_purse{u3}, buy{u1, u2, u3}]] 

39. �Ist. I≠Ø ∧ ∃xe∃ye(house_elf(x)  ∧ witch(y) ∧ fall_in_love(x, y) ∧    

        ¬∃ze(alligator_purse(z) ∧ buy(x, y, z))) 

3.4. Maximization 

Now that the core part of PCDRT is in place, we can turn to the maximization 

operator, which is the essential ingredient in the analysis of the weak / strong donkey 

ambiguity. The definition of the max operator is provided in (40) below; max is an 

operator over DRS's: its argument is a DRS, i.e. a term of type t := (st)((st)t), and its 

value is another DRS, i.e. another term of type t. Note that we actually define a family of 

maximization operators, each one specified for the dref u over which we maximize. 

                                                                                                                                                 

Proof: Suppose ~D is not unique. Then, there is a maximal c-ideal ℑ s.t. ℑ∩Dom(D)=Ø and ~D≠ℑ. Since 

both ~D and ℑ are maximal, there is some I∈ℑ s.t. I∉~D and some J∈~D s.t. I∉ℑ. The reasoning is now 

similar to the maximality proof: since I∉~D, there must be an H s.t. H≠Ø and H⊆I and H∈Dom(D). Since 

ℑ is a c-ideal, I∈ℑ and H⊆I, we have that H∈ℑ. Hence, ℑ∩Dom(D)≠Ø. Contradiction. � . 

22 For completeness, I provide the definitions of anaphoric closure, disjunction and implication in PCDRT. 

(i) Anaphoric closure: !D := �Ist. ∃Kst(DIK),     i.e. !D := Dom(D) 

(ii) Disjunction: D1 ∨ D2 := �Ist. ∃Kst(D1IK ∨ D2IK),     i.e. D1 ∨ D2 := Dom(D1)∪Dom(D2) 

(iii) Implication: D1 → D2 := �Ist. ∀Hst(D1IH → ∃Kst(D2HK)),      

 i.e. D1 → D2 := �Ist. D1I ⊆ Dom(D2),     where DI := {Jst: DIJ},    

 i.e. D1 → D2 := (℘+(Ds
M)\Dom(D1)) ∪ {I∈Dom(D1): D1I ⊆ Dom(D2)}. 
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40. max
u(D) := �IstJst. ∃Hst(I[u]H ∧ DHJ) ∧ ∀Kst(∃H'st(I[u]H' ∧ DH'K) → uK⊆uJ),  

 where D is a DRS, i.e. a term of type t := (st)((st)t),     

 i.e. max
u(D) := �IstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ). 

The first conjunct in (40) introduces u as a new dref (i.e. I[u]H) and makes sure (by 

DHJ) that each individual in uJ 'satisfies' D, i.e. we store only individuals that 'satisfy' D. 

The second conjunct enforces the maximality requirement: any other set uK obtained by a 

similar procedure (i.e. any other set of individuals that 'satisfies' D) is included in uJ, i.e. 

we store all the individuals that satisfy D.  

Note that, because of its maximality requirement, the max operator does not 

preserve the c-ideal structure of the range of the DRS over which it scopes. To see this, 

consider the second, shorter formulation of the definition in (40). This formulation 

explicitly shows that the relation between info states denoted by the maximized DRS 

max
u(D) is always a subset of the relation denoted by [u]; D, i.e. we 'strengthen' the DRS 

[u]; D by ruling out the output info states J that assign to u strict subsets of maximal set 

that is assigned to u throughout Ran([u]; D) 23. 

The DRS max
u(D) can be thought of as dynamic �-abstraction over individuals: the 

'abstracted variable' is the individual dref u, the 'scope' is the DRS D and the result of the 

'abstraction' is a set of individuals uJ (where J is the output info state) containing all and 

only the individuals that 'satisfy' D. Thus, maximization together with plural info states 

and the unselective distributivity built into the definition of atomic conditions enables us 

to 'dynamize' �-abstraction: (i) the maximization operator stores the �-abstracted set in a 

dref, so that we can access it in discourse; (ii) unselective distributivity enables us to �-

abstract one value at a time; (iii) finally, plural info states enable us to store the 

dependency structure associated with each �-abstracted value. 

The empirical motivation for the selectivity of the max
u operator (as definition (40) 

shows, max
u selectively maximizes over the dref u) is provided by the mixed weak & 

                                                 

23 The update max
u(D) fails if such a supremum set does not exist, i.e. max

u(D) fails for an input info state 
I if the family of sets {uJ: ([u]; D)IJ} does not have a supremum. 
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strong donkey sentences: we do not want to indiscriminately maximize over all donkey 

indefinites, but only over those that receive a strong reading. So, the selective max
u 

operator enables us to define the strong meaning for donkey indefinites in such a way that 

it is minimally different from the weak meaning. Both basic meanings are provided in 

(41) below24. 

41. weak indefinites:������ � �P'et. �Pet. [u]; P'(u); P(u)        

strong indefinites: ������ � �P'et. �Pet. max
u(P'(u); P(u)),     

 where e := se and t := (st)((st)t). 

Note that it is the compositional system that makes sure we have the correct 

'configuration' within the scope of max
u, i.e. that the DRS P'(u) over which we maximize 

has the dref u in the appropriate (argument) places. This is very much like the technique 

employed in static semantics: it is the compositional system that ensures that the �-

abstraction over the variable x takes scope over a formula that has x in the appropriate 

'slots'. 

The definition of max
u and the way it is used in the analysis of strong donkey 

anaphora will become clearer if we look at an example. Consider (42) below and assume 

that it is uttered in a context in which there is some unique salient boy with apples in his 

rucksack. For example, twenty children (ten brother-sister pairs) travel by bus and the bus 

passes an apple orchard; as the story goes, the girls are overwhelmed with desire for the 

fruit, but none of them gets it because no one on the bus has any apples – except for one 

boy, but he doesn't care about anyone's plea, not even his sister's. In this context, we can 

felicitously utter that the other boys would have given an apple to their sisters if they had 

one, but: 

                                                 

24 Note the similarity between the PCDRT representation of weak indefinites and the representation of 
indefinites in CDRT+GQ. 
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42. The
1

u  (one) boy who had an str:
2

u  apple in his rucksack didn't give it
2

u  to his 

sister 25. 

In this context, (42) is interpreted as: the boy who had (some) apples in his rucksack 

didn't give any to his sister. I will assume that the definite article 	��
1

u  functions as an 

anaphor, i.e. it simply tests that some contextually salient dref u1 satisfies both its 

restrictor and its nuclear scope, as shown in (43) below. For simplicity, the restrictor 

P'(u) in (43) is not represented as a presupposition, but as part of the assertion26. 

43. Definite articles as anaphors:        

 ���� � �P'et. �Pet. [unique{u}]; P'(u); P(u),      

  where e := se and t := (st)((st)t). 

44. unique{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui'),      

 i.e. unique{u} := �Ist. |uI| = 1,       

  where |uI| is the cardinality of the set uI. 

I take the definite article to contribute an atomic condition unique{u}, defined in 

(44), which encodes a weak form of uniqueness: it requires that the dref anaphorically 

retrieved by the definite article has a unique value with respect to the current plural info 

state, i.e. it requires the set uI stored by the dref to be a singleton. This kind of uniqueness 

is weak because it is relativized to the current info state (i.e. it is salience-dependent 

uniqueness); I take strong uniqueness to be uniqueness relative to the entire model. As 

we will see in (51) below, strong uniqueness can be obtained by combining weak 

uniqueness, i.e. the condition unique{u}, and the max
u operator. 

Sentence (42) is represented as shown in (45) below. 

                                                 

25 I ignore throughout most of this chapter the uniqueness implications sometimes associated with donkey 
anaphora, e.g., in example (42), the intuition that the apple is unique. For more discussion about the 
uniqueness effects associated with singular anaphora in quantificational subordination and donkey 
anaphora, see sections 6.1 and 6.2 of chapter 6 below. 

I am indebted to Roger Schwarzschild (p.c.) for suggesting the sentence in (i) below as an alternative 
example that does not exhibit uniqueness effects. 

(i) A / The boy who had au pen in his backpack didn't give itu to his sister. 

26 See Muskens (1995b): 165 for a similar lexical entry in a CDRT kind of system. 



 151 

45. [unique{u1}, boy{u1}]; max 2
u ([apple{u2}, have_in_rucksack{u1, u2}]);  

[~[give_to_sister{u1, u2}]] 

By the end of the max 2
u  update, we are in a plural information state I like the one 

in (46) below. The dref u1 stores the same boy b throughout the info state I (due to 

unique{u}) and the dref u2 stores all the apples a1, a2, a3 etc. that boy b has in his 

rucksack (due to max 2
u ). 

46. Info state I … u1 (the boy)  u2 (all apples) … 

i1 … b (=u1i1) 1b has a
→  a1 (=u2i1) … 

i2 … b (=u1i2) 2b has a
→  a2 (=u2i2) … 

i3 … b (=u1i3) 3b has a
→  a3 (=u2i3) … 

… … …  … … 

Given the PCDRT definition of negation, the translation in (45) derives the 

intuitively correct truth-conditions: the formula in (47) below is true iff there is exactly 

one contextually salient boy that has some apples and gives none of them to his sister. 

47. �I. ∃J([unique{u1}, boy{u1}]; max 2
u ([apple{u2}, have_in_rucksack{u1, u2}]); 

 [~[give_to_sister{u1, u2}]])IJ) =               

�I. ∃xe(u1I={x} ∧ boy(x) ∧ ∃Yet≠Ø(∀ye(apple(y) ∧ h.i.r(x, y) ↔ y∈Y) ∧  

            ∀ye∈Y(¬g.t.s(x, y)))) 

This example makes clear that the max
u operator defined in (40) is selective in 

exactly the sense in which the dynamic quantification in CDRT+GQ is selective: the set 

of output states that are in the range of a max
u DRS is determined based on the set of 

individuals that such an output state stores with respect to the dref u. However, in view of 

the fact that donkey conditionals seem to exhibit unselectively strong readings, e.g. the 

conditional in (48) below, I will define an unselective form of maximization – as shown 

in (49). 
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48. If a str:
1

u  house-elf borrows a str:
2

u  broom from a str:
3

u  witch, he
1

u  (always) gives 

it
2

u  back to her
3

u  the next day. 

49. unselective maximization:           

 max(D) := �IstJst. DIJ & ∀Kst(DIK → K⊆J) 27
 

The unselective max operator in (49) retrieves the supremum in an inclusion partial 

order over sets of info states and not over sets of individuals (i.e. it is unselective in the 

sense of Lewis 1975). This operator will be used to defined unselective generalized 

quantification in PCDRT. 

I conclude the section with two observations about selective maximization, one 

empirical and the other theoretical. First, note that selective maximization seems to be 

independently motivated by the Russellian uses of definite descriptions in natural 

language, i.e. the definite descriptions that intuitively require strong uniqueness 

(uniqueness relative to the entire model). The definite DP in (50) below exemplifies the 

Russellian kind of definite descriptions, i.e. definite descriptions that are non-anaphoric 

and that require existence and strong uniqueness. 

50. Hagrid fell in love with theu tallest witch in the world. 

In PCDRT, we can analyze Russellian definite descriptions by suitably combining 

weak uniqueness, i.e. the condition unique{u}, and the max
u operator. In fact, PCDRT 

can analyze definite articles in any of the four ways listed in (51) below; deciding which 

one (if any) is the right meaning falls outside the scope of the current investigation. 

51. The definite article – possible meanings in PCDRT.              

a. anaphoric and weakly unique:       

 ���� � �P'et. �Pet. [unique{u}]; P'(u); P(u),     

  where e := se and t := (st)((st)t)      

  and unique{u} := �Ist. ∀is∈I∀i's∈I(ui=ui').     

b. anaphoric, no uniqueness:        

                                                 

27 Note that, for any Ist, the set {Jst: max(D)IJ} is either empty or a singleton set. 
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 ���� � �P'et. �Pet. P'(u); P(u)                 

c. existence and strong uniqueness, non-anaphoric (the Russellian analysis): 

 ���� � �P'et. �Pet. max
u(P'(u)); [unique{u}]; P(u)             

d. existence and maximality (no uniqueness), non-anaphoric:   

 ���� � �P'et. �Pet. max
u(P'(u)); P(u) 28

 

I conclude this section with the examination of DRS's in which one max
u operator is 

embedded within the scope of another, as schematically shown in (52) below. 

52. max
u(D; max

u'(D')) 

Such structures occur fairly frequently in the PCDRT translations of natural 

language discourses and they are difficult to grasp at an intuitive level. To simplify 

derivations and make translations more transparent, I show that the values assigned to 

multiply embedded max
u operators are often reducible to non-embedded ones. 

The main result is stated in the corollary in (53) below – see section 0 of the 

Appendix to this chapter for its proof. 

53. Simplifying 'max-under-max' representations (corollary):    

 max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),              

if the following three conditions obtain:       

 a. u is not reintroduced in D';        

 b. Dom([u']; D') = Dom(max
u'(D'));       

 c. D' is of the form [u1, …, un | C1, …, Cm].      

If C1, …, Cm are c-ideals, condition (53b) follows from (53c) 29. 

                                                 

28 Note that this meaning is different from the strong meaning of the indefinite article with respect to the 
scope of the max

u operator: in the case of the definite, this operator has scope only over the restrictor DRS, 
i.e. max

u(P'(u)), while in the case of the indefinite, it has scope over both the restrictor and nuclear scope 
DRS's, i.e. max

u(P'(u); P(u)). 

