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Chapter 3. Compositional DRT 

 

1. Introduction 

The main goal of this chapter is to reformulate DPL (i.e. DPL without unselective 

and selective generalized quantification.) in type logic so that we will be able to define an 

interpretation procedure for English sentences that is both dynamic and compositional at 

the sub-sentential / sub-clausal level. 

Section 2 provides the basics of the dynamic type-logical system, i.e. it defines the 

underlying dynamic logic, which I will label Dynamic Ty2
1
. I follow the Compositional 

DRT (CDRT) and the Logic of Change in Muskens (1996) as closely as possible, the 

single most obvious exception being that I model discourse referents (dref's) as functions 

– as Muskens (1995b) does. 

The choice to model dref's as functions is motivated by the fact that the resulting 

system can be more easily compared with situation-based D-/E-type approaches (in 

which pronouns are basically functions from minimal situations to individuals) and by the 

fact that the system can be more easily generalized to account for:  

• multiple donkey sentences involving both weak and strong donkey anaphora, e.g. 

Every person who buys a book on amazon.com (strong) and has a credit card 

(weak) uses it (the credit card) to pay for it (the book);  

• plural anaphora, e.g. Some / Three men came in. They sat down;  

• modal anaphora and modal subordination, e.g. A wolf might enter the cabin. It 

would attack John first (example based on Roberts (1989)) 

Section 3 shows how to translate the DPL system into Dynamic Ty2.  

                                                 

1
 Dynamic Ty2 is basically the Logic of Change in Muskens (1991, 1995b, 1996). I label it "Dynamic Ty2" 

to make more transparent the fact that it actually is a generalization of Dynamic Predicate Logic 

(Groenendijk & Stokhof 1991). 
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Building on the translation of DPL into type logic, the following two sections 

introduce compositionality at the sub-sentential level: section 4 describes a rough-and-

ready syntax for the English fragment we will be concerned with, while section 5 defines 

its semantics (i.e. a type-driven translation procedure). The resulting version of CDRT is 

the basis for all the formal systems introduced throughout the remainder of the 

dissertation.  

Section 6 provides the CDRT analyses of a fairly wide range of examples – for 

example, we show how CDRT derives the two possible quantifier scopings of the 'every 

man loves a woman' kind of examples. 

The differences between the material in this chapter and Muskens (1995b, 1996) are 

for the most part presentational. The main four differences are: 

• the fact that section 2 provides a complete, detailed definition of the underlying 

Dynamic Ty2 logic; 

• the fact that Dynamic Ty2 allows static objects of arbitrary types as dref values; 

• the different analysis of proper names I end up adopting; 

• the novel dynamic analysis of ditransitive verbs and the scoping properties of their 

Dative and Accusative objects in section 6. 

Building on the foundations layed out in this chapter, the next chapter will add to 

the previous literature in a more substantial way by reformulating the DPL-style 

definitions of unselective and selective generalized quantification in type logic and, thus, 

extending CDRT to CDRT+GQ in a way that enables it to account for the weak / strong 

donkey ambiguity and the proportion problem. 

The chapter concludes with a summary of the main results (section 7). 

2. Dynamic Ty2 

I have already indicated in the previous chapter that Compositional DRT (CDRT) 

combines Montague semantics and DRT in a formalism based on ordinary type logic. As 

Muskens (1991) puts it: 
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"[The unification is] based on two assumptions and one technical insight. The first 

assumption is that meaning is compositional. The meaning of words (roughly) are 

the smallest building blocks of meaning and meanings may combine into larger 

and larger structures by the rule that the meaning of a complex expression is given 

by the meaning of its parts.  

The second assumption is that meaning is computational. Texts effect change, in 

particular, texts effect changes in context. The meaning of a sentence or text can 

be viewed as a relation between context states, much in the way that the meaning 

of a computer program can be viewed as a relation between program states. 

[…] The technical insight […] is that virtually all programming concepts to be 

found in the usual imperative computer languages are available in classical type 

theory. We can do any amount of programming in type theory. This suggests that 

type theory is an adequate tool for studying how languages can program context 

change. Since there is also some evidence that type theory is also a good vehicle 

for modelling how the meaning of a complex expression depends on the meaning 

of its parts, we may hope that it is adequate for a combined theory: a 

compositional theory of the computational aspects of natural language 

meaning."(Muskens (1991): 3-4
2
) 

2.1. Preliminaries 

The logic that underlies the entire present investigation is Ty2 (Gallin 1975; see also 

Janssen 1986 and Carpenter 1998). The set of basic types is {t, e, s}. Type t is the type of 

truth values; the logic is bivalent and total: the domain of type t (Dt ) is {T, F}. Type e is 

the type of individuals; I assume (for the time being) that De contains only atomic 

entities, i.e. there are no pluralities. The domain of type s (Ds) models DPL's variable 

assignments; several axioms will be needed to ensure that the entities of type s do 

actually behave as DPL variable assignments. 

Dref's are modeled as functions that take 'assignments' as arguments (i.e. entities of 

type s) and return a static object as value, e.g. an individual (type e). A dref for 

individuals will therefore be of type se. This is not as different from the DPL way of 

modeling dref's as it might seem: DPL models dref's as variables and a variable x is 

basically an instruction to look in the current info state, i.e. the current variable 

assignment g, and retrieve whatever individual the current info state associates with x – 

that individual is, of course, g(x).  

                                                 

2
 Page references are to the online version. 
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Therefore, instead of working directly with variables, we can work with their 'type-

lifted' versions, i.e. instead of x, we can take a dref to be a function of the form �g. g(x), 

which is basically the (set-theoretic) x
th

 projection function, which projects the sequence 

g onto the coordinate x. 

This is precisely what Dynamic Ty2 does: instead of modeling discourse referents 

as atomic entities (variables) and info states as functions taking dref's as arguments (i.e. 

variable assignments), we model info states as atomic entities (of type s)
3
 and dref's as 

functions taking info states as arguments. Thus, dref's are similar to Montague's 

individual concepts: they do not refer directly, but only as a function of the current 

discourse context. 

2.2. Definitions and Abbreviations 

Let us turn now to the definition of Dynamic Ty2. For the most part, the definitions 

are the usual Ty2 ones. I will state what makes this logic a Dynamic Ty2 in plain words 

before or after each definition. The reader should feel free to just glance at these 

observations and move on to section 3, which shows how to translate DPL into Dynamic 

Ty2 and, by doing this, indirectly provides the empirical motivation for Dynamic Ty2. 

The definition of types in (1) below isolates a subset of types as the types of dref's: 

these are functions from 'assignments' (type s) to static objects of arbitrary type. This 

seems to be more than sufficient for all the analyses in the present work
4
. We restrict our 

dref's to functions from 'variable assignments' to static objects of arbitrary types because, 

if we allow for arbitrary dref types, e.g. s(st), we might run into counterparts of Russell's 

paradox – see Muskens (1995b): 179-180, fn. 10. 

                                                 

3
 We can define a notion of 'info state' g that is closer to the DPL variable assignments, e.g. for any 

'assignment' i of type s, let g
i
 be ��τ. �i, where τ∈DrefTyp.  If we consider only dref's for individuals, i.e. τ 

:= se, g
i
 is a function of type (se)e, that assigns values to dref's much like a DPL variable assignment 

assigns values to variables. 

4
 But see Stone & Hardt (1999) for an account of strict/sloppy readings that employs 'dynamic' drefs, i.e. 

dref's of type s(s(…)). These are just the pointers introduced in Janssen (1986). 
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In fact, throughout this work, I will be much more restrictive and use dref's that 

have basic static types (other than t) as codomains. The fact that we do not require dref's 

for higher-order static objects in our analyses can be to a certain extent taken to support 

the empirical hypothesis that natural languages strongly prefer to use discourse referents 

for entities of a basic static type
5
.   

The logic, however, should allow for dref's that have any arbitrary static type as 

their codomain, given that the logic should provide a framework within which any 

plausible analysis can be formulated (including analyses involving dref's for higher-order 

static objects) and compared with alternative accounts. 

1. Dynamic Ty2 – the set of dref types DRefTyp and the set of types Typ.             

a. The set of basic static types BasSTyp: {t, e} (truth-values and individuals).            

b. The set of static types STyp: the smallest set including BasSTyp and s.t., if 

σ,τ∈STyp, then (στ)∈STyp.                   

c. The set of dref types DRefTyp: the smallest set s.t., if σ∈STyp, then 

(sσ)∈DRefTyp.          

d. The set of basic types BasTyp: BasSTyp∪{s} ('variable assignments').             

e. The set of types Typ: the smallest set including BasTyp and s.t., if σ,τ∈Typ, 

then (στ)∈Typ. 

The definition in (2) below provides some typical examples of expressions of 

various types and introduces several notational conventions that will improve the 

readability of the subsequent analyses. 

2. Dynamic Ty2 – basic expressions.              

For any type τ∈Typ, there is a denumerable set of τ-constants Conτ and a 

denumerably infinite set of τ-variables Varτ = {�τ,0, �τ,1, …}, e.g.       

Cone = {john, mary, dobby, …, a, a', …, b, b', …, a0, a1, a2, …}       

Conet = {donkey, farmer, house_elf, witch, …, leave, drunk, walk, …}     

Cone(et) = {fall_in_love, own, beat, have, …}         

                                                 

5
 See also the related "No higher-order variables" hypothesis in Landman (2006). 
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Cons = {h, h', …, i, i', …, j, j', …, k, k', …, h0, h1, …, i0, i1, …}      

Conse = {u, u', u'', …, u0, u1, u2, …}               

Notational conventions:         

 x, x',…, y, y', …, z, z',…, x0, x1, … are variables of type e;   

 h, h', h'', …, i, i', i'', …, j, j', j'', … are variables of type s;    

 f, f', f'', … f0, f1, f2, … are variables over terms of type τ,    

  for any τ∈STyp;       

 v, v', v'', …, v0, v1, v2, … are variables over terms of type τ,    

  for any τ∈Typ. 

The definition in (3) introduces the term i[δ]j of type t that is meant to model the 

DPL random variable assignment. Intuitively, the formula i[δ]j requires the info states i 

and j to differ at most with respect to the value they assign to def δ. Unlike Muskens 

(1995b, 1996), I introduce this as a basic formula of the language and not as an 

abbreviation, because the set DRefTyp of dref types is infinite and the abbreviation 

would require an infinite conjunction of formulas (as indicated in (4d) below). 

I also introduce identity as a basic operator of the language; although it can be 

defined when the logic is interpreted relative to standard frames (as in (4a) below), I want 

to allow for the possibility of interpreting it relative to generalized (Henkin) frames, in 

which case identity is not definable anymore, just as it is not in many-sorted first-order 

logic. 

Finally, note that proper names with capitals, e.g. John, are dref's for individuals 

(type se) and they are constant functions, a.k.a. specific dref's (see Muskens (1996)). 

They are defined in terms of the corresponding constant of type e, e.g. john. 

3. Dynamic Ty2 – terms.                

For any type τ∈Typ, the set of τ-terms Termτ is the smallest set s.t.:  

 Conτ∪Varτ ⊆ Termτ;        

 α(β)∈Termτ if α∈Termστ and β∈Termσ for any σ∈Typ;   

 (�v. α)∈Termτ if τ=(σρ), v∈Varσ and α∈Termρ for any σ,ρ∈Typ; 

 (α=β)∈Termτ if τ=t and α,β∈Termσ for any σ∈Typ;   
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 (i[δ]j)∈Termτ if τ=t and i,i'∈Vars and δ∈Termσ, for any σ∈DRefTyp.        

Abbreviations (the subscripts on terms indicate their type):    

 Johnse := �is. johne, Maryse := �is. marye …;     

 T := �ft. f = �ft. f;  F := �ft. ft = �ft. T;     

 ¬ := �ft. ft = F;   ∧ := �ftf't. (�f''tt. f''(f)=f') = �f''tt. f''(T)) 
6
;  

 → := �ftf't.  (f ∧ f') = f;  � := �ftf't. ¬f → f';     

 ∀v(φ) := �v. φ = �v. T;  ∃v(φ) := �v. ¬φ ≠ �v. T. 

Definition (4) introduces four axioms that Dynamic Ty2 models have to satisfy. 

These axioms make sure that the entities of type s actually behave as variable 

assignments intuitively do
7
. 

First, Axiom1 employs a non-logical constant udref to identify unspecific dref's, i.e. 

the dref's that are supposed to behave as the DPL variables, e.g. u0, u1 etc. The constant 

function John (John := �i. johne – see (3) above) for example is a specific dref: although 

it is of type se, i.e. the type of dref's for individuals, it does not behave as a DPL variable 

– its value does not vary from 'assignment' to 'assignment'; if anything, specific dref's are 

the counterpart of DPL constants, not variables. 

Axiom2 makes sure that all the unspecific dref names actually name different 

functions: if two distinct names denoted the same function, we would accidentally update 

both whenever we would update one of them. 

Axiom3 ensures that, just like DPL variable assignments, two 'assignments' (i.e. two 

entities of type s) are different only if they assign different values to some dref δ. If they 

assign the same values to all dref's, the 'assignments' are identical. 

Finally, Axiom4 ensures that we have enough 'assignments': for any given 

'assignment' i, any unspecific dref v and any possible dref value (i.e. static object) f of the 

                                                 

6
 Equivalently, ∧ := �ftf't. ∀f''t(tt)(f''(f, f') = f''(T, T)) or ∧ := �ftf't. ∀f''tt(f = (f''(f) = f''(f'))). 

7
 To get a better grasp of the axioms, the reader might find it instructive to construct a model for them, i.e. 

to construct the domain Ds given the domain De and the set of udref names. 
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appropriate type, there is an 'assignment' j that differs from i at most with respect to the 

value it assigns to v and which in fact assigns f as the value of v.  

4. Dynamic Ty2 – frames, models, assignments, interpretation and truth.            

a. A standard frame F for Dynamic Ty2 is a set D = {Dτ: τ∈Typ} s.t. De, Dt and 

Ds are pairwise disjoint sets and Dστ = {�: � is a total function from Dσ to Dτ}, for 

any σ,τ∈Typ.           

b. A model M for Dynamic Ty2 is a pair <F
M

, �⋅�M
> s.t.:     

- F
M

 is a standard frame for Dynamic Ty2;                  

- �⋅�M
 assigns  an object �α�M∈D

M

τ to each α∈Conτ for any τ∈Typ,   

 i.e. �⋅�M
 respects typing;                 

- M satisfies the following axioms
8
:                  

Axiom1 ("Unspecific dref's"): udref(δ),       

 for any unspecific dref name δ of any type (sτ)∈DRefTyp,    

  e.g. u0, u1, … but not John, Mary, …;    

 udref is a non-logical constant
9
 intuitively identifying the 'variable' dref's,  

  i.e. the non-constant functions of type sτ (for any τ∈STyp)  

  intended to model DPL-like variables.               

Axiom2 ("Dref's have unique dref names"): udref(δ) ∧ udref(δ') → δ≠δ',   

 for any two distinct dref names δ and �' of type τ,     

 for any type τ∈DRefTyp,       

  i.e. we make sure that we do not accidentally update a dref �' when 

  we update �.         

Axiom3 ("Identity of 'assignments'"): ∀isjs(i[]j → i=j).              

Axiom4 ("Enough 'assignments'"): ∀is∀vsτ∀fτ(udref(v) → ∃js(i[v]j ∧ vj=f)), 

 for any type τ∈ STyp.                  

                                                 

8
 The axioms / axiom schemes are based on Muskens (1995b, 1996). 

9
 In fact, udref stands for an infinite family of non-logical constants of type (τt) for any τ∈DRefTyp. 

Alternatively, we can assume a polymorphic type logic with infinite sum types, in which udref is a 

polymorphic function. For a discussion of sum types, see for example Carpenter (1998): 69 et seqq.  
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c. An M-assignment θ is a function that assigns to each variable v∈Varτ an 

element θ(v)∈D
M

τ for any τ∈Typ. Given an M-assignment θ, if v∈Varτ and 

d∈D
M

τ, then θv/d
 is the M-assignment identical with θ except that it assigns d to v.  

d. The interpretation function �⋅�M,θ
 is defined as follows:    

 �α�M,θ
 = �α�M

     if     α∈Conτ for any τ∈Typ;    

 �α�M,θ
 = θ(α)        if     α∈Varτ for any τ∈Typ;    

 �α(β)�M,θ
 = �α�M,θ

 (�β�M,θ
);      

 ��v. α�M,θ
 = ��α�M, /�v d

: d∈D
M

σ�     if     v∈Varσ;    

 �α=β�M,θ
 = T     if     �α�M,θ

 =�β�M,θ
     

        = F     otherwise.       

 �i[δ]j�M,θ
 = T     if     δ∈Termσ, σ∈DRefTyp and     

 �∀vσ(udref(v) ∧ v≠δ → vi=vj)�M,θ
 = T and      

 �∀vτ(udref(v) → vi=vj�M,θ
 = T for all τ≠σ, τ∈DRefTyp   

         = F     otherwise.                 

e. Truth: A formula φ∈Termt is true in M relative to θ iff �φ�M,θ
 = T.       

A formula φ∈Termt is true in M iff it is true in M relative to any assignment θ. 

3. Translating DPL into Dynamic Ty2 

In this section, we will see how to encode DPL (and therefore classical DRT / FCS) 

in Dynamic Ty2. We do this by providing a list of abbreviations that follows closely the 

definition of DPL in the previous chapter: the definiendum has the form of a DPL 

expression, while the definiens is a term of Dynamic Ty2. As soon as the abbreviations 

are in place, we will see how they are employed by analyzing the examples we have 

previously used as empirical motivation for DPL. 

3.1. Definitions and Abbreviations 

Definition (5) below corresponds to the DPL definition in the preceding chapter. 