29 If C1, …, Cm are c-ideals, condition (53b) follows from (53c). 

Proof: In general, we have that Dom(max
u'(D'))⊆Dom([u']; D'), so we only have to prove that Dom([u']; 

D')⊆Dom(max
u'(D')). But an info state I∈Dom([u']; D') fails to be in Dom(max

u'(D')) iff the family of sets 
{u'J: ([u']; D')IJ} does not have a supremum. And the existence of the supremum follows by an application 
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Let us reanalyze the example in (42) above, repeated in (54), in terms of the 

Russellian analysis of definite descriptions, i.e. letting the definite article the 1
u  contribute 

existence and uniqueness as in (51c) above: ���� � �P'et. �Pet. max
u(P'(u)); 

[unique{u}]; P(u). The example is translated as shown in (55). 

54. The 1
u  (one) boy who had an str:

2
u  apple in his rucksack didn't give it

2
u  to his 

sister. 

55. max 1
u ([boy{u1}]; max 2

u ([apple{u2}, have_in_rucksack{u1, u2}])); 

[unique{u1}]; [~[give_to_sister{u1, u2}]] 

The representation in (55) gives us the opportunity to apply the corollary in (53) 

above. Conditions (53a) and (53c) are clearly satisfied; checking that condition (53b) 

holds is also straightforward: given that both conditions apple{u2} and 

have_in_rucksack{u1, u2} are c-ideals, (53b) follows from (53c). 

Thus, the translation in (55) is equivalent to the one in (56) below. The truth-

conditions, provided in (57), are the intuitively correct ones (assuming that the definite 

article should indeed receive the Russellian analysis): sentence (54) is true iff there is a 

unique boy with some apples in his rucksack such that he didn't give any of his apples to 

his sister. 

56. max 1
u ([boy{u1}]; [u2 | apple{u2}, have_in_rucksack{u1, u2}]);  

max 2
u ([apple{u2}, have_in_rucksack{u1, u2}]);     

[unique{u1}]; [~[give_to_sister{u1, u2}]] 

57. �Ist. I≠Ø ∧ ∃xe(∀ze(boy(z) ∧ ∃ye(apple(y) ∧ have_in_rucksack(z, y)) ↔ z=x) ∧  

  ∃Yet≠Ø(∀ye(apple(y) ∧ have_in_rucksack(x, y) ↔ y∈Y) ∧   

  ∀ye∈Y(¬give_to_sister(x, y))))  

                                                                                                                                                 

of the result stated in (24) above: just take the image of the info state I under the relation [u']; D'={<i, j>: 

i[u', u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}, i.e. ={j: ∃i∈I( [u']; D'
ij)} and note that u'  is the supremum of 

{u'J: ([u']; D')IJ}. �  
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To see more clearly that the truth-conditions enforced by PCDRT formulas are of 

the form "there are some values and there is some structure associated with those values 

such that…", I will rewrite the formula in (57) as shown in (58) below, i.e. by using of a 

relation Re(et) between individuals which encodes the structure associated with the values 

in question (i.e. with the unique boy and his apples). Dom(R) and Ran(R) are defined as 

usual, i.e. Dom(R) := {xe: ∃ye(Rxy)} and Ran(R) := {ye: ∃xe(Rxy)} 

58. �Ist. I≠Ø ∧ ∃Re(et)(Dom(R)≠Ø ∧ Ran(R)≠Ø ∧ |Dom(R)|=1 ∧    

  Dom(R) = {xe: boy(x) ∧ ∃ye(apple(y) ∧ have_in_rucksack(x, y))} ∧ 

  Ran(R) = {ye: apple(y) ∧ ∃xe∈Dom(R)(have_in_rucksack(x, y))} ∧ 

   ∀xe∀ye(Rxy → have_in_rucksack(x, y)) ∧     

   ∀xe∀ye(Rxy → ¬give_to_sister(x, y))) 

3.5. Generalized Quantification 

The only thing left to define in PCDRT is generalized quantification. We start with 

selective generalized quantification. 

Selective generalized determiners are relations between two dynamic properties P'et 

(the restrictor) and Pet (the nuclear scope), i.e. their denotations are of the expected type 

(et)((et)t). The PCDRT definition of selective generalized determiners has to be 

formulated in such a way that:  

• on the one hand, we capture the fact that anaphors in the nuclear scope can have 

antecedents in the restrictor;  

• on the other hand, we avoid the proportion problem and, at the same time, allow for 

the weak / strong donkey ambiguity. 

To avoid the proportion problem, a selective generalized determiner has to relate 

sets of individuals and not sets of 'assignments'. Thus, the main problem in a dynamic 

system is to find an appropriate way to extract the two sets of individuals, i.e. the 

restrictor set and the nuclear scope set, based on the restrictor and the nuclear scope 

dynamic properties. 



 156 

The proposed ways to solve this problem fall into two broad categories. The first 

category of solutions is the one exemplified by CDRT+GQ (following DRT / FCS / 

DPL): we employ a dynamic framework based on singular info states and we analyze 

generalized quantification as internally dynamic and externally static. The main idea is 

that the restrictor set of individuals is extracted based on the restrictor dynamic property, 

while the nuclear scope set of individuals is extracted based on both the restrictor and the 

nuclear scope dynamic property, so that the anaphoric connections between them are 

captured. 

The second category of solutions employs a dynamic framework based on plural 

information states and it analyzes generalized quantification as both internally and 

externally dynamic. The main reference for this kind of solution is van den Berg (1994, 

1996a) (but see also Krifka (1996b) and Nouwen (2003) among others). The main idea is 

that the restrictor set of individuals is extracted based on the restrictor dynamic property 

and, then, the nuclear scope set of individuals is the maximal subset of the restrictor set of 

individuals that satisfies the nuclear scope dynamic property. The restrictor and the 

nuclear scope sets are stored in the output plural info state and are available for anaphoric 

retrieval, e.g. Every
u
 man saw a

u'
 woman / two

u'
 women. Theyu greeted themu'.  

Given that the notion of a dref being a subset of another required for van den Berg's 

definition of quantification involves non-trivial complexities30 that are largely orthogonal 

to the donkey issues we are interested in, I will analyze selective generalized 

quantification following the format of the CDRT+GQ definition31. 

However, since PCDRT is a system based on plural info states, the definition of 

selective generalized determiners I will provide is novel. This definition is intermediate 

between the above two strategies of defining selective dynamic quantification and, as 

                                                 

30 E.g., it requires the introduction of a dummy / 'undefined' / exception individual � – see chapter 6. For 
the corresponding notion of dummy / 'undefined' / exception possible world, see the analysis of structured 
discourse reference to propositions in chapter 7. 

31 But see chapter 6 for a van den Berg-style definition of generalized quantification in PCDRT which is 
used in the analysis of quantificational subordination. 
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such, it is useful in exhibiting the commonalities and differences between them in a 

formally explicit way. 

The generalized quantifiers we will be considering throughout the present 

investigation are domain-level and discourse-level distributive in the sense that they 

relate two sets of atomic individuals (i.e. domain-level distributivity) and these sets of 

atomic individuals are required to satisfy the restrictor and nuclear scope dynamic 

properties one individual at a time (i.e. discourse-level distributivity). We enforce the 

first kind of distributivity (i.e. domain-level) by restricting our domain of individuals De 

to atomic individuals (there are no non-atomic individuals in the sense of Link 1983). We 

enforce the second kind of distributivity by making use of the dynamic condition 

unique{u}, which was introduced in the previous chapter for the analysis of definite 

descriptions. The definition of selective quantification is provided in (59) below. 

59. Selective Generalized Determiners (e := se and t := (st)((st)t)).   

 ���� � �P'et. �Pet. [detu(P'(u), P(u))],       

  where detu(D, D') := �Ist. I≠Ø ∧ DET(u[DI],  u[(D; D')I])   

  and u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ}    

  and unique{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui')    

  and DET is the corresponding static determiner. 

Intuitively, the definition u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ} above instructs us 

to do the following 'operations' to an input matrix I: add a column u to matrix I, fill it up 

with only one individual x and then check that the resulting matrix satisfies D (the 

resulting matrix satisfies D iff it can be updated with D, i.e. iff it has at least one output 

state J relative to D). If this matrix satisfies D, then x is in the set u[DI], otherwise not. 

The definition of generalized quantification in (59) is selective because the static 

determiner DET relates sets of individuals. The individuals in these sets are obtained in 

basically the same way as they are obtained in the case of the CDRT+GQ weak 

generalized determiners. The restrictor set contains all the individuals which 'satisfy' the 

restrictor DRS D when plugged in one atomic individual at a time, i.e. [u | unique{u}]. 

The nuclear scope contains all the individuals which satisfy both the restrictor DRS D 
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and the nuclear scope DRS D' when plugged in one atomic individual at a time. Clearly, 

this definition of selective quantification enables us to avoid the proportion problem just 

as the corresponding CDRT+GQ definition does. 

The definition of unselective generalized quantification is provided in (60) below. 

60. Unselective generalized determiners (in terms of unselective maximization): 

 ��� � �D't. �Dt. [det(D', D)],       

  where det(D, D') := �Ist. I≠Ø ∧ DET(max[DI],  max[(D; [!D'])I])  

  and max[DI] := ∪{Jst: max(D)IJ} and !D' := Dom(D')   

  and DET is the corresponding static determiner. 

This definition is unselective because the static determiner DET relates sets of 

'assignments', i.e. sets of cases in the terminology of Lewis (1975). The info states in 

these sets are obtained much as they are obtained in the case of CDRT+GQ unselective 

determiners: the restrictor is the set of all the 'assignments' / cases that 'satisfy' the 

restrictor DRS D relative to input info state I and the nuclear scope is the set of all the 

'assignments' / cases that 'satisfy' both the restrictor DRS D and the nuclear scope DRS 

D'.  

The unselective max operator functions as a dynamic �-abstraction over 

'assignments', i.e. over the cases of Lewis (1975) – much like the condition unique{u} 

together with the union of sets of individuals in the definition of selective generalized 

quantification in (59) above functions as dynamic �-abstraction over individuals32. 

4. Solutions to Donkey Problems 

In this section, we see in detail how the PCDRT system introduced in the preceding 

section can be used to compositionally interpret a variety of donkey sentences, including 

mixed weak & strong relative-clause donkey sentences. 

                                                 

32 Recall that, since max(D) := �IstJst. DIJ & ∀Kst(DIK → K⊆J), the set {Jst: max(D)IJ} is either empty or a 
singleton set, so the union over unselectively maximized info states is basically vacuous and needed here 
only for technical reasons: we want to access the maximal plural info state and not the singleton set whose 
only member is the maximal plural info state. 
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As we have already observed in chapter 3, the compositional aspect of the 

interpretation in an extensional Fregean / Montagovian framework is largely determined 

by the types for the (extensions of the) 'saturated' expressions, i.e. names and sentences, 

which we abbreviate as e and t. An extensional static logic without pluralities (i.e. the 

static component of our Dynamic Ty2) identifies e and e (atomic entities) and also t and t 

(truth-values). CDRT+GQ complicates this setup by interpreting a sentence as a relation 

between an input and an output 'assignment', hence t := (s(st)), and a name as an 

individual dref, i.e. as a function from 'assignments' to individuals, hence e := (se).  

In PCDRT, names are interpreted just as in CDRT+GQ, but sentences are 

interpreted as relations between plural info states, i.e. as relations between an input set of 

'assignments' and an output set of 'assignments', hence t := (st)((st)t). Everything else in 

our definition of type-driven translation remains the same. In particular, the only 

translation rule we need to change is TR0, i.e. the translation rule for the basic meanings 

– and even here, the modifications are minimal, as the table in (45) below shows. 

61. TR 0: PCDRT Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 

Type             
e := se           

t := (st)((st)t) 

�������
inV
� � �ve. [sleepet{v}] et 

�
���
trV
� ���Q(et)t. �ve. Q(�v'e. [owne(et){v, v'}])� ((et)t)(et) 

�	���
diV
� ���Q'(et)t. �Q(et)t. �ve. Q'(�v'e. Q(�v''e. [buye(e(et)){v, v', v''}]))� (ett)((ett)(et)) 

��
��������
N
� � �ve. [house_elfet{v}] et 

����� DP
� � �Pet. P(ue)�

(et)t 

������ D
� � �P'et. �Pet. [unique{u}]; P'(u); P(u),   

 where unique{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui'),  
 i.e. anaphoric and 'weakly' unique. 

� �P'et. �Pet. P'(u); P(u),      
 i.e. anaphoric.�

(et)((et)t) 

���� DP
� � �Pet. P(ve)�

(et)t 

����
		�� DP
� � �Pet. P(Dobbye)�

(et)t 
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61. TR 0: PCDRT Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 

Type             
e := se           

t := (st)((st)t) 

��
		���
DP

� � �Pet. [u | u=Dobby]; P(u)� (et)t 

���
�
DP

� � �Pet. P (et)(et) 

���
I
�
������

I
�
�����

I
� � �Dt. D�

tt 

��
������
I
�
���������

I
� � �Dt. [~D]� tt 

�������
D
� � �P'et. �Pet. [u]; P'(u); P(u),      

            i.e. �P'et. �Pet. u(P'(u); P(u)),    

 where u(D) := [u]; D�

(et)((et)t) 

��������
D
� � �P'et. �Pet. max

u(P'(u); P(u)),     where    

            max
u(D) := �IstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ),  

            i.e. �P'et. �Pet. 
m

u(P'(u); P(u)),    

 where m
u(D) := max

u(D)�

(et)((et)t) 

������
D
� � �P'et. �Pet. max

u(P'(u)); [unique{u}]; P(u),   

            where unique{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui') and  

            max
u(D) := �IstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ), 

            i.e. �P'et. �Pet. 
m

u(P'(u)); [unique{u}]; P(u),        
            i.e. existence and uniqueness – the Russellian analysis 

� �P'et. �Pet. max
u(P'(u)); P(u),     where    

            max
u(D) := �IstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ), 

            i.e. �P'et. �Pet. 
m

u(P'(u)); P(u),     

            i.e. existence and maximality�

(et)((et)t) 

������
D
�

��������������
���

      �
�����������������
���	���	������, ������, 
���������������

� �P'et. �Pet. [detu(P'(u), P(u))],   where: 

          detu(D1, D2) := �Ist. I≠Ø ∧ DET(u[D1I],  u[(D1; D2)I]), 

 where u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ}  

 and unique{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui')  
 and DET is the corresponding static determiner�

(et)((et)t) 

�����������
�� �������
C
� � �D't. �Dt. [det(D', D)],     where: 

      det(D1, D2) := �Ist. I≠Ø ∧ DET(max[D1I],  max[(D1; [!D2])I]), 

 where max[DI] := ∪{Jst: max(D)IJ}  

 and max(D) := �IstJst. DIJ & ∀Kst(DIK → K⊆J)  
 and !D := Dom(D)     
 and DET is the corresponding static determiner�

t(tt) 

�����
C
�
������������� � �D't. �Dt. [every(D', D)]        � t(tt) 
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61. TR 0: PCDRT Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 

Type             
e := se           

t := (st)((st)t) 

�����
Conj

� � �v1. … �vn. v1 � … � vn�
τ(…(ττ)…) 

�
��
Conj

� � �v1. … �vn. v1 � … � vn�
τ(…(ττ)…) 

The definition of dynamically conjoinable types (DCTyp) is the same as in 

CDRT+GQ modulo the fact that we reset t to (st)((st)t), as shown in (62) below. 

62. PCDRT Dynamically Conjoinable Types (DCTyp).     

The set of PCDRT dynamically conjoinable types DCTyp is the smallest subset 

of Typ s.t. t∈DCTyp (t := (st)((st)t)) and, if τ∈DCTyp, then (στ)∈DCTyp for 

any σ∈Typ. 

We define generalized (pointwise) dynamic conjunction and disjunction as shown in 

(43) below (the same as the CDRT+GQ definition) – and thereby complete the definition 

of ��� and 
� in table (45) above. 

63. Generalized Pointwise Dynamic Conjunction ���� and Disjunction ����.          

  For any two terms α and β of type τ, for any τ∈DCTyp:    

 α � β := (α; β) if τ=t   and   α � β := �vσ. α(v) � β(v) if τ=(σρ);  

 α � β := [α � β] if τ=t   and   α � β := �vσ. α(v) � β(v) if τ=(σρ).           

Abbreviation. α1 � α2 � … � αn := (…(α1 � α2) � … � αn)    

   α1 � α2 � … � αn := (…(α1 � α2) � … � αn). 

 We are now ready to analyze the donkey examples we have introduced in the 

preceding sections and chapters.  

4.1. Bound Variable Anaphora 

First, we show that PCDRT preserves the compositional CDRT+GQ account of the 

basic kinds of examples. Let's start with the bound anaphora example in (51) below. 
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64. Every 1
u  house-elf hates himself

1
u . 

Just as CDRT+GQ, PCDRT can compositionally account for bound anaphora 

without Quantifier Raising and Quantifying-In: co-indexation is enough for binding 

because the meaning of the determiner ����� dynamically conjoins the restrictor and the 

nuclear scope DRS's to determine the set of individuals in its nuclear scope – thus, ����� 

quantifies over 'assignments' in a selective way. 

Sentence (55) is compositionally translated as shown in (65) below. The PCDRT 

representation derives the intuitively correct truth-conditions, provided in (66). 

65. Every 1
u  house-elf hates himself

1
u . 

 

66. �Ist. I≠Ø ∧ ∀xe(house_elf(x) → hate(x, x)) 

4.2. Quantifier Scope Ambiguities 

Let us turn now to the example in (67) below exhibiting quantifier scope 

ambiguities over and above the lexical ambiguity of the indefinite. We start with the 

������ 1
u �

D
 

�P'et.�Pet.[every
1

u (P'(u1), P(u1))] 

��
��������
N
�

�ve.[house_elfet{v}] 

NP 
�ve.[house_elfet{v}] 

DP 

�Pet.[every
1

u ([house_elf{u1}], P(u1))] 

VP 

[every
1

u ([house_elf{u1}], [hate{u1, u1}])] 

V' 
�ve.[hate{v, u1}] 

������
trV

  

�Q(et)t.�ve.Q(�v'e.[hatee(et){v, v'}]) 

��������
1

u �
DP

 

�Pet.P(u1) 

����
I  

�Dt. D 

                                IP 

[every
1

u ([house_elf{u1}], [hate{u1, u1}])] 

CP 

Txt 
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weak reading of the indefinite – and we assign intuitively correct truth-conditions to both 

LFs, as shown in (69) and (71) below. 

67. Every 1
u  house-elf adores a wk:

2
u  witch. 

68. ����� 1
u >>�wk:

2
u : [every

1
u ([house_elf{u1}],  [u2 | witch{u2}, adore{u1, u2}])] 

69. ����� 1
u >>�wk:

2
u : �Ist. I≠Ø ∧         

         ∀xe(house_elf(x) → ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ adore(x, y)))) 33 

70. �wk:
2

u >>����� 1
u : [u2 | witch{u2},  every

1
u ([house_elf{u1}],  [adore{u1, u2}])] 

71. �wk:
2

u >>����� 1
u : �Ist. I≠Ø ∧         

         ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y)))) 34 

Take the update in (70), for instance. Intuitively, this update instructs us to do the 

following 'operations' on an input matrix I: fill column u2 only with witches; then, check 

that each way of filling column u1 with a single elf x is a way of filling column u1 with 

the elf x such that x adores every (corresponding) u2-witch. 

The LF's for the two readings are provided in (72) and (73) below. 

                                                 

33 I use quantification over sets ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ adore(x, y))) in (69) only to make more explicit 
the relation between truth-conditions and plural info states in PCDRT (which plural info states store 
possibly non-singleton sets of individuals). In this particular case, quantification over sets is clearly not 

essential since ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ adore(x, y))) is equivalent to the first order formula ∃ye(witch(y) ∧ 
adore(x, y)). 

34 Just as before (see fn. 33 above), note that quantification over sets is not essential: the formula 

∃Yet≠Ø(∀ye∈Y(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y)))) is equivalent to the first-order formula 

∃ye(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y))). 
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72. ����� 1
u >>�wk:

2
u : Every 1

u  house-elf adores a wk:
2

u  witch. 

 

 

 

����� 1
u ��
������� 

                         DP 

�Pet.[every
1

u ([house_elf{u1}],  P(u1))] 

                                      VP 

[every
1

u ([house_elf{u1}],  [u2 | witch{u2}, adore{u1, u2}])] 

V' 
�ve.[u2 | witch{u2}, adore{v, u2}] 

���
���
trV

  

�Q(et)t.�ve.Q(�v'e.[adoree(et){v, v'}]) 

����
I  

�Dt. D 

CP 

Txt 

DP 
�Pet.[u2 | witch{u2}]; P(u2) 

� 2
u ������ 

                                              IP 

[every
1

u ([house_elf{u1}],  [u2 | witch{u2}, adore{u1, u2}])] 
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73. �wk:
2

u >>����� 1
u : Every 1

u  house-elf adores a wk:
2

u  witch. 

 

If the indefinite is strong – as shown in (74) below –, we have two more LF's with 

the same structure as (72) and (73) above. Yet again, we assign intuitively correct truth-

conditions to both LF's, as shown in (76) and (78) below. 

74. Every 1
u  house-elf adores a str:

2
u  witch. 

75. ����� 1
u >>� str:

2
u : [every

1
u ([h.elf{u1}],  max 2

u ([witch{u2}, adore{u1, u2}]))] 

76. ����� 1
u >>� str:

2
u : �Ist. I≠Ø ∧         

         ∀xe(h.elf(x) → ∃Yet≠Ø(∀ye(witch(y) ∧ adore(x, y) ↔ y∈Y))) 35 

77. � str:
2

u >>����� 1
u : max 2

u ([witch{u2},  every
1

u ([h.elf{u1}],  [adore{u1, u2}])]) 

                                                 

35 Yet again, we can do away with quantification over sets since, for our purposes (i.e. the interpretation of 

(74)), we can substitute ∃ye(Fy) for ∃Yet≠Ø(∀ye(Fy ↔ y∈Y)) in both (76) and (78) – where F stands for the 
predicate that is appropriate in each of the two cases. 

����� 1
u ��
������� 

                          DP 

�Pet.[every
1

u ([house_elf{u1}],  P(u1))] 

VP 

[every
1

u ([house_elf{u1}],  [adore{u1, v''}])] 

V' 
�ve.[adore{v, v''}] 

���
���
trV

  

�Q(et)t.�ve.Q(�v'e.[adoree(et){v, v'}]) 

����
I  

�Dt. D 

CP 

Txt 

DPv'' 
�Pet.[u2 | witch{u2}]; P(u2) 

� 2
u ������ 

                                          IP 

[u2 | witch{u2},  every
1

u ([house_elf{u1}],  [adore{u1, u2}])] 

������ DP
 

�Pet.P(v''e) 

                             IP 

[every
1

u ([house_elf{u1}],  [adore{u1, v''}])] 
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78. � str:
2

u >>����� 1
u : �Ist. I≠Ø ∧         

             ∃Yet≠Ø(∀ye(witch(y) ∧ ∀xe(h.elf(x) → adore(x, y)) ↔ y∈Y)) 

4.3. Weak / Strong Ambiguities 

Consider first the strong donkey example in (79) below, which is most readily 

understood as a generalization about the habits of house-elves that are in love – this being 

the reason for the fact that the donkey indefinite receives a strong reading. The LF of the 

sentence and the main steps of its compositional translation are provided in (79). 

Intuitively, the translation in (79), i.e. the update associated with the Txt / CP / IP 

node, instructs us to check that, for any given matrix I, each way of pairing up a witch-

loving elf with each of the witches he loves is a way of pairing up a witch-loving elf with 

each of the witches he loves and with some purse he bought her. 

The translation derives the intuitively correct truth-conditions, given in (80).  
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79. Every 1
u  house-elf who falls in love with a str:

2
u  witch buys her

2
u  an wk:

3
u  

alligator purse. 36 

 

                                                 

36 For more discussion of the particular interpretation of ��
 in (79), see section 5 of chapter 3. 

VP 

max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

                                V' 

�ve.max 2
u ([witch{u2}, fall_in_love{v, u2}]) 

����������
���
trV

  

�Q(et)t.�ve.Q(�v'e.[fall_in_lovee(et){v, v'}]) 

CP 

�� str:
2

u �������
DP

 

�Pet.max 2
u ([witch{u2}]; P(u2)) 

Txt 

                                                                           IP 

[every
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, fall_in_love{u1, u2}]),  [u3 | a.purse{u3}, buy{u1, u2, u3}])] 

����
I  

�Dt. D 

VP 

[every
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  [u3 | a.p{u3}, buy{u1, u2, u3}])] 

                           V' 
�ve.[u3 | a.p{u3}, buy{v, u2, u3}] 

	������
2

u �� wk:
3

u �����
��
�������  

                              DP 

�Pet.[every
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  P(u1))] 

������ 1
u �

D
 

�P'et.�Pet.[every
1

u (P'(u1), P(u1))] 

NP 

�ve.[house_elf{v}]; max 2
u ([witch{u2}, fall_in_love{v, u2}]) 

��
��������
N
�

�ve.[house_elfet{v}] 

CP 

�v''e.max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

���
�
DP

��� 

�Pet.P 

CP 

                                IP 

max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

����
I  

�Dt. D 

������ DP
 

�Pet.P(v''e) 
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80. �Ist. I≠Ø ∧ ∀xe∀ye(house_elf(x) ∧ witch(y) ∧ adore(x, y)     

       → ∃ze(alligator_purse(z) ∧ buy(x, y, z))) 

The analysis of the classical weak donkey sentence in (81) below proceeds as 

expected – see the PCDRT translation in (82) and the truth-conditions in (83). 

Intuitively, the update in (82) instructs us to check the following, for any given 

matrix I: for each person x, if you can form a matrix based on I which stores x in column 

u1 and which stores some non-empty set of dimes that x has in column u2, then you 

should be able to form a (possibly different) matrix based on I which stores x in column 

u1 and some non-empty set of dimes that x has and puts in the meter in column u2. 

81. Every 1
u  person who has a wk:

2
u  dime will put it

2
u  in the meter. 

82. [every
1

u ([u2 | person{u1}, dime{u2}, have{u1, u2}],  [put_in_meter{u1, u2}])] 

83. �Ist. I≠Ø ∧ ∀xe(person(x) ∧ ∃ye(dime(y) ∧ have(x, y))     

  → ∃ze(dime(z) ∧ have(x, z) ∧ put_in_meter(x, z))) 

4.4. Proportions 

The proportion problem is solved because we work with a selective form of 

generalized quantification – as exemplified by the analysis of sentence (84) below. This 

sentence is most readily understood as a generalization about the behavior of most house-

elves that are in love with a witch: every such witch ends up getting an alligator purse 

from the house-elf that is in love with her. Thus, the donkey indefinite ������� receives a 

strong reading. The PCDRT translation derives the intuitively correct truth-conditions 

(identical to the CDRT+GQ truth-conditions), provided in (85) below; note in particular 

that the PCDRT representation is false in the "Dobby as Don Juan" scenario, as desired. 
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84. Most 1
u  house-elves who fall in love with a str:

2
u  witch buy her

2
u  an wk:

3
u  

alligator purse. 