Note that '∧' is the Dynamic Ty2 conjunction, i.e. the official, type-logical conjunction, 

and '¬' is the Dynamic Ty2 negation, i.e. the official, type-logical negation. In contrast, 

dynamic conjunction ';' and dynamic negation '~' are simply abbreviations.  
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Note also that the DPL notion of random assignment [x] has as its direct 

correspondent the random assignment [u] of Dynamic Ty2. 

The DPL distinction between conditions and DRS's is formulated in terms of types. 

Conditions are terms of type st, i.e. they denote sets of 'assignments'; intuitively, 

conditions denote the set of 'assignments' that satisfy them. DRS's are terms of type s(st), 

i.e. binary relations between 'assignments'; intuitively, a DRS D is satisfied by a pair of 

two 'assignments' i and j, i.e. Dij=T
10

, iff the output 'assignment' j is the result of non-

deterministically updating the input 'assignment' i with D. 

5. DPL in Dynamic Ty2 (subscripts on terms represent their types).            

a. Atomic conditions – type st:        

 R{u1, …, un} := �is. R(u1i, …, uni),       

  for any non-logical constant R of type e
n
t,     

  where e
n
t is defined as follows: e

0
t := t and e

m+1
t := e(e

m
t)

11
 

 u1=u2 := �is. u1i=u2i                             

b. Atomic DRS's (DRS's containing exactly one atomic condition) – type s(st)   

(corresponding to DPL atomic formulas):       

 [R{u1, …, un}] := �isjs. i=j ∧ R{u1, …, un}j      

 [u1=u2] := �isjs. i=j ∧ u1j=u2j                             

c. Condition-level connectives (negation), i.e. non-atomic conditions:  

 ~D := �is. ¬∃ks(Dik) 
12

,     where D is a DRS (term of type s(st))  

  i.e. ~D := �is. i∉Dom(D),     where Dom(D) := {is: ∃js(Dij)}           

d. Tests (generalizing 'atomic' DRS's):       

                                                 

10
 Recall that T and F are the model-theoretic objects intuitively modeling 'True' and 'False', while their 

bolded counterparts T and F are the Dynamic Ty2 constants whose semantic values are T and F 

respectively. 

11
 The definition of e

n
t is due to Muskens (1996): 157-158. 

12
 Strictly speaking, the Dynamic Ty2 translation of DPL negation is defined as TR(~φ) := [~TR(φ)], i.e.  

TR(~φ) := [�is. ¬∃ks(TR(φ)ik)]. TR is the translation function from DPL to Dynamic Ty2 which is 

recursively defined in the expected way, e.g. for DPL atomic formulas, we have that TR(R(x1, …, xn)) := 

[R{u1, …, un}] and TR(x1=x2) := u1=u2. 
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 [C1, …, Cm] := �isjs. i=j ∧ C1j ∧ … ∧ Cmj 
13

,      

  where C1, …, Cm are conditions (atomic or not) of type st.             

e. DRS-level connectives (dynamic conjunction):      

 D1; D2 := �isjs. ∃hs(D1ih ∧ D2hj),     where D1 and D2 are DRS's (type s(st))           

f. Quantifiers (random assignment of value to a dref):     

 [u] := �isjs. i[u]j                   

g. Truth: A DRS D (type s(st)) is true with respect to an input info state is iff 

∃js(Dij), i.e.  i∈Dom(D) 
14

. 

The abbreviations introduced in definition (6) below correspond to the DPL 

abbreviations defined in the previous chapter. '∃' and '∀' are the official type-logical 

existential and universal quantifiers, while ' ' and ' ' are the abbreviations corresponding 

to the dynamic (DPL-style) existential and universal quantifiers. I use '→' and '∨' both for 

the official Dynamic Ty2 and for the dynamic DPL-style implication and, respectively, 

disjunction; they can be easily disambiguated in context. 

6. a. Additional abbreviations – condition-level connectives (closure, 

disjunction, implication):        

 !D:= ~[~D] 
15

,         

  i.e. !D := �is. ∃ks(Dik) or simply: !D := Dom(D)   

 D1 ∨ D2 := ~([~D1]; [~D2]),        

  i.e. D1 ∨ D2 := ~[~D1, ~D2]      

  i.e. D1 ∨ D2 := �is. ∃ks(D1ik ∨ D2ik);      

                                                 

13
 Alternatively, [C1, …, Cm] can be defined using dynamic conjunction as follows:  

[C1, …, Cm] := �isjs. ([C1]; …; [Cm])ij, where [C] := �isjs. i=j ∧ Cj. 

14
 Or, equivalently, i∈!D – see the abbreviation of '!' in (6) below. 

15
 Strictly speaking, DPL anaphoric closure is translated in Dynamic Ty2 as TR(!φ) := [~TR(~φ)], i.e.  

TR(!φ) := [~[~TR(φ)]] = [~[�js. ¬∃ls(TR(φ)jl)]] = [�is. ¬∃ks([�js. ¬∃ls(TR(φ)jl)]ik)], i.e.  TR(!φ) := [�is. 

¬∃ks(i=k ∧ ¬∃ls(TR(φ)kl))] = [�is. ¬(¬∃ls(TR(φ)il))], i.e. TR(!φ) := [�is. ∃ls(TR(φ)il)] = Dom(TR(φ)).  

TR is the translation function from DPL to Dynamic Ty2 – see fn. 12 above. 
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  equivalently: D1 ∨ D2 := Dom(D1)∪Dom(D2) 
16

    

 D1 → D2 := ~(D1; [~D2]),        

  i.e. D1 → D2 := �is. ∀hs(D1ih → ∃ks(D2hk)) 
17

,    

  i.e. D1 → D2 := �is. (D1)i ⊆ Dom(D2),     where (D)i := {js: Dij}           

b. Additional abbreviations – DRS-level quantifiers (multiple random 

assignment, existential quantification):       

 [u1, …, un] := [u1]; …; [un]        

 u(D) := [u]; D                   

c. Additional abbreviations – condition-level quantifiers (universal 

quantification):          

 u(D) := ~([u]; [~D]),       

  i.e. ~[u | ~D] or [u] → D or equivalently ~ u([~D]),   

  i.e. u(D) := �is. ∀hs(i[u]h → ∃ks(Dhk)),     

  i.e. u(D) := �is. ([u])i ⊆ Dom(D)               

d. Additional abbreviations – DRS's (a.k.a. linearized 'boxes'):    

 [u1, …, un | C1, …, Cm] := �isjs. ([u1, …, un]; [C1, …, Cm])ij,    

  where C1, …, Cm are conditions (atomic or not),    

  i.e. [u1, …, un | C1, …, Cm] := �isjs. i[u1, …, un]j ∧ C1j ∧ … ∧ Cmj. 

3.2. Cross-sentential Anaphora 

Going through the examples that motivated DPL and classical DRT / FCS in the 

first place will help us get familiar with Dynamic Ty2 translations and, at the same time, 

provide the empirical motivation for various features of the formal system. Consider 

again the mini-discourse in (7-8) below, containing two instances of cross-sentential 

anaphora. 

                                                 

16
 D1 ∨ D2 := ~([~D1]; [~D2]) = �i. ¬∃k(([~D1]; [~D2])ik) = �i. ¬∃kl([~D1]il ∧ [~D2]lk) = �i. ¬∃kl(i=l ∧ 

¬∃h(D1ih) ∧ l=k ∧¬∃h'(D2lh')) = �i. ¬(¬∃h(D1ih) ∧ ¬∃h'(D2ih')) = �i. ∃h(D1ih) ∨ ∃h'(D2ih') = �i. ∃k(D1ik 

∨ D2ik). 

17
 D1 → D2 := ~(D1; [~D2]) = �i. ¬∃k((D1; [~D2])ik) = �i. ¬∃kl(D1il ∧ [~D2]lk) = �i. ¬∃kl(D1il ∧ l=k 

∧¬∃h(D2lh)) = �i. ¬∃k(D1ik ∧ ¬∃h(D2kh)) = �i. ∀k(D1ik → ∃h(D2kh)). 
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7. A 1
u

 house-elf fell in love with a 2
u

 witch. 

8. He
1

u  bought her
2

u  an 3
u

 alligator purse. 

I provide its DRT-style representation in DPL and its DRT-style representation in 

Dynamic Ty2 in (9) and (10) below. The formula in (11) is the 'unpacked' type-logical 

term of type s(st) translating the discourse in (7-8). Finally, the formula in (12) provides 

the truth-conditions associated with the Dynamic Ty2 term in (11), derived on the basis 

of the definition of truth for DRS's in (5g) and the "Enough States" axiom (Axiom4 in 

(4b) above).  

Note that the formula in (12) capturing the truth-conditions of discourse (7-8) 

contains a vacuous �-abstraction over input 'assignments', which is intuitively correct 

given that the discourse does not contain any item whose reference is dependent on the 

input context, as for example a deictically used pronoun would be. 

9. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]; [z | alligator_purse(z), buy(x, y, 

z)] 

10. [u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];      

[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

11. �isjs. i[u1, u2, u3]j ∧ house_elf(u1j) ∧ witch(u2j) ∧ fall_in_love(u1j, u2j) ∧   

          alligator_purse(u3j) ∧ buy(u1j, u2j, u3j) 

12. �is. ∃xe∃ye∃ze(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y) ∧    

            alligator_purse(z) ∧ buy(x, y, z)) 

3.3. Relative-Clause Donkey Sentences 

Let us turn now to the relative-clause donkey example in (13) below. The formula in 

(14) is its DPL translation (abbreviated DRT-style), while the corresponding Dynamic 

Ty2 formula is provided in (15). Note the double square brackets on the left- and right-

hand side of the Ty2 representation: the external square brackets are due to the fact that 

dynamic implication '→' is a condition-level connective (see definition (6a) above), so we 

need the extra square brackets to obtain a test, i.e. a DRS (which is a term of type s(st)), 

out of a condition of type st. 
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13. Every 1
u

 house-elf who falls in love with a 2
u

 witch buys her
2

u  an 3
u

 alligator 

purse. 

14. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]      

 → [z | alligator_purse(z), buy(x, y, z)] 

15. [[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}]     

 → [u3 | alligator_purse{u3}, buy{u1, u2, u3}]] 

The DRT-style representation in (15) above is 'unpacked' as the type-logical term in 

(16) below, whose truth-conditions are given in (17); note again the vacuous �-

abstraction over 'assignments', followed by a static first-order formula that captures the 

intuitively correct truth-conditions for sentence (13) above. 

16. �isjs. i=j ∧ ∀hs(i[u1, u2]h ∧ house_elf(u1h) ∧ witch(u2h) ∧ fall_in_love(u1h, u2h)  

  → ∃ks(h[u3]k ∧ alligator_purse(u3k) ∧ buy(u1k, u2k, u3k))) 

17. �is. ∀xe∀ye(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y)     

       → ∃ze(alligator_purse(z) ∧ buy(x, y, z))) 

3.4. Conditional Donkey Sentences 

The conditional donkey sentence repeated in (18) below receives the same Dynamic 

Ty2 translation and the same truth-conditions as the relative-clause donkey sentence in 

(13) above (see (15), (16) and (17)). Thus, just as DPL, the Dynamic Ty2 translations 

capture the intuitive correspondence between the generalized determiner every and bare 

conditional structures. 

18. If a 1
u

 house-elf falls in love with a 2
u

 witch, he
1

u  buys her
2

u  an 3
u

 alligator purse. 

Finally, we turn to the intuitively equivalent negative donkey sentences we have 

analyzed in DPL in the previous chapter – repeated in (19), (20) and (21) below. 

19. No
x
 house-elf who falls in love with a

y
 witch buys hery an

z
 alligator purse. 

20. If ax
 house-elf falls in love with a

y
 witch, hex never buys hery an

z
 alligator purse. 

21. If ax
 house-elf falls in love with a

y
 witch, hex doesn't buy hery an

z
 alligator purse. 
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Just as in the case of the DPL, we can translate sentence (19) in Dynamic Ty2 in 

two different ways, i.e. we can translate the determiner no either by means of a 

combination of negation and existential quantification or by means of a combination of 

negation and universal quantification. But this is not a problem for Dynamic Ty2 just as it 

wasn't for DPL: as expected, the DPL partial duality between existential and universal 

quantification is inherited in Dynamic Ty2, so the two translations, i.e. the two st terms in 

(22) below, are identical.  

The terms in (22) are of type st because both dynamic negation '~' and universal 

quantification  are condition-level connectives. The corresponding tests – which are 

DRS's, i.e. terms of type s(st) – are obviously identical if the conditions they are based on 

are identical. 

22. ~ u(D; D') = u([D → [~D']]) 
18

 

And, given the identity in (22), we can translate sentence (19) either way
19

, as 

shown in (23) and (25) below. Furthermore, these equivalent translations are also 

equivalent to the DRT-style formulas in (24) and (26).  

Note that the universal quantification over pairs of house-elves and witches is 

exhibited in the clearest way by (26), since any dref introduced in the antecedent of a 

conditional ends up being quantified over universally
20

. 

                                                 

18
 u(D → [~D']) = �is. ∀hs([u]ih → ∃ks((D → [~D'])hk)) 

= �is. ∀hs([u]ih → ∃ks(h=k ∧ ∀h's(Dhh' → ∃k's([~D']h'k'))) = �is. ∀hs([u]ih → ∀h's(Dhh' → ∃k's(h'=k' ∧ 

(~D')k'))) 

= �is. ∀hs([u]ih → ∀h's(Dhh' → (~D')h')) = �is. ∀hs([u]ih → ∀h's(Dhh' → ¬∃ks(Dh'k)) 

= �is. ∀hs([u]ih → ∀h's(Dhh' → ¬∃ks(Dh'k)) = �is. ¬∃hs([u]ih ∧ ¬∀h's(Dhh' → ¬∃ks(Dh'k)) 

= �is. ¬∃hs([u]ih ∧ ∃h's¬(Dhh' → ¬∃ks(Dh'k)) = �is. ¬∃hs([u]ih ∧ ∃h's(Dhh' ∧ ∃ks(Dh'k)) 

= �is. ¬∃hs∃h's∃ks([u]ih ∧ Dhh' ∧ Dh'k) = �is. ¬∃ks(([u]; D; D')ik) = ~ u(D; D')  

19
 I assume that terms that are equivalent to (Dynamic Ty2 translations of DPL) translations of English 

sentences are also acceptable as translations. 

20
 It is easily checked that the following identities hold:  

u([D → D']) = [u] → [D → D'] = ([u]; D) → D' = u(D) → D'. 
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23. [~ u1([house_elf{u1}]; u2([witch{u2}, fall_in_love{u1, u2}]);   

 u3([alligator_purse{u3}, buy{u1, u2, u3}]))] 

24. [~[u1, u2, u3 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2},    

           alligator_purse{u3}, buy{u1, u2, u3}]] 

25. [ u1([house_elf{u1}]; u2([witch{u2}, fall_in_love{u1, u2}])    

 → [~ u3([alligator_purse{u3}, buy{u1, u2, u3}])])] 

26. [[u1, u2| house_elf{u1}, witch{u2}, fall_in_love{u1, u2}]     

 → [~[u3 | alligator_purse{u3}, buy{u1, u2, u3}]]] 

Note also that the formula in (26) is in fact the compositional translation of the 

negative conditional sentences in (20) and (21) above.  

The Dynamic Ty2 truth-conditions for all three sentences are most easily derived 

from formula (24) – and they are provided in (27) below. Just as before, we have vacuous 

�-abstraction over 'assignments', followed by a static first-order formula that captures the 

intuitively correct truth-conditions for the three English sentences under consideration. 

27. �is. ¬∃xe∃ye∃ze(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y) ∧    

    alligator_purse(z) ∧ buy(x, y, z)) 

Thus, we see that Dynamic Ty2 can capture everything that DPL (hence classical 

DRT / FCS) does – including compositionality down to sentence- / clause-level. 

However, with Dynamic Ty2, we have all the ingredients to go compositional at the sub-

sentential / sub-clausal level, which is what sections 4 and 5 below endeavor to do. I 

conclude this section with a brief discussion of the Dynamic Ty2 analysis of proper 

names.  

Intermezzo: Proper Names in Dynamic Ty2 

The main choice for the analysis of proper names in Dynamic Ty2 is between: (i) a 

pronoun-like analysis, whereby a proper name is basically interpreted as a deictically 

used pronoun, whose referent is specified by the input discourse context, and (ii) an 

indefinite-like analysis, whereby a proper name introduces a new individual-level dref 
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whose referent is constrained to be the individual (rigidly) designated by the proper 

name. 

Following Muskens (1996), I have introduced specific dref's corresponding to 

proper names, i.e. constant functions from 'assignments' to individuals, e.g. John := �is. 

johne. However, unlike Muskens – who chooses the pronoun-like analysis of proper 

names –, I will not interpret proper names as denoting such specific dref's, but I will 

instead let proper names introduce an unspecific dref and an identity condition between 

the unspecific dref and the specific dref that is the Dynamic Ty2 correspondent of the 

proper name. For example, the proper name �
�� is represented as shown in (28) below. 

28. �
��� � [u | u=John],     i.e. �isjs. i[u]j ∧ uj=Johnj,     i.e. �isjs. i[u]j ∧ uj=john 

As (28) shows, the newly introduced unspecific dref is constrained to have the value 

johne in the output info state j. This interpretation of proper names is in fact equivalent to 

the external anchoring of proper names in Kamp & Reyle (1993): 248 – and it is similar 

to the interpretation of proper names in Kamp (1981). Moreover, pronouns anaphoric to 

proper names are taken to be anaphoric to the unspecific dref introduced by the proper 

name, as exemplified by (29) below. 