 

85. �Ist. I≠Ø ∧ |{xe: h.elf(x) ∧ ∃ye(witch(y) ∧ f.i.l(x, y)) ∧     

   ∀ye(witch(y) ∧ f.i.l(x, y) → ∃ze(a.p(z) ∧ buy(x, y, z)))}| >       

VP 

max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

                        V' 

�ve.max 2
u ([witch{u2}, fall_in_love{v, u2}]) 

����������
���
trV

  

�Q(et)t.�ve.Q(�v'e.[fall_in_lovee(et){v, v'}]) 

CP 

�� str:
2

u �������
DP

 

�Pet.max 2
u ([witch{u2}]; P(u2)) 

Txt 

                                                                          IP 

[most
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, fall_in_love{u1, u2}]),  [u3 | a.purse{u3}, buy{u1, u2, u3}])] 

����
I  

�Dt. D 

VP 

[most
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  [u3 | a.p{u3}, buy{u1, u2, u3}])] 

                           V' 
�ve.[u3 | a.p{u3}, buy{v, u2, u3}] 

	������
2

u �� 3
u �����
��
�������  

                              DP 

�Pet.[most
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  P(u1))] 

��
�� 1
u �

D
 

�P'et.�Pet.[most
1

u (P'(u1), P(u1))] 

NP 

�ve.[house_elf{v}]; max 2
u ([witch{u2}, fall_in_love{v, u2}]) 

��
��������
N
�

�ve.[house_elfet{v}] 

CP 

�v''e.max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

���
�
DP

��� 

�Pet.P 

CP 
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max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

����
I  

�Dt. D 

������ DP
 

�Pet.P(v''e) 
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       |{xe: house_elf(x) ∧ ∃ye(witch(y) ∧ fall_in_lovel(x, y) ∧    

    ¬∃ze(a.purse(z) ∧ buy(x, y, z)))}| 

4.5. Mixed Weak & Strong Sentences 

The PCDRT definition of selective generalized quantification enables us to assign 

intuitively correct interpretations to our mixed weak & strong donkey sentences, repeated 

in (86) and (87) below. 

86. Every 1
u  person who buys a str:

2
u  book on amazon.com and has a wk:

3
u  credit card 

uses it
3

u  to pay for it
2

u . 

87. Every 1
u  man who wants to impress a str:

2
u  woman and who has an wk:

3
u  Arabian 

horse teaches her
2

u  how to ride it
3

u . 

Given that their PCDRT analyses are basically identical, I will analyze only 

sentence (86). Its PCDRT translation – obtained compositionally in much the same way 

as the translations for the donkey sentences we have just examined – is provided in (88).  

88. [every
1

u ([pers{u1}]; max 2
u ([bk{u2}, buy{u1, u2}]); [u3 | c.card{u3}, hv{u1, u3}],         

     [use_to_pay{u1, u2, u3}])] 

The PCDRT translation in (88) derives the intuitively correct truth-conditions, 

provided in (89) below. 

89. �Ist. I≠Ø ∧ ∀xe(person(x) ∧ ∃Re(et)≠Ø(∀ye(book(y) ∧ buy(x, y) ↔ y∈Dom(R)) ∧  

      ∀ze∈Ran(R)(c.card(z) ∧ have(x, z)))  

  → ∃Re(et)≠Ø(∀ye(book(y) ∧ buy(x, y) ↔ y∈Dom(R)) ∧   

            ∀ze∈Ran(R)(c.card(z) ∧ have(x, z))   

            ∀ye∀ze(Ryz → use_to_pay(x, y, z)))), i.e.        

�Ist. I≠Ø ∧ ∀xe(person(x) ∧ ∃ye(bk(y) ∧ buy(x, y)) ∧ ∃ze(c.card(z) ∧ hv(x, z)) 

            → ∀ye(bk(y) ∧ buy(x, y) → ∃ze(c.card(z) ∧ hv(x, z) ∧ u.t.p(x, y, z)))) 
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4.6. Donkey Anaphora to Structure 

Let us turn to an example that involves structured donkey anaphora, i.e. the nuclear 

scope anaphorically retrieves not only the values of the donkey indefinites, but also the 

relational structure associated with those values. 

Consider (90) below: as we have already noticed, both indefinites, i.e. � str:
2

u �

#���������
��� and � str:
3

u �
���� ������������, receive a strong reading, i.e. for each u1-boy, we 

consider the set of all gifts that he bought for some girl in his class and the set of all girls 

that said u1-boy bought a gift for. However, we need to store not only the sets, but also 

the correspondences between them established by the buying events, so that we can 

retrieve this correspondence in the nuclear scope, where we assert that, for each u3-girl, 

her deskmate was asked to wrap the u2-gift that was bought for said u3-girl. 

90. Every 1
u  boy who bought a str:

2
u  Christmas gift for a str:

3
u  girl in his class asked 

her
3

u  deskmate to wrap it
2

u . 

I will analyze ���
3

u � �������� as ��� 4
u � ��������� 
�� ���

3
u  and give a Russellian 

translation for the definite description, i.e. I assume it contributes existence and 

uniqueness. Since the uniqueness of the u4-deskmate needs to be relativized to the u3-girl, 

I will use an anaphoric uniqueness condition of the form uniqueu'{u}, as shown in (91) 

below. 

91. ���
3

u 4
u �����������
�������

3
u 4

u ����������
�����
3

u �      

 � �Pet. max 4
u ([deskmate{u4}, of{u4, u3}]); [unique

3
u {u4}]; P(u),  

where unique
3

u {u4} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(u3i=u3i' → u4i=u4i') 

The PCDRT translation of sentence (90) is provided in (92) below. The translation 

derives the intuitively correct truth-conditions, given in (93). 
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92. [every
1

u ([boy{u1}]; max 2
u ([gift{u2}]; max 3

u ([girl{u3}, buy{u1, u2, u3}])),  

 max 4
u ([deskmate{u4}, of{u4, u3}]); [unique

3
u {u4}]; [a.t.w{u1, u4, u2}])]37 

93. �Ist. I≠Ø ∧ ∀xe(boy(x) ∧         

            ∃Re(et)≠Ø(Dom(R) = {ye: gift(y) ∧ ∃ze(girl(z) ∧ buy(x, y, z))} ∧  

   Ran(R) = {ze: girl(z) ∧ ∃ye∈Dom(R)(buy(x, y, z))} ∧  

   ∀ye∀ze(Ryz → buy(x, y, z)))     

         → ∃Re(et)≠Ø(Dom(R) = {ye: gift(y) ∧ ∃ze(girl(z) ∧ buy(x, y, z))} ∧  

   Ran(R) = {ze: girl(z) ∧ ∃ye∈Dom(R)(buy(x, y, z))} ∧  

   ∀ye∀ze(Ryz → buy(x, y, z)) ∧      

   ∀ye∀ze(Ryz →       

   ∃z'e(∀z''e(d.m(z'') ∧ of(z'', z) ↔ z''=z') ∧ a.t.w(x, z', y))))),   

i.e. given the natural assumption that no boy bought the same gift for two distinct 

girls, so that there is only one relation R with the required properties,       

�Ist. I≠Ø ∧ ∀xe∀Re(et)≠Ø(boy(x) ∧        

   Dom(R) = {ye: gift(y) ∧ ∃ze(girl(z) ∧ buy(x, y, z))} ∧  

   Ran(R) = {ze: girl(z) ∧ ∃ye∈Dom(R)(buy(x, y, z))} ∧  

   ∀ye∀ze(Ryz → buy(x, y, z))     

            → ∀ye∀ze(Ryz →        

          ∃z'e(∀z''e(d.m(z'') ∧ of(z'', z) ↔ z''=z') ∧ a.t.w(x, z', y)))) 

5. Summary 

The main goal of this chapter was to give a compositional account of weak / strong 

ambiguities that generalizes to mixed reading relative-clause donkey sentences like the 

one in (1) above. The main proposal is that the weak / strong donkey ambiguity is located 

at the level of the indefinite article, which is ambiguous (or underspecified) between a 

weak and a strong / maximal reading.  

                                                 

37 Intuitively, uniqueness needs to be relativized to u3 in unique
3

u {u4} because, otherwise, we would 

require every u4-individual to be the same, i.e. there would have to be just one deskmate over all. 
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The two crucial ingredients of the analysis are: (i) plural information states 

(modeled as sets of 'variable assignments', which can be represented as matrices with 

'assignments' as rows) and (ii) a maximization operator use to specify the meaning of 

strong indefinite articles. The resulting system is dubbed Plural Compositional DRT 

(PCDRT). Given the underlying type logic, compositionality at sub-clausal level follows 

automatically and standard techniques from Montague semantics (e.g. type shifting) 

become available. 

In PCDRT, sentences denote relations between an input and an output plural info 

state, i.e. sentences non-deterministically update a plural info state. Indefinites non-

deterministically introduce both values and structure, i.e. they introduce structured sets of 

individuals, and pronouns are anaphoric to such structured sets. Quantification over 

individuals is defined in terms of matrices (i.e. plural info states) instead of single 

'assignments' and the semantics of the non-quantificational part becomes rules for how to 

fill out a matrix. 

PCDRT enables us to give a compositional account of a variety of phenomena, 

including mixed reading relative-clause donkey sentences, while keeping the dynamic 

meanings of generalized determiners, pronouns and indefinite articles very close to their 

static, Montagovian counterparts. 

6. Comparison with Alternative Approaches 

To my knowledge, the existence of mixed reading donkey sentences was observed 

for the first time by van der Does (1993) for relative-clause donkey sentences and by 

Dekker (1993) for conditional donkey sentences. Their examples are provided in (94) and 

(95) below. 

94. Every farmer who has a horse and a whip in his barn uses it to lash him.   

(van der Does 1993: 18, (26)) 

95. If a man has a dime in his pocket, he throws it in the parking meter.    

(Dekker 1993: 183, (25)). 
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The example in (1) above (Every 1
u

 person who buys a 2
u

 book on amazon.com and 

has a 3
u

 credit card uses it
3

u  to pay for it
2

u ) makes one additional point that is obscured 

by the examples in (94) and (95), namely that the weak reading of the indefinite ���������

���� in (1) is compatible with the set of credit cards being a non-singleton set – since I 

could use different credit cards to buy different (kinds of) books. 

As already remarked in the previous chapters, weak / strong donkey ambiguities in 

general and mixed weak & strong relative-clause donkey sentences in particular pose 

problems for many influential dynamic theories of donkey sentences, including Heim 

(1982/1988), Kamp & Reyle (1993), Dekker (1993), Kanazawa (1994a) and Chierchia 

(1995). The main reason is that, in these dynamic theories, donkey indefinites do not 

have any quantificational force whatsoever, so all the truth-conditional effects associated 

with donkey anaphora have to be built into whatever element in the environment gives 

the quantificational force of the indefinite.  

In the case of the mixed reading example in (1), this requires us to pack an entire 

logical form into the meaning of the generalized determiner �����. As shown explicitly by 

the classical first-order translation of example (1), repeated in (96) below, the generalized 

determiner ����� needs to specify three things: (i) the fact that the indefinite �� 	

� is 

strong; (ii) the fact that the indefinite ������������� is weak and (iii) the fact that the strong 

indefinite �� 	

� can take scope over the weak indefinite �� ������� ����, since I can use 

different cards to buy different (kinds of) books. 

96. ∀x(person(x) ∧ ∃y(book(y) ∧ buy_on_amazon(x, y)) ∧ ∃z(c.card(z) ∧ have(x, z))  

 → ∀y'(book(y') ∧ buy_on_amazon(x, y')      

         → ∃z'(c.card(z') ∧ have(x, z') ∧ use_to_pay(x, z', y')))) 

Thus, dynamic approaches of this kind are forced to give increasingly complex and 

stipulative meanings for selective generalized determiners. In contrast, the proposal I 

have pursued in this chapter is that indefinites should be endowed with a minimal 

quantificational force of their own: (i) just as in DPL, I let them contribute an existential 

quantification; (ii) what is new is that I also let them specifiy whether the existential 
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quantification they introduce is maximal or not, i.e. whether they introduce in discourse 

some witness set or the maximal witness set that satisfies the nuclear scope update38. 

The pseudo-scopal relation between the strong indefinite �� 	

� and the weak 

indefinite �� ������� ���� in (1) above ("pseudo" because, by the Coordinate Structure 

Constraint, the strong indefinite cannot syntactically take scope over the weak indefinite) 

arises as a consequence of the fact that PCDRT uses plural information states, which 

store and pass on information about both the sets of objects and the dependencies 

between these objects that are introduced and elaborated upon in discourse. 

Before examining alternative approaches in more detail, I want to indicate three 

respects in which PCDRT differs from most previous dynamic approaches (irrespective 

of whether or how they analyze weak / strong ambiguities). 

The first difference is conceptual: PCDRT explicitly embodies the idea that 

reference to structure is as important as reference to value and that the two should be 

treated in parallel (see the definition of dref introduction and its justification in section 

3.2 above).  

Capturing reference to structure as discourse reference to structure, i.e. by means of 

plural information states rather than by means of choice and / or Skolem functions (or 

dref's for such functions), is preferable for the following reason: such functions can in 

principle be used to capture donkey anaphora to structure, but they have to have variable 

arity depending on how many simultaneous donkey anaphoric connections there are, i.e. 

the arity of the functions is determined by the discourse context. It is therefore more 

desirable to encode this context dependency in the database that stores discourse 

information, i.e. the info state, and not in the representation of a lexical item (the donkey 

pronoun and / or the donkey indefinite); for a related argument, see also section 7.2 in 

chapter 7 below. 