29. … John
u
 … heu … 

As Muskens (1996): 151-153 observes, this kind of representation seems needlessly 

complex: why not simply take the proper name to be anaphoric to its corresponding 

specific dref? This would basically be equivalent to using the proper name as a deictic 

anaphor, interpreted directly relative to the input context (a.k.a. info state or 

'assignment')
21

. Moreover, a pronoun anaphoric to a proper name would be anaphoric to 

the corresponding specific dref, as shown in (30) below. From this perspective, the use of 

a pronoun anaphoric to a proper name and the use of the proper name itself are not really 

different. 

                                                 

21
 Which is basically what the causal chain theory of proper names proposes – see Kripke (1972) and 

Kaplan (1977/1989a, 1989b) among others. 
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30. … JohnJohn … heJohn … 

This conflation of proper names and pronouns requires additional justification, as 

the two are different in at least two respects. First, a proper name is completely felicitous 

in a discourse initial position, while a felicitous pronoun requires a suitable context 

(linguistic or non-linguistic) to have previously been set up – as shown in (31) and (32) 

below. 

31. Dobby entered The Three Broomsticks. 

32. ??HeDobby entered The Three Broomsticks. 

Second, when the proper name has been (recently) mentioned, using an anaphoric 

pronoun is felicitous, while using the proper name again is usually not, as shown in (33) 

and (34) below. 

33. Dobby entered the Three Broomsticks. HeDobby ordered a butterbeer. 

34. Dobby entered the Three Broomsticks. ??Dobby ordered a butterbeer. 

These two observations seem to argue for the indefinite-like and against the 

pronoun-like analysis of proper names.  

However, the pronoun-like analysis of proper names, i.e. representing proper names 

as deictic pronouns together with the assumption that proper names are by default salient 

in the input context, is supported by the interaction between anaphora to proper names 

and negation. Generally, an indefinite introduced in the scope of negation is not 

anaphorically accessible to a subsequent pronoun, as shown in (35) below. In contrast, a 

proper name is anaphorically accessible when it occurs in the scope of negation, as (36) 

shows. 

35. Hermione didn't see a
u
 / any

u
 house-elf in the Three Broomsticks.         

#Heu was on vacation in the Bahamas. 

36. Hermione didn't see Dobby in the Three Broomsticks.          

HeDobby was on vacation in the Bahamas. 

The fact that dynamic negation is defined as a condition in (5c) above, i.e. as 

externally static, correctly predicts the infelicity of anaphora in (35): the pronoun, despite 
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being co-indexed with the indefinite, ends up being interpreted as a deictic pronoun, 

picking up whatever the input context associates with the dref u.  

And this is the reason for the infelicity of the discourse in (35): the co-indexation of 

the indefinite and the pronoun formally encodes that the pronoun should be 'bound' by the 

indefinite, i.e., as far as the speaker is concerned, the indefinite and the pronoun should 

be co-referent / anaphorically connected. However, the pronoun is actually 'unbound', i.e. 

independent of the individual non-deterministically made salient by the indefinite, since 

the pronoun ends up referring to some (arbitrary) individual that is already salient in the 

input discourse context – and this happens despite the fact that the speaker intended the 

pronoun to refer to the individual made salient by the indefinite. 

Therefore, the hypothesis that proper names are by default salient in the input 

context (which underlies the representation of proper names as deictically used pronouns 

of some sort) correctly predicts that the anaphoric pronoun in (36) is felicitously used – 

while the indefinite-like analysis of proper names, according to which they introduce an 

unspecific dref to which subsequent pronouns are anaphoric to, makes incorrect 

predictions: we would expect anaphora to proper names introduced under negation to be 

infelicitous just as the corresponding anaphora to indefinites. 

The very simple (and simplified
22

) data presented above does not completely 

support either the indefinite-like or the pronoun-like analysis of proper names – and it is 

not the goal of the present investigation to settle these difficult matters
23

. I will 

henceforth use the indefinite-like analysis only because it is more easily made compatible 

with the independently motivated formal developments in the following chapters – and 

the above discussion was only meant to lend some plausibility to this choice
24

. 

                                                 

22
 There are many other factors that can influence the accessibility of referents in discourse and that should 

be taken into account, e.g. information structure, epistemic specificity in the sense of Farkas (2002) etc. 

23
 For a recent in-depth discussion of the linguistic and philosophical issues raised by the interpretation of 

proper names, see Cumming (2006). 

24
 The development I have in mind is the van den Berg-style analysis of dynamic generalized quantifiers 

(see chapter 6 below), which requires the introduction of a dummy/'exception'/'undefined' individual � (# is 
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I will account for the felicitous anaphora in (36) above, which is problematic for the 

indefinite-like analysis of proper names, by assuming that pronouns can be indexed not 

only with unspecific dref's, but also with specific drefs like Dobby or John. That is, in 

addition to the anaphoric pattern in (29) above, I will also allow for the kind of 

connection between a pronoun and a proper name schematically represented in (37) 

below. 

37. … John
u
 … heJohn … 

Strictly speaking, the pronoun is not co-referring with the proper name, i.e. the 

pronoun heJohn is different from the co-indexed pronoun heu as far as their context-change 

potentials go. However, the truth-conditional import of the two pronouns is the same in 

most cases; an exception is, of course, discourse (36) above, where only the pronoun 

heJohn can account both for the felicity of the pseudo anaphoric connection and for the 

truth-conditions of the discourse. Sentence (36) (repeated in (38) below with the intended 

indexation) is analyzed as shown in (39). The reader can easily check that the 

representation in (39) delivers the intuitively correct truth-conditions. 

38. Hermione 1
u

 didn't see Dobby 2
u

 in the Three Broomsticks.          

  HeDobby was on vacation in the Bahamas. 

39. [u1 | u1=Hermione, ~[u2 | u2=Dobby, see_in_TB{u1, u2}]];              

  [on_vacation_in_Bahamas{Dobby}] 

                                                                                                                                                 

a designated element of type e; van den Berg's symbol is in fact �). In certain contexts, we will need some 

'assignments' i to assign this dummy individual to individual dref's, e.g. for some dref u, we will have ui=#.  

We will ultimately have to enforce a similar requirement with respect to proper names: the mention of a 

proper name, e.g. John, will be taken to simultaneously update some 'assignments' with the actual value of 

the proper name, e.g. johne, and other assignments with the dummy value �. Interpreting proper names 

directly in terms of specific drefs, i.e. in terms of constant functions, e.g. John := �is. johne, does not allow 

for the option of introducing a dref whose values are either the individual (rigidly) designated by the proper 

name or the dummy individual. 
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4. Syntax of a Fragment of English 

Now that we have translated DPL in type logic, we can go compositional at the sub-

sentential/sub-clausal level. For this purpose, I will define a basic transformational syntax 

for a small fragment of English in the tradition of Chomsky (1981). The definition is 

mostly based on Muskens (1996): 159-163 and Muskens (2005). 

4.1. Indexation 

"The most important requirement that we impose is that the syntactic component of 

the grammar assigns indices to all names, pronouns and determiners" (Muskens 1996: 

159). Unlike Muskens (1996), I will let indices be specific and unspecific dref's (recall 

that they are all constants of type se), e.g. u, u', u1, Dobby etc. Just as before, the 

antecedents are indexed with superscripts and dependent elements with subscripts, 

following the convention in Barwise (1987). 

I will also allow variables that have the appropriate dref type as indices on traces of 

movement, e.g. vse, v'se, v0,se, v1,se etc. – but such indices appear only on traces, because 

they are needed only on traces. As Muskens (1996): 169 puts it: "In Montague's PTQ 

(Montague 197[4]) the Quantifying-in rules served two purposes: (a) to obtain scope 

ambiguities between noun phrases and other scope bearing elements, such as noun 

phrases, negations and intensional contexts, and (b) to bind pronouns appearing in the 

expression that the noun phrase took scope over. In the present set-up the mechanism of 

discourse referents takes over the second task". 

The fact that we use distinct indices for the two purposes enables us to keep track of 

when our indexation makes an essentially dynamic contribution to the semantics and 

when it is an artifact of the particular scoping mechanism and the particular 

syntax/semantics interface we employ. In this way, it will be fairly straightforward for the 

reader to reformulate the analyses we develop in her/his favorite syntactic formalism. 

Thus, the choice of a particular (version of a particular) syntactic formalism is 

largely orthogonal to the matters addressed in the present work and is motivated only by 

presentational considerations: whichever syntactic formalism the reader favors, it is a 
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reasonable expectation that s/he will have at least a nodding acquaintance with the Y-

model (a.k.a. the T-model) of GB syntax. The syntax-semantics interface defined in this 

section (which is no more than a proof of concept) is merely meant to give the reader a 

basic idea of how to design a proper 'interface' between the semantics proposed here and 

her/his favorite syntactic formalism. 

4.2. Phrase Structure and Lexical Insertion Rules 

The Y-model of syntax has four components:  D-structure (DS), S-Structure (SS), 

Logical Form (LF) and Phonological Form (PF). We will be interested in the first three, 

in particular in the level of LF, which provides the input to the semantic interpretation 

procedure. 

The DS component consists of all the trees that can be generated by the phrase 

structure rules PS1-PS12 and the lexical insertion rules LI1-LI11 in (40) below. We could 

in fact do away with rule PS1 (the necessary recursion is already built into PS2), but I 

will keep it as a reminder that sequencing two sentences in discourse occurs at a supra-

sentential, textual level. 

40. Phrase structure rules and lexical insertion rules 
25

. 

(PS 1)  Txt  �  (Txt)  CP (PS 5)  VP  �  DP  V' (PS 9)  Vdi'  �  Vdi  DP 

(PS 2)  CP  �  (CP)  IP (PS 6)  V'  �  Vin (PS 10)  DP  �  D  NP 

(PS 3)  CP  �  C  IP (PS 7)  V'  �  Vtr  DP (PS 11)  NP  �  N  (CP) 

(PS 4)  IP  �  I  VP (PS 8)  V'  �  Vdi'  DP (PS 12)  X  �  X
+
  Conj  X 

 

(LI 1) D  �  ��, ������, �
���,�����, 

�
�, �
���, ����, ���, �������, … 

(LI 5) N  �  ������, �
�������, 
�
����, … 

(LI 9) I  �  �, �
�����, �
���, �
��, ��, ������, … 

(LI 2) DP  �  ���, ����, ���, ����, ..., 

���
��, �������, …, ��, ���, … 
(LI 6) Vtr  �  
��, 	���, … (LI 10) C  �  �� 

(LI 3) DP  �  �
���, �����, �
����, ... (LI 7) Vin  �  �����, ����, … (LI 11) Conj  �  ���, 
� 

(LI 4) DP  �  ��
, ��
�, ����� (LI 8) Vdi  �  	��, 
���, …  

                                                 

25
 I am temporarily overloading the symbol '→', which (as it is customary in the literature) is used to define 

the production rules of our grammar. 
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Subjects are assumed to be VP-internal and this is where they remain by default 

even at LF (they are raised out of VP only at PF). In this way, we can interpret sentential 

negation as having scope over quantifiers in subject position. Similarly, V-heads move to 

the inflectional I-head only at PF. 

4.3. Relativization and Quantifier Raising 

DS and SS are connected via the obligatory movement rule of Relativization (REL). 

A tree Θ' follows by REL from a tree Θ iff Θ' is the result of replacing some sub-tree of Θ 

of the form [CP [IP X [DP wh] Y] ], where X and Y are (possibly empty) strings and wh is 

either ��
, ��
� or �����, by a tree [CP [DP wh]
v
 [CP [IP X tv Y] ] ], where v is a fresh variable 

index (not occurring in Θ as a superscript). REL is basically CP adjunction. 

41. Relativization (REL): [CP [IP X [DP wh] Y ] ]  �  [CP [DP wh]
v
 [CP [IP X tv Y ] ] ] 

For example, the DP a
u
 girl who every

u'
 boy adores has the syntactic representation 

in (42) below, obtained by an application of REL: 

42. [DP��  [NP[N�
���]  [CP[DP ��
]
v
  [CP[IP[I ��]  [VP [DP ��������	
�]  [V'  [Vtr ��
��]  tv ]]]]]]] 

 

Formally, SS is the smallest set of trees that includes DS and is closed under REL; 

thus, DS⊆SS. 

Finally, we turn to the definition of LF, the syntactic component that is the input to 

our semantics. This is the level where quantifier scope ambiguities are resolved. We 

define an optional rule of Quantifier Raising (QR) (May 1977) which adjoins DP's to IP's 

or DP's to VP's (we need VP-adjunction for ditransitive verbs among other things) and 

which is basically the Quantifying-In rule of Montague (1974).  

A tree Θ' follows by QR from a tree Θ iff: (a) Θ' is the result of replacing some sub-

tree Σ of Θ of the form [IP X [DP Z] Y] by a tree [IP [DP Z]
v
 [IP X tv Y] ], where v is a fresh 

variable index (not occurring in Θ as a superscript); or (b) Θ' is the result of replacing 

some sub-tree Σ of Θ of the form [VP X [DP Z] Y] by a tree [VP [DP Z]
v
 [VP X tv Y] ], where v 

is a fresh variable index (not occurring in Θ as a superscript). The conditions on the QR 
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rule are that Z is not a pronoun or a wh-word and that [DP Z] is not a proper sub-tree of a 

DP sub-tree [DP W] of Σ 
26

. 

43. Quantifier Raising (QR): a. [IP X [DP Z] Y ]  �  [IP [DP Z]
v
 [IP X tv Y ] ]  

        b. [VP X [DP Z] Y ]  �  [VP [DP Z]
v
 [VP X tv Y ] ] 

For example, the reverse scope of every
u
 house-elf adores a

u'
 witch can be obtained 

by QR to IP, as shown in (44) below (of course, it could also be obtained by QR to VP). 

44. [IP  [DP ���������]
v
  [IP  [I ��]  [VP  [DP ��������
�������]  [V'  [Vtr ��
��]  tv ]]]]  

 

LF is defined as the smallest set of trees that includes SS and is closed under QR; 

thus, SS⊆LF. 

5. Type-driven Translation 

In a Fregean / Montagovian framework, the compositional aspect of the 

interpretation is largely determined by the types for the 'saturated' expressions, i.e. names 

and sentences. Let's abbreviate them as e and t. An extensional static logic without 

pluralities (i.e. classical higher-order logic) is the simplest: e is e (atomic entities) and t is 

t (truth-values). The English verb �����, for example, is represented by a term sleep of 

type (et), i.e. (et), and the generalized quantifier (GQ) ��������� by a term of type ((et)t), 

i.e. ((et)t). 

This setup can be complicated in various ways
27

. In particular, Dynamic Ty2 

complicates it by adding another basic type s whose elements model DPL variable 

assignments, i.e. (simplified versions of) dynamic info states. A sentence is interpreted as 

                                                 

26
 For example, if the DP sub-tree [DP W] of Σ contains a relative clause which in its turn contains [DP Z], we 

do not want to QR [DP Z] all the way out of the relative clause. 

27
 See for example Lewis (1972) and Creswell (1973), which use the same technique to introduce 

intensionality, i.e., in their case, t := st and s is the sort of indices of evaluation (however one wants to think 

of them, e.g. as worlds, <world, time> pairs etc.; see Muskens 1995a for a set of axioms that make the 

atomic objects of type s behave as <world, time> pairs). 
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a relation between an input and an output 'assignment', i.e. t := (s(st)), and a name 

denotes an individual dref, i.e. e := (se) 
28

. 

The English verb sleep is still translated by a term of type (et), but now this means 

that it takes a dref u of type e and it relates two info states i and i' of type s if and only if 

i=i' and the entity denoted by u in info state i, i.e. ui, has the sleep property of type (et), 

i.e. the static 'sleep'-property.  

5.1. Translating Basic Expressions 

Table (45) below provides examples of basic meanings for the lexical items in (40) 

above: the first column contains the lexical item, the second column its Dynamic Ty2 

translation and the third column its type, assuming the above two abbreviations, i.e. t := 

(s(st)) and e := (se). Note that the abbreviated types have exactly the form we would 

expect them to have in Montague semantics (e.g. the translation of the intransitive verb 

����� is of type et, the translation of the pronoun �� is of type (et)t, the translations of the 

indefinite article � and of the determiner ����� are of type (et)((et)t) etc.). The list of basic 

meanings constitutes rule TR0 of our type-driven translation procedure for the English 

fragment. 

Transitive verbs like 
�� are assumed to take a generalized quantifier (GQ) as their 

direct object (type (et)t), which captures the fact that the default quantifier scoping is 

subject over object. The reverse scope is obtained by QR.  

Ditransitive verbs like 	�� are assumed to take two GQ's as objects; the default 

relative scope of the two (encoded in the lexical entry) is their left-to-right surface order, 

i.e. the first of them (e.g. the Dative GQ) takes scope over the second (e.g. the Accusative 

GQ). Arguably, this is the correct prediction, since the most salient quantifier scoping in 

                                                 

28
 Despite appearances, relativizing the interpretation of names to 'assignments' is not different from the 

Montagovian interpretation of names (or the Tarskian interpretation of individual constants in first-order 

logic): just as a name like 'John' is assigned the same individual, namely johne, relative to any variable 

assignment g in a static Montagovian system, CDRT interprets proper names in terms of constant functions 

of type se, e.g. the semantic value of the name 'John' is given in terms of the constant function Johnse that 

maps each 'assignment' is to the individual johne, i.e. Johnse := �is. johne (see also the discussion in section 0 

above). 
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the sentence Dobby bought every witch an alligator purse follows the left-to-right linear 

order: the Dative GQ takes scope over the Accusative GQ, so that the purses co-vary with 

the witches. The reverse scope has to be obtained by QR (to VP or IP). 

Note that the Dative GQ takes scope over the Accusative GQ despite their relative 

syntactic position: given the phrase structure rules PS8 and PS9 in (40) above, the Dative 

GQ is actually c-commanded by the Accusative GQ. The fact that a quantifier can take 

scope over another without c-commanding it syntactically is one of the advantages of 

working with a dynamic system, in which quantifier scope is encoded in the order in 

which the updates are sequenced.  