                                                 

38 A witness set for a static quantifier DET(A) (where DET is a static determiner and A is a set of 

individuals) is any set of individuals B such that B⊆A and DET(A)(B). See Barwise & Cooper 1981: 103 
(page references to Portner & Partee 2002). 
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The second difference is empirical: the motivation for plural information states is 

provided by singular and intra-sentential donkey anaphora, in contrast to the previous 

literature which relies on plural and cross-sentential anaphora (see van den Berg 1994, 

1996a, b, Krifka 1996b, and Nouwen 2003 among others). 

Importantly, donkey anaphora to structure provides a much stronger argument for 

the idea that plural info states are semantically necessary. To see this, consider anaphora 

to value first: a pragmatic account is plausible for cases of cross-sentential anaphora (e.g. 

in !���������� ����$�������
��, the pronoun �� can be taken to refer to whatever man is 

pragmatically brought to salience by the use of an indefinite in the first sentence), but less 

plausible for cases of intra-sentential donkey anaphora (no single donkey is brought to 

salience in %��������������
�
�������
�����	�������). 

Similarly, a pragmatic account of anaphora to structure is plausible for cases of 

cross-sentential anaphora like Every man saw a woman. They greeted them. This 

discourse asserts that every man greeted the woman / women that he saw, i.e. the greeting 

structure is the same as the seeing structure – but the identity of structure might be a 

pragmatic addition to semantic values that are unspecified for structure (e.g. the second 

sentence They greeted them could be interpreted cumulatively in the sense of Scha 1981). 

However, a pragmatic approach is much less plausible for cases of intra-sentential 

donkey anaphora to structure instantiated by sentence (2) above. 

Third, PCDRT takes the research program in Muskens (1996) of unifying different 

semantic frameworks, i.e. Montague semantics and dynamic semantics, one step further: 

PCDRT unifies in classical type logic the static, compositional analysis of generalized 

quantification in Montague semantics and van den Berg's Dynamic Plural Logic. The 

unification is not a trivial task, given certain peculiarities of Dynamic Plural Logic, e.g. 

the fact that its underlying logic is partial and the fact that discourse-level plurality (i.e. 

the use of plural information states) and domain-level plurality (i.e. non-atomic 

individuals) are conflated39.  

                                                 

39 For more on the distinction between discourse-level and domain-level plurality, see chapter 8 below and 
Brasoveanu (2006c). 
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One of the advantages of the resulting type-logical framework is that it can be 

extended in the usual way with additional sorts for eventualities, times and possible 

worlds, which enables PCDRT to account for temporal and modal anaphora and 

quantification in a way that is parallel to the account of individual-level anaphora and 

quantification. The modal extension is worked out in chapter 7 below. 

The previous accounts of weak / strong donkey sentences fall (roughly) into three 

categories: 

• accounts that locate the ambiguity at the level of the generalized determiner (e.g. the 

determiner every in the classic example Every farmer who owns a donkey beats it); 

most dynamic accounts fall into this category, including Rooth (1987), Van Eijck & 

de Vries (1992), Dekker (1993), Kanazawa (1994a, b), but also the D-/E-type 

approach in Heim (1990); these approaches will be discussed in section 6.1;  

• accounts that locate the ambiguity at the level of the donkey pronoun, e.g. the D-/E-

type approaches in van der Does (1993) and Lappin & Francez (1994); these 

approaches will be discussed in section 6.2; 

• accounts that locate the ambiguity at the level of the indefinite article; this is the 

approach pursued in this chapter and in van den Berg (1994, 1996a); van den Berg's 

approach will be discussed in section 6.3. 

In addition, there is also the hybrid dynamic/E-type approach pursued in Chierchia 

(1995). This approach will be discussed in section 6.2. 

6.1. Weak / Strong Determiners 

I can see two reasons for locating the weak / strong ambiguity in the donkey 

indefinites and not in the dynamic meaning of generalized determiners.  

The first one – already presented above – has to do with the syntax/semantics aspect 

of the interpretation of donkey sentences, in particular, with the requirement of (strict) 

compositionality. If we attribute the weak / strong ambiguity to the determiner and we 

want to derive the intuitively correct truth-conditions for the mixed reading donkey 

sentence in (1), we basically need to pack an entire logical form into the meaning of the 
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generalized determiner �����, which needs to non-locally / non-compositionally 

determine both the readings associated with different donkey indefinites and their relative 

(pseudo-)scope.  

The other reason for locating the weak / strong ambiguity in the indefinites is 

concerned with the semantics/pragmatics side of the interpretation of donkey sentences, 

namely the variety of factors that influence which reading is selected in any given 

instance of donkey anaphora and the defeasible character of the generalizations 

correlating these factors and the resulting readings. 

Some of these factors are:  

• the logical properties of the determiners – see Kanazawa (1994a, b); 

• world-knowledge – see the 'dime' example in Pelletier & Schubert (1989) and, 

also, the examples and discussion in Geurts (2002);  

• the information (focus-topic-background) structure of the sentence – see Kadmon 

(1987), Heim (1990); 

• the kind of predicates that are used, i.e. total vs. partial predicates – see Krifka 

(1996a) and references therein;  

• whether the donkey indefinite is referred back to by a donkey pronoun – see 

Bäuerle & Egli (1985)40.  

Given the variety of factors that influence which reading is selected in any given 

instance of donkey anaphora and also the defeasible character of the generalizations 

correlating these factors and the resulting readings, I think that the most conservative 

hypothesis is to locate the weak / strong ambiguity at the level of the donkey indefinites 

themselves, i.e. to make the donkey items ambiguous  between a weak and a strong 

meaning41, and let more general and defeasible pragmatic mechanisms decide which 

meaning is selected in any particular case. 

                                                 

40 Apud Heim (1990). 

41 Ambiguous between a weak and a strong reading or, alternatively, underspecified for weak / strong 
readings (like quantifier scope, for example, is underspecified) or vague (like adjectives). 
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One of the most theoretically appealing accounts of the weak / strong donkey 

ambiguity is due to Kanazawa (1994a, b), which locates the ambiguity in the meaning of 

the generalized determiners. I will therefore dedicate the remainder of this section to 

making two more points that seem to favor the PCDRT indefinite-based theory – or, at 

least, to give it sufficient initial plausibility. 

First, Kanazawa's account is ultimately pragmatic, just like the account I am 

suggesting. In fact, except for the fact that he chooses to make the dynamic generalized 

determiner – and not the indefinite – underspecified, I think that all the observations 

below also apply to the PCDRT account. 

"The primary assumption I make is the following: […] The grammar rules in 
general underspecify the interpretation of a donkey sentence. 
Thus, I assume that, for any donkey sentence, the grammar only partially 
characterizes its meaning, with which a range of specific interpretations are 
compatible. So the truth value of donkey sentences in particular situations may be 
left undecided by the grammar. This may not be such an outrageous idea; it may 
explain the lack of robust intuitions about donkey sentences. 
For the sake of concreteness, I assume that the underspecified interpretation of a 
donkey sentence Det N' VP assigned to by the grammar can be represented using 
an indeterminate dynamic generalized determiner Q which is related to the static 
generalized determiner Q denoted by Det and which satisfies certain natural 
properties. […] 
Even if its interpretation is underspecified, a sentence may be assigned a definite 
truth-value in special circumstances. […] It is not unreasonable to suppose that 
people are capable of assessing the truth value of a donkey sentence without 
resolving the 'vagueness' of the meaning given by the grammar when there is no 
need to do so. […] underspecification causes no problems for people in assigning 
a truth value to a donkey sentence in situations where the uniqueness condition 
for the donkey pronoun is met." 
(Kanazawa 1994a: 151-152) 

Note in particular the situations in which the "uniqueness condition" is met are 

precisely the situations in which the PCDRT weak and strong meanings for the indefinite 

article are conflated; for more discussion about uniqueness effects in donkey sentences, 

see section 6.2 of chapter 6 below. 

 Thus, both accounts of the weak / strong donkey ambiguity defer the task of 

disambiguation to pragmatics – which brings me to the second, empirical point. The 

hypothesis that the weak / strong ambiguity (or underspecification) should be located in 
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the generalized determiner has more plausibility than the PCDRT hypothesis only if we 

observe that the logical properties of the determiners are, consistently, the main deciding 

disambiguation factor. This is clearly not true for the determiner every: its monotonicity-

based bias for strong readings is easily trumped by world knowledge (as shown by the 

'dime' example; see also the discussion in Kanazawa 1994a: 122-124 and Geurts 2002). 

I will now point out that the monotonicity-based bias can be systematically 

overridden for most other determiners in a particular kind of construction that involves 

nuclear scope negation. This observation – together with the above list of five unrelated 

factors that influence the choice between weak and strong readings – provides support for 

the conservative hypothesis that the source of the weak / strong donkey ambiguity should 

be located in the donkey indefinites and not in some other element in their environment. 

Donkey Readings and Nuclear Scope Negation
42

 

I use "nuclear scope negation" as a cover term for negative items, e.g. sentential 

negation or negative verbs like fail, forget and refuse, that occur within the nuclear scope 

of a quantification and that semantically take scope over the other elements in the nuclear 

scope. To my knowledge, the only examples of nuclear scope negation discussed in the 

previous literature are the ones provided in (97), (98), (99) and (100) below43. 

97. A boy who had anu apple in his rucksack didn't give itu to his sister.        

(van der Does 1993: 18, (27c)) 

98. No man who had au credit card failed to use itu.           

(Kanazawa 1994a: 117, fn. 16) 

99. Every person who had au dime in his pocket did not put itu into the meter.   

(Lappin & Francez 1994: 401, (22a)) 

100. Every person who had au dime in his pocket refused to put itu into the meter. 

 (Lappin & Francez 1994: 401, (22a)) 

                                                 

42 I am grateful to Hans Kamp (p.c.) for pointing out to me that there seems to be a systematic correlation 
between sentential negation and donkey readings. Most of the empirical observations in this sub-section 
emerged during or as a result of our conversations. 

43 Geurts (2002) also mentions the examples due to van der Does (1993) and Kanazawa (1994a), but he 
believes that "such examples are hard to find" (Geurts (2002): 131). 
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The generalization that emerges based in these examples and which trumps the 

monotonicity-based bias observed in Kanazawa 1994a is that nuclear scope negation 

generally requires the strong reading for donkey sentences; see also Lappin & Francez 

(1994) for observations that point towards the same generalization (p. 408 in particular) 

and for a critique of Kanazawa (1994a) based on sentences (99) and (100) (pp. 410-411). 

Sentence (97) is interpreted as asserting that there is some boy such that, for every apple 

in his rucksack, he didn't give that apple to his sister. Sentence (98) is interpreted as 

asserting that no man is such that, for every credit card of his, he failed to use that card, 

i.e. no man failed to use every credit card of his – or, equivalently, every man used some 

credit card or other. 

The examples in (97) and (98) form minimal pairs with sentences (101) and (102) 

below, where there is no nuclear scope negation and where the most salient donkey 

reading is the weak one (just as Kanazawa 1994a predicts they should). 

101. A boy who had anu apple in his rucksack gave itu to his sister. 

102. No man who had au credit card used itu (to pay the bill). 

We can observe a similar contrast for non-monotone intersective determiners of the 

form exactly n, also predicted by Kanazawa (1994a) to favor the weak reading (just as the 

intersective but monotone determiners a and no do). The most salient reading of (103) 

below is the strong donkey reading: exactly two men are such that, for every credit card 

they had, they failed to use that card. The most salient reading of (104) is the weak one: 

exactly two men used some credit card they had. 

103. Exactly two men who had au credit card failed to use itu / didn't use itu / forgot to 

use itu. 

104. Exactly two men who had au credit card used itu. 

The same applies to the only-based donkey examples in (105) and (106) below. 

105. Only two men who had au credit card failed to use itu / didn't use itu / forgot to 

use itu. 

106. Only two men who had au credit card used itu. 
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As the examples (99) and (100) above show, even the classical weak reading 

example in (107) below becomes strong under the influence of nuclear scope negation: 

the example in (108) below is interpreted as asserting that every man who had a quarter 

was such that, for every quarter of his, he refused to put that quarter in the meter. The 

pairs of at least n-, at most n- and most-sentences in (109)-(110), (111)-(112) and (113)-

(114) below instantiate the same kind of contrast. 

107. Every man who had au quarter put itu in the meter. 

108. Every man who had au quarter refused to put itu in the meter / forgot to put itu in 

the meter. 

109. At least two men who had au quarter put itu in the meter. 

110. At least two men who had au quarter refused to put itu in the meter / forgot to 

put itu in the meter. 

111. At most two men who had au quarter put itu in the meter. 

112. At most two men who had au quarter refused to put itu in the meter / forgot to 

put itu in the meter. 

113. Most men who had au nice suit wore itu at the town meeting.   

 (based on Kanazawa 2001: 386, (17)) 

114. Most men who had au nice suit refused to wear itu at the town meeting / forgot 

to wear itu at the town meeting / didn't wear itu at the town meeting. 

In contrast, note that negation with scope over the entire donkey quantification does 

not have a similar 'strengthening' effect, as the examples in (115), (116) and (117) below 

show. Consider (116) for example: its strong reading is that not every man who had a 

credit card is such that, for every credit card he had, he used that card to pay the bill – an 

assertion that borders on triviality. Intuitively, sentence (116) asserts that not every man 

who had a credit card used some credit card of his to pay the bill – or, equivalently, that 

there is a man who had a credit card and who didn't use any of his cards to pay, i.e. the 

weak donkey reading. 