Thus, in a dynamic framework, syntactic structure affects quantifier scope only to 

the extent to which syntactic relations (e.g. c-command) are ultimately reflected in update 

sequencing. The lexical entry for ditransitive verbs in (45) below 'neutralizes' syntactic c-

command: it sequences the updates contributed by the two GQ objects according to their 

linear order and not according to their syntactic structure. 

Defaulting to linear order (as opposed to syntactic c-command) has welcome 

empirical consequences in the case at hand: besides the fact that we capture the 

correlation between linear order and quantifier scope, we can also account for the fact 

that the Dative GQ is able to bind pronouns within the Accusative GQ without c-

commanding them, as for example in Dobby gave every
u
 witch heru broom.  

It is in fact not unexpected that a dynamic system can account for pronoun binding 

without c-command given that donkey anaphora is a paradigmatic example of such 

binding without c-command. The point made by the present analysis of ditransitive verbs 

is that the dynamic account of donkey sentences can successfully generalize beyond the 

phenomena that provided the initial empirical motivation.  

Pronouns of the form ��� and traces of the form �� are interpreted as in Montague 

(1974), i.e. as the GQ-lift of their index, which, for pronouns, is a dref (i.e. a constant of 

type e := se) and, for traces, is an actual variable (again of type e := se). We will see in 

chapter 5 that this kind of 'lifted' interpretation for pronouns (coupled with the type-raised 

interpretation of transitive and ditransitive verbs) is not necessarily a 'worst case' 
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generalization, but it is actually motivated by the distributive interpretation of singular 

number morphology occurring on donkey pronouns. 

Proper names are basically analyzed as indefinites – see the discussion at the very 

end of section 3 above, in particular (28). The only difference is that they are now 

translated as the corresponding GQ-lift. 

Indefinites have the type of (dynamic) generalized determiners, as needed for the 

definition of the compositional interpretation procedure, but their crucial dynamic 

contribution is the introduction of a new dref, which has to satisfy the restrictor property 

and the nuclear scope property in this order. The DPL-style abbreviation explicitly 

exhibits the existential quantification built into the indefinite. 

The universal quantifier������ also has the type of generalized determiners and it is 

interpreted as expected: the DPL-style abbreviation speaks for itself. Note the square 

brackets surrounding the formula – they are due to the fact that, unlike the indefinite 

determiner �, the universal determiner ����� contributes a test – it is internally dynamic 

but externally static, just as classical DRT / FCS and DPL would have it. 

The negative quantifier� �
 also contributes a test; I provide its two equivalent 

translations, one of them based on negation and existential quantification, the other based 

on negation and universal quantification. 

The wh-words that enter the construction of relative clauses are analyzed as identity 

functions over the property contributed by the relative clause. This property will then be 

'sequenced' with the property contributed by the preceding common noun to yield a 

'conjoined' property that is a suitable argument for a generalized determiner. The order in 

which the common noun and the relative clause are sequenced follows the linear surface 

order. The rule that achieves this dynamic 'conjunction' / 'sequencing' of properties 

generalizes both the static Predicate Modification rule in Heim & Kratzer (1998) and the 

dynamic Sequencing rule in Muskens (1996) – see (48) below. 
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45. TR 0: Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 
         Type         
e := se  t := s(st) 

�������
inV

� � �ve. [sleepet{v}] et 

�
���
trV

� ���Q(et)t.�ve. Q(�v'e. [owne(et){v, v'}])� ((et)t)(et) 

�	���
diV

� ���Q'(et)t.�Q(et)t.�ve. Q'(�v'e. Q(�v''e. [buye(e(et)){v, v', v''}]))� (ett)((ett)(et)) 

��
��������
N

� � �ve. [house_elfet{v}] et 

����� DP
� � �Pet. P(ue)� (et)t 

���� DP
� � �Pet. P(ve)� (et)t 

����
		�� DP
� � �Pet. P(Dobbye)� (et)t 

��
		���
DP

� � �Pet. [u | u=Dobby]; P(u)� (et)t 

����
D

� � �P'et.�Pet. [u]; P'(u); P(u),    
  i.e. �P'et.�Pet. u(P'(u); P(u))�

(et)((et)t) 

��������
D

� � �P'et.�Pet. [([u]; P'(u)) → P(u)],   
  i.e. �P'et.�Pet. [ u(P'(u) → P(u))]�

(et)((et)t) 

��
��
D

� � �P'et.�Pet. [~([u]; P'(u); P(u))],    
  i.e. �P'et.�Pet. [~ u(P'(u); P(u))]          

� �P'et.�Pet. [([u]; P'(u)) → [~P(u)]],   
  i.e. �P'et.�Pet. [ u(P'(u) → [~P(u)])]�

(et)((et)t) 

���
�
DP

� � �Pet. P (et)(et) 

���
I
�
������

I
�
�����

I
� � �Dt. D� tt 

��
������
I
�
���������

I
� � �Dt. [~D]� tt 

����
C

� � �D't.�Dt. [D' → D]� t(tt) 

�����
Conj

� � �D't.�Dt. D'; D� t(tt) 

�
��
Conj

� � �D't.�Dt. [D' � D]� t(tt) 
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Non-negative inflectional heads are interpreted as identity functions over DRS 

meanings (type t := s(st)).  Negative inflectional heads are interpreted as expected: their 

value is a test, containing a condition that negates the argument DRS. 

The conditional �� is a binary DRS connective: it takes two DRS's as arguments and 

it returns a test containing a dynamic implication condition that relates the two argument 

DRS's. 

The coordinating elements ��� and 
� will be discussed in more detail in section 5.1 

of the following chapter (chapter 4); I provide here the entries for the simplest case, 

namely coordination of two sentences (i.e. DRS's). 

5.2. Translating Complex Expressions 

Based on TR0, we can obtain the translation of more complex LF structures by 

specifying how the translation of a mother node depends on the translations of its 

daughters. I provide five such rules, the last of which (TR5: Coordination – see (50) 

below) will be generalized in the following chapter. 

The first rule covers non-branching nodes: the mother inherits the translation of the 

daughter. 

46. TR 1 – Non-branching Nodes (NN).       

 If A � α and A is the only daughter of B,      

 then B � α. 

The second rule is functional application: the translation of the mother is the result 

of applying the translation of one daughter to the translation of the other. 

47. TR 2 – Functional Application (FA).       

 If A � α and B � β and A and B are the only daughters of C,   

 then C � α(β), provided that this is a well-formed term. 

The third rule is a generalized sequencing (i.e. a generalized dynamic conjunction) 

rule. For one thing, it translates the meaning of complex texts (Txt) that are formed out of 
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a text (Txt) and a sentence (CP) – see PS1 in (40) above. In this sense, it is a 

generalization of the Sequencing rule in Muskens (1996). But it also handles predicate 

modification in general, e.g. it translates the meaning of an NP that is formed out of a 

common noun N and a relative clause CP – see PS11 in (40) above. In this sense, it is a 

generalization of the Predicate Modification rule in Heim & Kratzer (1998). 

48. TR 3 – Generalized Sequencing (GSeq) (i.e. Sequencing + Predicate 

Modification).          

 If A � α, B � β, A and B are the only daughters of C in that order (i.e.  

 C → A B) and α and β are of the same type τ of the form t or (σt) for  

 some σ∈Typ,         

 then C ��α; β if τ=t or C � �vσ. α(v); β(v), if τ=(σt),    

 provided that this is a well-formed term. 

The fourth rule handles Quantifying-In, both for quantifiers and for relativizers (i.e. 

wh-words). 

49. TR 4 – Quantifying-In (QIn).        

 If DP
v
 � α, B � β and DP

v
 and B are daughters of C,    

 then C � α(�v. β), provided that this is a well-formed term. 

The final rule handles binary coordinations (it will be generalized to an arbitrary 

finite number of coordinated elements in the next chapter). 

50. TR 5 – Coordination (Co).         

 If A1 � α1, Conj � β, A2 � α2 and A1, Conj and A2 are the only   

 daughters of A in that order (i.e. A → A1 Conj A2),     

 then A � β(α1)(α2),         

 provided this a well-formed term and has the same type as α1 and α2. 

The translation procedure, i.e. the relation 'tree Θ translates as term α', is formally 

defined as the smallest relation � between trees and Dynamic Ty2 terms that is conform 
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to TR0-TR5 and is closed under the reduction of the type-logical terms, e.g. if tree Θ 

translates as term α and term β follows from α by �-conversion, then Θ translates as β. 

6. Anaphora and Quantification in Compositional DRT (CDRT) 

We are now ready to go through some examples. This section will show how CDRT 

can account for bound variable anaphora (6.1), quantifier scope ambiguities (6.2) and 

quantifier scope with ditransitive verbs (6.3). Finally, we will see how to analyze in 

CDRT the three paradigm examples that motivate dynamic semantics: cross-sentential 

anaphora (6.4), relative-clause donkey sentences (6.5) and, finally, conditional donkey 

sentences (6.6). 