115. Not every man who had au quarter put itu in the meter. 

116. Not every man who had au credit card used itu to pay the bill. 



 183 

117. Not every person who buys au book on amazon.com and who has au' credit card 

uses itu' to pay for itu. 

However, just like the other generalizations about the distribution of weak vs. strong 

donkey readings, the correlation between nuclear scope negation and the strong donkey 

reading is not without exception. A top-level negation cancels the 'strengthening' effect of 

the nuclear scope negation, as the examples in (118) and (119) below show.  

Incidentally, note that the weak donkey sentences in (118) and (119) and the ones in 

(115), (116) and (117) above show that ↑MON↓ determiners like not every and not all 

reliably tolerate weak readings, contra Kanazawa (1994a): 118 et seqq. 

118. Not every man who had au credit card failed to use itu. 

119. Not every man who had a nice suit refused to wear itu at the town meeting / 

forgot to wear itu at the town meeting. 

Sentences (118) and (119) indicate that, if there is any correlation between negation, 

the monotonicity properties of the generalized determiners and the choice between weak 

and strong donkey readings, this correlation cannot be locally and deterministically 

established by taking into account only some particular item in the context of the donkey 

indefinites, be it the generalized determiner or the nuclear scope negation – we need to 

take into account the whole quantification and, on top of that, factors of a different 

nature, e.g. world knowledge about how credit card owners normally behave (they don't 

pay with all their credit cards) or about how people normally wear their suits (not all of 

them at the same time, even if they are very nice). 

I conclude with the example in (120) below, which provides one more exception to 

the correlation between nuclear scope negation and strong donkey readings. The most 

salient reading of (120) is that every man who placed a suitcase on the belt took back 

every suitcase after it was X-rayed, i.e. no man who placed a suitcase on the belt failed, 

for some such suitcase, to take it back, i.e. the weak donkey reading. 

120. (At the airport "self check-in", where customers place their suitcase / suitcases 

on the belt to have them X-rayed:)       
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 No man who placed au suitcase on the belt forgot to take itu back after itu was X-

rayed / failed to take itu back after itu was X-rayed. 

I leave the analysis of the above generalizations for future research – but I hope to 

have established that the volatile nature of the weak / strong donkey ambiguity makes the 

PCDRT account at least as plausible as the alternative dynamic strategy of locating the 

source of the ambiguity in the selective generalized determiners. 

6.2. Weak / Strong Pronouns 

D-/E-type accounts of donkey anaphora fall into two categories with respect to the 

problem posed by weak / strong ambiguities. If they address the problem (e.g. Neale 

1990 and Elbourne 2005 do not), they either locate the weak / strong ambiguity in the 

meaning of the generalized determiner, e.g. Heim (1990), or in the meaning of the 

donkey pronoun, e.g. van der Does (1993) and Lappin & Francez (1994). 

Given that the strategy in Heim (1990) is basically the same as the one pursued by 

the dynamic accounts discussed in the previous section, the resulting analysis faces the 

same kind of problems (mutatis mutandis). 

In this section, I will focus on accounts that take the donkey pronoun to be the 

source of the weak / strong ambiguity; in particular, I will focus on the account in Lappin 

& Francez (1994), but the general argument also applies to van der Does (1993). 

Lappin & Francez (1994) assume the ontology in Link (1983), which countenances 

both (atomic) individuals and individual sums thereof – or i-sums. Lappin & Francez 

(1994): 403 propose to analyze donkey pronouns as functions from individuals to i-sums, 

e.g., in the classical donkey example Every farmer who owns a donkey beats it, the 

pronoun it denotes a function f that, for every donkey-owning farmer x, returns some i-

sum f(x) of donkeys that x owns, i.e. the sum of some subset of the donkeys that x owns. 

Strong donkey readings are obtained by placing a maximality constraint on the 

function f, which requires f to select, for each x in its domain, the supremum of its 

possible values, i.e., in the case at hand, the maximal i-sum of donkeys that x owns. Weak 
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donkey readings are obtained by suspending the maximality constraint, i.e. f is a choice 

function from x to one of the i-sums of donkeys that x owns. 

I will use DP-conjunction donkey sentences of the kind analyzed in section 5.6 of 

chapter 4 above to distinguish between the D-/E-type strategy of locating the weak / 

strong ambiguity in the meaning of the donkey pronoun and the PCDRT strategy of 

locating it in the meaning of the donkey indefinite. 

DP-Conjunction Donkey Sentences with Mixed Readings 

Consider the mixed weak & strong donkey sentences in (121) below, whose 

subjects is a conjunction of two DP's. 

121. (Today's newspaper claims that, based on the most recent statistics:)   

Every 1
u  company who hired a 2

u  Moldavian man, but no 3
u  company who hired 

a 2
u  Transylvanian man promoted him

2
u  within two weeks of hiring. 

Intuitively, the sentence asserts that every company who hired a Moldavian 

promoted every Moldavian it hired within two weeks, while there is no company who 

hired some Transylvanian and promoted some Transylvanian it hired within two weeks – 

that is, the donkey anaphora to ���
����������� is strong and the donkey anaphora to ��

&���������������� is weak.  

Crucially, the very same pronon �� is intuitively anaphoric to both indefinites. 

Example (121) poses a problem for approaches like Lappin & Francez (1994) and van der 

Does (1993), which locate the weak / strong ambiguity in the donkey pronouns, because 

there is only one pronoun in (121), but two distinct donkey readings.  

Note that there is no immediately obvious was in which covert syntactic operations 

could 'reconstruct' two pronouns in the case of (121) – or in the case of the similar 

example in (122) below. Examples (121) and (122) do not seem to be instances of ellipsis 

or Right Node Raising, in which case we could have assumed that the pronoun is covertly 

duplicated at the level of LF. Also, covertly duplicating at LF the pronoun in (121) (or 

(122)) by rightward Across-the-Board (ATB) movement of the VP does not seem to be 

an independently motivated syntactic operation in English. And, even if rightward ATB 
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movement of the VP is possible, one still needs to reconstruct the VP in both places to get 

two pronouns and, presumably, assign the reconstructed pronouns two different indices. 

Sentence (122) below makes the same point as (121) – the only difference is that, in 

(122), we conjoin two DP's headed by the same generalized determiner44,45. The sentence 

in (122) can be felicitously uttered in the following context: there is this Sunday fair 

where, among other things, people come to sell their young puppies – and they do want to 

get rid of all of them before they are too old. Also, the fair entrance fee is one dollar. 

Now, the fair rules are strict: all the puppies need to be checked for fleas at the gate and, 

at the same time, the one dollar bills also need to be checked for authenticity because of 

the many faux-monnayeurs in the area. So: 

122. Everyone 1
u  who has a 2

u  puppy (to sell) and everyone 3
u  who has a 2

u  dollar (to 

pay the fee) brings it
2

u  to the gate to be checked. 

The most salient interpretation of sentence (122) is that every potential seller brings 

all her or his puppies to the gate to be checked, while every potential buyer needs to bring 

only one of her or his dollars, i.e. anaphora to � 2
u ������ is strong, while anaphora to � 2

u �

�
���� is weak. 

Thus, I assume that, in the case of both (121) and (122) above, what one sees is 

what one gets: two donkey indefinites, one donkey pronoun and two donkey readings. 

These mixed weak & strong donkey sentences pose problems for the approach in Lappin 

                                                 

44 Note also that the intonational tune in example (122) is the same as the one associated with declarative 
sentences like Every student and every professor was invited to the party, the LF of which is not derived by 
ellipsis and / or Right Node Raising. 

45 Variants of the mixed reading example in (122) are given in (i) and (ii) below; note that, in all cases, the 
context needs to be tweaked in a way that prevents the default parallel interpretation of the two conjuncts 
(i.e. both donkey indefinites are strong or both are weak).  

The example in example (122) is the refinement of (ii), due to Sam Cumming, following Klaus von 
Heusinger's and Hans Kamp's suggestions (p.c.).  

(i) (There aren't that many ambulant theater troupes anymore in Romania. This is because of the following 
custom:) At the end of a play, every person that liked the play and has au dime and every person that didn't 
like the play and has au rotten tomato throws itu at the actors. 

(ii) (It's market day. So:) Every farmer who owns au donkey and every spectator who has au dollar – for 
entry – brings itu to the saleyard. 
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& Francez (1994) because either the donkey pronouns ���
2

u  in (121) and ��
2

u  in (122) are 

subject to the maximality constraint and therefore can deliver only strong donkey 

readings or the maximality constraint is suspended and the donkey pronouns can deliver 

only the weak reading. 

These sentences pose an even more severe problem for the hybrid approach to weak 

/ strong ambiguities proposed in Chierchia (1995), where the weak reading is derived 

within a dynamic framework and the strong reading is attributed to a D-/E-type reading 

of the donkey pronoun. Given that Chierchia (1995) agrees with the observation that 

examples like (121) and (122) above involve a single pronoun (he actually uses examples 

of the same form to argue for a semantic as opposed to a syntactic approach to donkey 

anaphora), his approach is faced with the problem of deriving, by means of a single 

pronoun, two different donkey readings which are furthermore claimed to involve two 

different kinds of semantic representations for the pronoun. 

One more move seems to still be open possible for the D-/E-type approach in 

Lappin & Francez (1994); following a suggestion from Chierchia (1995): 116-117, the 

donkey pronouns ���
2

u  in (121) and ��
2

u  in (122) could be interpreted as denoting the 

union of two different functions, a maximal one that is contributed by the first DP in their 

respective sentences and a non-maximal, choice-based one that is contributed by the 

second DP. Note, however, that this strategy does not work in general because the union 

of two functions is not necessarily a function. In particular, suppose that, in (121), the 

very same company x hired both a Moldavian man and a Transylvanian man; the first 

function will return the Moldavian man as value for the argument x, while the second 

function will return the Transylvanian man, so the result of their union is not function 

and, therefore, not a suitable kind of meaning for a donkey pronoun. 

Finally, suppose that we take the function union approach one step further and 

assume that, when we take the union of two functions f and f', we require the resulting 

function to return, for any x that is in the domain of both f and f', the sum of the 

individuals f(x) and f'(x). This "union & sum" strategy could yield the correct truth-

conditions for example (122) where, for a person x, x brings to the gate to be checked 
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every individual in the i-sum formed out of x's puppies and one of x's dollar bills – but it 

will not yield the intuitively correct truth-conditions for (121). 

Moreover, the "union & sum" strategy (and D-/E-type approaches in general) 

predict that the sum should be available for subsequent singular cross-sentential anaphora 

– if the function that provides the meaning of the pronoun is salient enough the first time 

around, it should still be salient enough immediately afterwards. However, subsequent 

singular anaphora to puppy-dollar sums is unacceptable, as shown in (123) below46. 

123. a. Everyone who has au puppy and everyone who has au dollar brings itu to the 

gate to be checked.          

 b. #They do so because the rules of the fair require that itu (should) be checked. 

PCDRT, on the other hand, can account for this kind of examples without any 

additional stipulations: their analysis is parallel to the CDRT+GQ analysis of the example 

Every 1
u

 boy who has a 2
u

 dog and every 3
u

 girl who has a 2
u

 cat must feed it
2

u  from 

Chierchia (1995) (see section 5.6 of chapter 4 above). Sentences (121) and (122) receive 

the readings in (124) and (125) below. 

124. Every 1
u  company who hired a str:

2
u  Moldavian man, but no 3

u  company who 

hired a wk:
2

u  Transylvanian man promoted him
2

u  within two weeks of hiring. 

125. Everyone 1
u  who has a str:

2
u  puppy and everyone 3

u  who has a wk:
2

u  dollar 

brings it
2

u  to the gate to be checked. 

I will only analyze (124), since the analysis of (125) is parallel. The PCDRT 

translation is given in (126) below the derived truth-conditions, which are intuitively 

correct, are provided in (127). 

                                                 

46 Plural anaphora is, however, possible, as shown by (i) below. But D-/E-type approaches cannot offer any 
explanation for this asymmetry. I believe that PCDRT can and that the explanation would be similar to the 
account of the infelicitous telescoping cases in section 6.3 of chapter 6 below. 

(i) a. Everyone who has au puppy and everyone who has au dollar brings itu to the gate to be checked. b. 
They do so because the rules of the fair require that theyu (should) be checked. 
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126. ����� 1
u ���� ���������
����� str:

2
u �!�"���
������      

���Pet. [every
1

u ([company{u1}]; max 2
u ([mold{u2}, hire{u1, u2}]),  P(u1))]   

�� 3
u ���� ���������
�����wk:

2
u �#���$�"���
������       

� �Pet. [no
3

u ([company{u3}]; [u2 | trans{u2}, hire{u3, u2}],  P(u3))]   

����� 1
u ���� ���������
����� str:

2
u �!��������	��� 3

u ���� ���������
�����wk:
2

u �#���� 

���Pet. [every
1

u ([company{u1}]; max 2
u ([mold{u2}, hire{u1, u2}]),  P(u1)),  

     no
3

u ([company{u3}]; [u2 | trans{u2}, hire{u3, u2}],  P(u3))]     

 ����	����
�
2

u ��
	�
��	������%$��&��
�
�� � �ve. [promote{v, u2}]    

����� 1
u ���� ���������
����� str:

2
u �!�"���
����������	��� 3

u ���� ���������
�����wk:
2

u �

#���$�"���
������� ����	����
�
2

u ��
	�
��	������%$��&��
�
���     

��[every
1

u ([company{u1}]; max 2
u ([mold{u2}, hire{u1, u2}]),  [prom{u1, u2}]),  

        no
3

u ([company{u3}]; [u2 | trans{u2}, hire{u3, u2}],  [prom{u3, u2}])] 

127. �Ist. I≠Ø ∧ ∀xe∀ye(company(x) ∧ mold(y) ∧ hire(x, y) → promote(x, y)) ∧ 

        ∀x'e∀y'e(company(x') ∧ trans(y') ∧ hire(x', y') → ¬promote(x', y')) 

To conclude, note that the PCDRT account of mixed reading donkey sentences 

(including the DP-conjunction examples above) predicts that the same indefinite cannot 

be interpreted as strong with respect to one pronoun (or any other kind of anaphor, e.g. a 

definite) and weak with respect to another pronoun. This prediction seems to be borne 

out47. By the same token, the D-/E-type analysis in Lappin & Francez (1994) (the points 

also applies to the hybrid approach in Chierchia 1995), which locates the weak / strong 

ambiguity at the level of the pronoun (or anaphor, in the general case), predicts the exact 

opposite – and, it seems, incorrectly so. That is, according to the D-/E-type analysis, the 

same indefinite should be able to be interpreted as strong with respect to one pronoun and 

as weak with respect to another. I am not aware of any example of this form. 

                                                 

47 I am indebted to Roger Schwarzschild (p.c.) for emphasizing this point. 



 190 

Unifying Dynamic Semantics and Situation Semantics 

In this sub-section, I want to suggest that PCDRT effectively unifies dynamic and 

situation-based D-/E-type approaches of the kind proposed in Heim (1990) (among 

others) in a way that remains faithful to many of their respective goals and underlying 

intuitions.  

In particular, the type s in PCDRT can be taken to be the type of partial situations as 

they are used in Heim (1990) – with the added advantage that PCDRT does not have the 

problem of indistinguishable participants (a.k.a. Kamp's 'bishop' problem) and does not 

need to address the issues raised by the 'formal link' condition.  

Moreover, two major differences between dynamic and D-/E-type approaches to 

anaphora mentioned in Heim (1990): 137 are effectively invalidated by PCDRT. These 

differences (see the contrasting items (ii)-(iii) and (ii')-(iii') in (Heim 1990: 137) concern: 

• the treatment of anaphoric pronouns: they are "plain bound variables" in dynamic 

approaches, while D-/E-type approaches analyze them as "semantically equivalent 

to (possibly complex) definite descriptions" (Heim 1990: 137); 

• the treatment of quantificational determiners: they are "capable of binding 

multiple variables" in dynamic approaches, while they "bind just one variable 

each" (Heim 1990: 137) in D-/E-type approaches. 

In PCDRT, anaphoric pronouns are basically analyzed as individual-level dref's, i.e. 

as functions from entities of type s to individuals (type e). Depending on how we prefer 

to intuitively think about the entities of type s, i.e. as 'variable assignments' or 'partial 

situations', the anaphoric pronouns are bound variables, i.e. they are the equivalent of 

projection functions on variable assignments (type s), or definite descriptions 

characterizing a unique individual in a given partial situation (again, type s). 

Similarly, quantificational structures contributed by determiners or the generic 

operator in conditionals are analyzed as having the general form in (59) above (see 

section 3.5 of the present chapter), i.e. detu(D, D'). Insofar as these quantificational 

structures operate over the DRS's D and D', hence over relations between info states, they 
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are capable of binding multiple variables, but insofar as they contribute a particular dref u 

that is crucial in relating the two updates D and D', they bind one variable each. 

Finally, it seems to me that, if situation-based D-/E-type approaches are to be 

extended to account for mixed weak & strong donkey sentences like (1) above, they will 

have to introduce mechanisms that involve quantification over sets of partial situations 

and, also, updates of such sets that will be very similar to the notions of plural info state, 

quantification and info state update in PCDRT. I leave a more thorough investigation and 

comparison between PCDRT and situation-based D-/E-type approaches for future 

research. 

6.3. Weak / Strong Indefinites 

I will conclude with a brief examination of the approach in van den Berg (1994, 

1996a), which, just as PCDRT, locates the weak / strong donkey ambiguity in the 

meaning of the donkey indefinites.  

The first thing we need to do is to introduce van den Berg's notion of dynamic 

maximization. Abstracting away from the fact that it is formulated in a three-valued 

logic, the definition in van den Berg (1994): 15, (45) is different from the PCDRT 

definition in only one respect: it is is a weaker version of the max
u operator insofar as it 

does not require the existence of a supremum – it simply requires an output state to non-

deterministically store a (locally) maximal set48. A PCDRT definition that is as close as 

possible to the maximization operator in van den Berg (1994) is given in (128) below, 

where '⊂' stands for strict inclusion. This operator and the corresponding one in PCDRT 

stand in the relation shown in (129) below. 

128. max-wk
u(D) := �Ist.�Jst. ([u]; D)IJ ∧ ¬∃Kst(([u]; D)IK ∧ uJ⊂uK) 

129. max
u(D) ⊆ max-wk

u(D) 

                                                 

48 For example, assume that if we update a given input info state I with a DRS of the form [u]; D, we get 
three possible output states J1, J2 and J3 such that uJ1={a}, uJ2={a, b} and uJ3={a, c}. The PCDRT 
supremum-based form of maximization will simply discard the input info state I altogether because there is 
no supremum in the set {uJ1, uJ2, uJ3}. The weak, maxima-based form of maximization will retain the 
input info state I and the corresponding output states J2 and J3, but not J1. 
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Van den Berg (1994, 1996a) crucially needs the weaker form of maximization max-

wk
u (as opposed to the PCDRT one) to be able to account for weak / strong ambiguities. 

The reason for this is that he takes indefinites to be generalized quantifiers and, in his 

framework, generalized quantifiers are defined in terms of maximization49.  He, 

therefore, uses a maximization operator to give the meaning of both weak and strong 

donkey indefinites50.  

In the case of the weak indefinites, however, van den Berg needs to neutralize the 

maximization effect (since people usually do not put all their dimes in the meter), so he 

adds an additional singular condition (basically the same as the unique{u} condition 

defined in (44) above), which requires the weak indefinite dref to store a singleton set 

relative to a plural info state. Obviously, this can work only in tandem with weak 

maximization: as we saw in section 3.4 above (see definition (51) in particular), strong 

maximization plus a singular condition unique{u} requires model-level uniqueness and 

yields the Russellian analysis of definite description – and not the desired weak donkey 

indefinites. Van den Berg's meanings for weak and strong indefinites are provided in 

(130) below, rendered in a compositional PCDRT format for ease of comparison. 

130. Van den Berg's weak indefinites in PCDRT format:    

  ����� � �Pet.�P'et. max-wk
u([unique{u}]; P(u); P'(u)),    

   where e := se and t := (st)((st)t)      

   and unique{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui').         

Van den Berg's strong indefinites in PCDRT format:     

  ������ � �Pet.�P'et. max-wk
u(P(u); P'(u)) 

Van den Berg's analysis can account for simple instances of weak / strong donkey 

ambiguities, but it does not generalize to the mixed weak & strong donkey sentences 

analyzed in this chapter – and repeated in (131) and (132) below for convenience. The 

                                                 

49 For a similar definition of generalized quantification in PCDRT – which, crucially, does not include 
indefinites – see chapter 6 below. 

50 Analyzed in terms of his "collective" and "distributive" existential quantification respectively: see van 
den Berg (1994): 18-19 and van den Berg (1996a): 163-164. 
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reason is that van den Berg's weak donkey indefinites always introduce singleton sets, 

while the sentences in (131) and (132) are compatible with situations in which the value 

of the weak indefinites (�wk:
3

u � ������� ���� and ��wk:
3

u � !��	���� �
��� respectively) is 

different for different values of the strong indefinites (� str:
2

u � 	

� and � str:
2

u � �
��� 

respectively), i.e. in situations in which the credit cards vary from book to book and the 

horses from woman to woman. In the case of (131), for example, Van den Berg's analysis 

incorrectly pairs all the u2-books with the same u3-credit card, as shown in (133) below. 

131. Every 1
u  person who buys a str:

2
u  book on amazon.com and has a wk:

3
u  credit 

card uses it
3

u  to pay for it
2

u . 

132. Every 1
u  man who wants to impress a str:

2
u  woman and who has an wk:

3
u  

Arabian horse teaches her
2

u  how to ride it
3

u . 

133. [person{u1}]; max-wk 2
u ([book{u2}, buy_on_amazon{u1, u2}]);    

     max-wk 3
u ([unique{u3}, credit_card{u3}, have{u1, u3}]) 

Moreover, extracting the strong indefinite out of its VP-conjunct and scoping it over 

the weak one is not possible because the resulting syntactic structure violates the 

Coordinate Structure Constraint51. As far as the analysis of the weak / strong donkey 

ambiguity is concerned, the definition of maximization in van den Berg (1996a): 139, 

(3.1)52 is the same as the definition in van den Berg (1994)53, so the above observations 

apply to it too. 

                                                 

51 That the Coordinate Structure Constraint does indeed apply to this kind of examples is shown by the two 
sentences in (i) and (ii) below, where the �����-quantifiers cannot scope out of their own conjuncts to bind 
pronouns. 

(i) #Every person who buys everyu Harry Potter book on amazon.com and gives itu to a friend must be a 
Harry Potter addict. 

(ii) #Every boy who wanted to impress everyu girl in his class and who planned to buy heru a fancy 
Christmas gift asked his best friend for advice. 

52 See also the alternative formulation in van den Berg (1996a): 141, (3.2) and Lemma (3.3) for the relation 
between the two. 

53 Although it is not relevant for the weak / strong ambiguity problem, it is interesting to compare the two 
definitions. The definition of maximization in van den Berg (1996a): 139, (3.1) is different from the 
definition in van den Berg (1994) in two respect. First, the way in which new dref's are introduced is 
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In closing, note that van den Berg's system could in principle provide an alternative 

analysis of mixed weak & strong donkey sentences if it is extended with a form of 

anaphoric / relativized uniqueness of the kind defined in (134) below. If the uniqueness 

condition contributed by the weak indefinite is anaphoric / relativized to the strong 

indefinite, the value of the weak indefinite will be able to vary with the value of the 

strong indefinite; we will, therefore, be able to adequately translate the quantifier 

restrictor of sentence (131), as shown in (135) below. 

134. uniqueu'{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(u'i=u'i' → ui=ui') 

135. [person{u1}]; max-wk 2
u ([book{u2}, buy_on_amazon{u1, u2}]);    

     max-wk 3
u ([unique

2
u {u3}, credit_card{u3}, have{u1, u3}]) 

Such an analysis, however, is more complex than the PCDRT one: the meaning of 

the weak indefinites involves a maximization operator, just like the meaning of the strong 

indefinites, and, in addition, the weak indefinites involve a relativized uniqueness 

condition that effectively neutralizes their maximization operator. Moreover, the max-

                                                                                                                                                 

different from the one we have chosen in PCDRT: it is the relation I{u}J defined in (16b) above. As argued 
in section 3.2, introducing new dref's by means of {u} makes incorrect (overly strong) predictions with 
respect to mixed reading donkey sentences, so this does not amend the incorrect predictions made by the 
notion of maximization in van den Berg (1994).  

The second difference, however, provides us with an interesting notion of pseudo-selective maximization. 
As the definition in van den Berg (1996a): 133, (2.6) shows, he requires maximality not only with respect 
to output sets of individuals, but also with respect to the output sets of info states, which results in a notion 
of maximization that is intermediate between selective and unselective maximization.  The definition of 
max-unsel

u in (i) below is the PCDRT correspondent of this notion – compare it with the PCDRT 
definitions of selective (strong) maximization in (ii) below and unselective (strong) maximization in (iii). 

(i) max-unsel
u(D) := �Ist.�Jst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ ∧ K⊆J) 

(ii) max
u(D) := �Ist.�Jst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ) 

(iii) max(D) := �Ist.�Jst. DIJ & ∀Kst(DIK → K⊆J) 

However, the max-unsel
u operator does not add to the expressive power of the PCDRT system: as the 

identity in (iv) below shows, it can be defined in terms of unselective maximization, much as we were able 
to define the DRT/FCS/DPL version of pseudo-selective generalized quantification (repeated in (vi) below) 
in terms of unselective generalized quantification (repeated in (v)) (see section 2 of chapter 4). 

(iv) max-unsel
u(D) = max([u]; D) 

(v) det(D, D') := �is. DET(Di, Dom(D')),         

 where DET is the corresponding static determiner, Di = {js: Dij} and Dom(D') := {is: ∃js(Dij)} 

(vi) detu(D, D') := det([u]; D, D') 
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wk
u operator is more complex than the PCDRT max

u operator and its added complexity 

(i.e. the fact that it is maxima-based and not supremum-based) obscures the 

correspondence between dynamic maximization and static �-abstraction. Therefore, I 

believe that the PCDRT account is theoretically preferable.  

Moreover, empirically, it is not clear how to independently motivate the fact that the 

run-of-the-mill indefinite a
wk:

3
u

 credit card in sentence (131) above contributes an 

anaphoric condition unique
2

u {u3}, since it is not anaphorically dependent in any obvious 

way on the strong indefine a str:
2

u
 book. 

Appendix 

A1. Plural CDRT (PCDRT): The Formal System 

136. PCDRT (subscripts on terms represent their types).              

a. Atomic conditions – type (st)t:        

 R{u1, …, un} := �Ist. I≠Ø ∧ ∀is∈I(R(u1i, …, uni)),     

  for any non-logical constant R of type en
t,     

   where en
t is defined as follows: e0

t := t and em+1
t := e(em

t). 

 u1=u2 := �Ist. I≠Ø ∧ ∀is∈I(u1i=u2i)                

All atomic conditions are c-ideals.                             

b. Atomic DRS's (DRS's containing exactly one atomic condition) – type 

(st)((st)t)          

 [R{u1, …, un}] := �Ist.�Jst. I=J ∧ R{u1, …, un}J     

 [u1=u2] := �Ist.�Jst. I=J ∧ (u1=u2)J             

The domain Dom(D) and range Ran(D) of an atomic DRS D are c-ideals, where 

Dom(D) := {Ist: ∃Jst(DIJ)} and Ran(D) := {Jst: ∃Ist(DIJ)}.                        

c. Condition-level connectives (negation, closure, disjunction, implication), 

i.e. non-atomic conditions:        

 ~D := �Ist. I≠Ø ∧ ∀Hst(H≠Ø ∧ H⊆I → ¬∃Kst(DHK)),    

  where D is a DRS (type (st)((st)t)),      

 i.e. ~D := �Ist. I≠Ø ∧ ∀Hst≠Ø(H⊆I → H∉Dom(D)).             
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If Dom(D) is a c-ideal (hence Dom(D) = ℘+(∪Dom(D))), ~D is the unique 

maximal c-ideal disjoint from Dom(D): ~D = ℘+(Ds
M\∪Dom(D)).   

 !D := �Ist. ∃Kst(DIK),            

 i.e. !D := Dom(D).                 

If Dom(D) is a c-ideal, ~[~D] = !D.         

 D1 ∨ D2 := �Ist. ∃Kst(D1IK ∨ D2IK),       

 i.e. D1 ∨ D2 := Dom(D1)∪Dom(D2).                

 D1 → D2 := �Ist. ∀Hst(D1IH → ∃Kst(D2HK)),     

 i.e. D1 → D2 := �Ist. D1I ⊆ Dom(D2),     where DI := {Jst: DIJ},   

 i.e. D1 → D2 := (℘+(Ds
M)\Dom(D1)) ∪ {Ist∈Dom(D1): D1I ⊆ Dom(D2)}.  

d. Tests (generalizing 'atomic' DRS's):       

 [C1, …, Cm] := �Ist.�Jst. I=J ∧ C1J ∧ … ∧ CmJ 
54,     

  where C1, …, Cm are conditions (atomic or not) of type (st)t.  

The domain Dom(D) and range Ran(D) of any test D is a c-ideal if all the 

conditions are c-ideals.                    

e. DRS-level connectives (dynamic conjunction):      

 D1; D2 := �Ist.�Jst. ∃Hst(D1IH ∧ D2HJ),         

  where D1 and D2 are DRSs (type (st)((st)t))              

f. Quantifiers (random assignment of value to a dref):     

 [u] := �Ist.�Jst. ∀is∈I(∃js∈J(i[u]j)) ∧ ∀js∈J(∃is∈I(i[u]j))             

If a DRS D has the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm 

are c-ideals, we have that:        

 i. Ran(D) = C1∩ … ∩Cm = ℘+((∪C1)∩ … ∩(∪Cm));    

 ii. Dom(D) = ℘+({is: ∃js(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm))}).       

Since i[u1, …, un]j is reflexive, Ran(D)⊆Dom(D).                

g. Selective maximization:          

max
u(D) := �Ist.�Jst. ∃Hst(I[u]H ∧ DHJ) ∧ ∀Kst(∃Hst(I[u]H ∧ DHK) → uK⊆uJ),  

                                                 

54 Alternatively, [C1, …, Cm] can be defined using dynamic conjunction as follows:  

[C1, …, Cm] := �IstJst. ([C1]; …; [Cm])IJ, where [C] := �IstJst. I=J ∧ CJ. 
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 where D is a DRS of type (st)((st)t),        

i.e. max
u(D) := �Ist.�Jst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ)        

The max
u operator does not preserve the c-ideal structure of the domain or range 

of the embedded DRS.                 

Multiply embedded max
u operators can be reduced as follows:    

 max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),     

  if: i. u is not reintroduced in D';     

      ii. Dom([u']; D') = Dom(max
u'(D'));    

      iii. D' is of the form [u1, …, un | C1, …, Cm].    

h. Unselective maximization:        

 max(D) := �Ist.�Jst. DIJ & ∀Kst(DIK → K⊆J)              

i. Selective Generalized Determiners (non-atomic conditions):   

 detu(D1, D2) := �Ist. I≠Ø ∧ DET(u[D1I],  u[(D1; D2)I]),    

  where u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ}    

  and unique{u} := �Ist. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui')    

  and DET is the corresponding static determiner.         

The lexical entries for selective generalized determiners are:   

 ���� � �P'et. �Pet. [detu(P'(u), P(u))],     where e := se and t := (st)((st)t)           

j. Unselective Generalized Determiners (non-atomic conditions):  

 det(D1, D2) := �Ist. I≠Ø ∧ DET(max[D1I],  max[(D1; [!D2])I]),   

  where max[DI] := ∪{Jst: max(D)IJ}     

  and DET is the corresponding static determiner.         

The lexical entries for unselective generalized determiners are:   

  ��� � �D't. �Dt. [det(D', D)],     where t := (st)((st)t).          

k. Truth: A DRS D (type (st)((st)t)) is true with respect to an input info state Ist 

iff ∃Jst(DIJ), i.e. iff I∈Dom(D) (or, equivalently, I∈!D). 

We supplement the definition of basic PCDRT in (5) with the list of abbreviations in 

(137) below. 
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137. a. Additional abbreviations – DRS-level quantifiers (multiple random 

assignment, existential quantification, maximal existential quantification):  

 [u1, …, un] := [u1]; …; [un]        

 u(D) := [u]; D         

 m
u(D) := max

u(D)                   

b. Additional abbreviations – condition-level quantifiers (universal 

quantification):          

 u(D) := ~([u]; ~D),         

 i.e. u(D) := ~ u(~D).                

c. Additional abbreviations – DRS's (a.k.a. linearized 'boxes'):    

 [u1, …, un | C1, …, Cm] := �Ist.�Jst. ([u1, …, un]; [C1, …, Cm])IJ,   

  where C1, …, Cm are conditions (atomic or not),    

 i.e. [u1, …, un | C1, …, Cm] := �Ist.�Jst. I[u1, …, un]J ∧ C1J ∧ … ∧ CmJ.  

d. Additional abbreviations – negation based condition-level connectives (N- 

closure, N-disjunction, N-implication):     

 N-Closure: D := ~[~D]       

 N-Disjunction: D1  D2 := ~[~D1, ~D2]      

If Dom(D1) and Dom(D2) are c-ideals, then D1  D2 = 

℘+(∪(Dom(D1)∪Dom(D2))). Therefore, if Dom(D1) and Dom(D2) are c-ideals, 

we have that D1 ∨ D2 ⊆ D1  D2.        

 N-Implication: D1  D2 := ~(D1; [~D2])      

Note that u(D) = [u]  D.         

If D1 = [u1, …, un | C1, …, Cm] and C1, …, Cm, Dom(D2) are c-ideals, then D1  

D2 = ℘+({is: ∀js(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm) → j∈(∪Dom(D2))}). 

Therefore, if D1 = [u1, …, un | C1, …, Cm] and C1, …, Cm, Dom(D2) are c-ideals, 

we have that D1  D2 ⊆ D1 → D2.         

If, in addition, we can establish that ∀isjs(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm) → 

j∈(∪Dom(D2)), then D1 → D2 = D1  D2 = ℘+(Ds
M). 
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The definitions of the dynamic universal and existential quantifiers in (137b-c) 

above preserve their DPL / CDRT+GQ partial duality if we quantify over DRS's whose 

domains are c-ideals. 

138. ~ u(D) = u(~D),          

 if Dom(D) is a c-ideal (hence Dom(D) = Dom([~[~D]])). 

Just as in CDRT+GQ, the partial duality in (138) can be generalized by means of N-

implication as shown in (139) below. 

139. ~ u(D; D') = u(D  [~D']),        

 if: a. Dom(D') is a c-ideal (hence Dom(D) = Dom([~[~D]]));   

     b. D preserves c-ideals under pre-images 55,56. 

A2. Simplifying 'Max-under-Max' Representations 

The general version of the theorem is stated in (140) below. 

140. Simplifying 'max-under-max' representations:     

 max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),              

if the following three conditions obtain:       

 a. u is not reintroduced in D';        

 b. ∀Ist∀Xet ( ∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(max
u'(D')IJ ∧ X=uJ) );  

 c. max
u'(D') = [u']; D'; max

u'(D')57. 

                                                 

55 D preserves c-ideals under pre-images iff if ℑ' is a c-ideal, then ℑ={Ist: ∃Jst(DIJ ∧ J∈ℑ'} is a c-ideal. 

56 Proof: The reader can easily check that the following identities hold: u([D  [~D']) = u([~(D; 

[~[~D']]) = u([~(D; D')]) = ~([u]; [~[~(D; D')]]) = ~([u]; D; D') = ~ u(D; D'). �  

 

57 Proof: 

max
u(D; max

u'(D'))IJ = ∃H(([u]; D)IH ∧ max
u'(D')HJ) ∧ ∀K(∃H(([u]; D)IH ∧ max

u'(D')HK) → uK⊆uJ) 

We have that ∀Ist∀Xet(∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(max
u'(D')IJ ∧ X=uJ)) (condition (140b)). Hence: 

max
u(D; max

u'(D'))IJ = ∃H(([u]; D)IH ∧ max
u'(D')HJ) ∧ ∀K(∃H(([u]; D)IH ∧ ([u']; D')HK) → uK⊆uJ)  

= ∃H(([u]; D)IH ∧ max
u'(D')HJ)    ∧    ∀K(([u]; D; [u']; D')IK → uK⊆uJ). 

We have that max
u'(D') = [u']; D'; max

u'(D') (condition (140c)). Hence:       
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Given that, by condition (140a), u is not reintroduced in D', the second condition 

(140b) can be further reduced to the condition in (141) below. 

141. Given (140a), condition (140b) is equivalent to:      

 Dom([u']; D') = Dom(max
u'(D')).  

Moreover, based on the two facts in (142) below, we can further simplify condition 

(140c). 

142. a. If D' is of the form [u1, …, un | C1, …, Cm],      

 then ∀Ist∀Jst(([u']; D')IJ → ([u']; D')I=([u']; D')J)58.             

b. If ∀Ist∀Jst(([u']; D')IJ → ([u']; D')I=([u']; D')J),      

 then max
u'(D') = [u']; D'; max

u'(D')59. 

                                                                                                                                                 

max
u(D; max

u'(D'))IJ = ∃H(([u]; D)IH ∧ ([u']; D'; max
u'(D'))HJ)    ∧    ∀K(([u]; D; [u']; D')IK → uK⊆uJ)  

= ∃H(([u]; D; [u']; D')IH ∧ max
u'(D')HJ)    ∧    ∀K(([u]; D; [u']; D')IK → uK⊆uJ)  

= ∃H(([u]; D; [u']; D')IH ∧ ∀K(([u]; D; [u']; D')IK → uK⊆uJ) ∧ max
u'(D')HJ) 

Since u is not reintroduced in D' (condition (140a)), we have that uJ=uH. Hence: 

max
u(D; max

u'(D'))IJ = ∃H(([u]; D; [u']; D')IH ∧ ∀K(([u]; D; [u']; D')IK → uK⊆uH) ∧ max
u'(D')HJ)  

= ∃H(max
u(D; [u']; D')IH ∧ max

u'(D')HJ) = (max
u(D; [u']; D'); max

u'(D'))IJ. �  

58 Proof: ([u']; D') := �IstJst. I[u', u1, …, un]J ∧ C1J ∧ … ∧ CmJ. Therefore: 

([u']; D')IJ ∧ ([u']; D')JK   iff   I[u', u1, …, un]J ∧ C1J ∧ … ∧ CmJ ∧ J[u', u1, …, un]K ∧ C1K ∧ … ∧ CmK    

iff I[u', u1, …, un]J ∧ C1J ∧ … ∧ CmJ ∧ I[u', u1, …, un]K ∧ C1K ∧ … ∧ CmK   iff  ([u']; D')IJ ∧ ([u']; D')IK. 

�  

59 Proof:  

Claim1: If ∀IstJst(([u']; D')IJ → ([u']; D')I=([u']; D')J), then [u']; D' = [u']; D'; [u']; D' (note that the 
premise ensures that the relation denoted by [u']; D' is a KD45 kind of accessibility relation). 

Proof of Claim1: ([u']; D'; [u']; D')IJ   iff   ∃H(([u']; D')IH ∧ ([u']; D')HJ)   iff   (by the premise)  

∃H(([u']; D')IH ∧ ([u']; D')IJ)   iff   ∃H(([u']; D')IH) ∧ ([u']; D')IJ   iff   ([u']; D')IJ. �  

([u']; D'; max
u'(D'))IJ iff ∃H(([u']; D')IH ∧ max

u'(D')HJ) iff         

∃H(([u']; D')IH ∧ ([u']; D')HJ ∧ ∀K(([u']; D')HK) → u'K⊆u'J)) iff (by the premise)      

∃H(([u']; D')IH ∧ ([u']; D')HJ ∧ ∀K(([u']; D')IK) → u'K⊆u'J) iff               

([u']; D'; [u']; D')IJ ∧ ∀K(([u']; D')IK) → u'K⊆u'J) iff (by Claim1)              

([u']; D')IJ ∧ ∀K(([u']; D')IK) → u'K⊆u'J) iff max
u'(D')IJ. �  
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Thus, we obtain the corollary given in the main text of the chapter, repeated in (143) 

below. 

143. Simplifying 'max-under-max' representations (corollary):    

 max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),              

if the following three conditions obtain:       

 a. u is not reintroduced in D';        

 b. Dom([u']; D') = Dom(max
u'(D'));       

 c. D' is of the form [u1, …, un | C1, …, Cm].