6.1. Bound Variable Anaphora 

First, we can capture bound anaphora in CDRT without using the syntactic rule QR 

(Quantifier Raising, see (43) above) and the corresponding semantic rule QIn 

(Quantifying-In, see (49) above): we simply need the pronoun to be co-indexed with the 

antecedent, as shown in (51) below. 

51. Every 1
u

 house-elf hates himself
1

u . 

Co-indexation is enough for binding because binding in CDRT (just like in DPL) is 

actually taken care of by the explicit (and, in this case, unselective) quantification over 

'assignments' built into the meaning of quantifiers. In classical static logic, the 

quantification over assignments is only implicit (and selective, but this is not directly 

relevant for the matter at hand): the paradigm example is �-abstraction, which selectively 

quantifies over assignments that differ at most with respect to the variable that is 

abstracted over. Therefore, if we want to obtain bound variable anaphora in a static 

system, co-indexation, i.e. using the same variable, is not enough: we also need to create 

a suitable �-abstraction configuration that will ensure the semantic co-variation via 

selective quantification over assignments.  
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Sentence (51) receives the Dynamic Ty2 representation in (52) below – or, 

equivalently, the one in (53). The formulas deliver the intuitively correct truth-conditions, 

as shown in (54).  

52. [[u1 | house_elf{u1}] → [hate{u1, u1}]] 

53. [ u1([house_elf{u1}] → [hate{u1, u1}])] 

54. �is. ∀xe(house_elf(x) → hate(x, x)) 

Most importantly, CDRT associates the correct Dynamic Ty2 translation with 

sentence (51) in a compositional way, as shown by the LF in (55) below, with the nodes 

in the tree decorated with their corresponding translations. I do not explicitly show what 

rules of type-driven translation are applied at various points in the calculation – the reader 

will have no difficulty identifying them. Note only that, by the NN rule for non-branching 

nodes (see (46) above), the translation of the topmost node Txt is the same as the 

translation of the IP node dominated by it. 

55. Every 1
u

 house-elf hates himself
1

u . 

 

������ 1
u �

D
 

�P'et.�Pet.[([u1]; P'(u1)) → P(u1)] 

��
��������
N

�

�ve.[house_elfet{v}] 

NP 

�ve.[house_elfet{v}] 

DP 

�Pet.[[u1 | house_elf{u1}] → P(u1)] 

VP 

[[u1 | house_elf{u1}] → [hate{u1, u1}]] 

V' 

�ve.[hate{v, u1}] 

������
trV

  

�Q(et)t.�ve.Q(�v'e.[hatee(et){v, v'}]) 

��������
1

u �
DP

 

�Pet.P(u1) 

����
I  

�Dt. D 

IP 

[[u1 | house_elf{u1}] → [hate{u1, u1}]] 

CP 

Txt 
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Thus, we see that CDRT can compositionally account for bound anaphora in 

English without QR or QIn: co-indexation is enough for binding, since the basic meaning 

of the determiner every universally quantifies over assignments. This universal 

quantification can be ultimately traced back to dynamic negation – see the discussion of 

DPL universal quantification and dynamic implication in the previous chapter. 

6.2. Quantifier Scope Ambiguities 

We turn now to an application of QR and QIn. Consider the sentence in (56) below, 

which is ambiguous between two quantifier scopings: the surface-based scope 

����� 1
u >>� 2

u  and the reverse scope � 2
u >>����� 1

u . The reverse scope is obtained by an 

application of QR. The two LF's yield the translations in (57) and (59) below, which 

capture the intuitively correct truth-conditions for the two readings, as shown in (58) and 

(60). 

56. Every 1
u

 house-elf adores a 2
u

 witch. 

57. ����� 1
u >>� 2

u : [[u1 | house_elf{u1}] → [u2 | witch{u2}, adore{u1, u2}]] 

58. ����� 1
u >>� 2

u : �is. ∀xe(house_elf(x) → ∃ye(witch(y) ∧ adore(x, y))) 

59. � 2
u >>����� 1

u : [u2 | witch{u2}, [u1 | house_elf{u1}] → [adore{u1, u2}]] 

60. � 2
u >>����� 1

u : �is. ∃ye(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y))) 

The two LFs are provided in (61) and (62) below. 
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61. ����� 1
u >>� 2

u : Every 1
u

 house-elf adores a 2
u

 witch. 

 

The reverse scope is obtained by applying the QR rule to the indefinite DP � 2
u �

�����, as shown in (62) below. Note that the application of the QR rule yields the reverse 

scope not because it places the indefinite DP in a c-commanding position, but because it 

reverses the order of updates. From this perspective, having a syntactic level for 

quantifier scoping that encodes dominance in addition to linear precedence relations 

seems like overkill (see also the discussion of the ditransitive sentence in (63) below. 

����� 1
u ��
������� 

DP 

�Pet.[[u1 | house_elf{u1}] → P(u1)] 

VP 

[[u1 | house_elf{u1}] → [u2 | witch{u2}, adore{u1, u2}]] 

V' 

�ve.[u2 | witch{u2}, adore{v, u2}] 

���
���
trV

  

�Q(et)t.�ve.Q(�v'e.[adoree(et){v, v'}]) 

����
I  

�Dt. D 

CP 

Txt 

DP 

�Pet.[u2 | witch{u2}]; P(u2) 

� 2
u ������ 

IP 

[[u1 | house_elf{u1}] → [u2 | witch{u2}, adore{u1, u2}]] 



 88 

62. (� 2
u >>����� 1

u ) Every 1
u

 house-elf adores a 2
u

 witch. 

 

6.3. Quantifier Scope with Ditransitive Verbs 

Given that donkey sentences with ditransitive verbs will feature quite prominently 

throughout the remainder of the dissertation, I will show in detail how sentences with 

ditransitive verbs are analyzed in CDRT. Consider the sentence in (63) below, in which 

the Dative GQ both takes scope over and binds into the Accusative GQ – without c-

commanding it. 

63. Dobby 3
u

 gave every 1
u

 witch her
1

u  alligator purse.  

This example simultaneously exhibits two of the most interesting aspects of CDRT:  

����� 1
u ��
������� 

DP 

�Pet.[[u1 | house_elf{u1}] → P(u1)] 

VP 

[[u1 | house_elf{u1}] → [adore{u1, v''}]] 

V' 

�ve.[adore{v, v''}] 

���
���
trV

  

�Q(et)t.�ve.Q(�v'e.[adoree(et){v, v'}]) 

����
I  

�Dt. D 

CP 

Txt 

DP
v''

 

�Pet.[u2 | witch{u2}]; P(u2) 

� 2
u ������ 

IP 

[u2 | witch{u2}, [u1 | house_elf{u1}] → [adore{u1, u2}]] 

������ DP
 

�Pet.P(v''e) 

IP 

[[u1 | house_elf{u1}] → [adore{u1, v''}]] 
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• we can have binding of pronouns without c-command and without QR, i.e. 

without the covert syntactic manipulations associated with the level of LF – see 

also (51) and (73) above;  

• a quantifier can have wide scope over another without c-commanding it as long as 

the update it contributes is sequenced before the update of the other quantifier: the 

lexical entry for ditransitive verbs specifies that the Dative GQ update is 

sequenced / takes scope over the Accusative GQ update – and this is enough to 

nullify the fact that, syntactically, the former does not take scope over the latter.  

Both features of CDRT point to the fact that the syntactic level of LF provides a 

needlessly rich, i.e. complex, input to the semantic interpretation procedure. In particular, 

the dominance relations that the LF level encodes are not (always) relevant for 

interpretation; the only two semantically relevant features of the LF level are: (i) the co-

indexation of the referring expressions and (ii) the linear precedence (i.e. sequencing) of 

the updates
29

. 

Following the simplified LF for possessive DP's proposed in Heim & Kratzer 

(1998)
30

, I analyze ��������
��
������� as the DP in (64) below
31

. 

64. ����� 2
u �������������
��
�������������
�����

1
u ���������

                                                 

29
 I will not further pursue this perspective on meaning composition in the present work. Note however that 

coupling this perspective on meaning composition with the plural info states we will introduce in chapter 6 

below (plural in the sense that the dynamic info states are sets of 'assignments' and not single 'assignments') 

promises to provide a novel and intuitively appealing analysis of cataphora on the one hand and the non-

standard ('choice-function') scopal behavior of indefinites on the other hand (see for example Chierchia 

1995: Chapter 3 for cataphora and Chierchia 2001 and references therein for 'choice-function' indefinites). 

See also the online update of Bittner (2006), where said properties of CDRT (i.e. the fact that the only two 

semantically relevant features of the LF level are indexation and sequencing of updates) take center stage. 

30
 Although the LF in (64) is similar to the one in Heim & Kratzer (1998), the analysis is different: while 

Heim & Kratzer (1998) take possessives to be covertly definite DP's (and adopt a Fregean analysis of 

definite descriptions), I analyze them here as covertly indefinite DP's. The indefinite analysis of possessive 

DP's is empirically supported by the interpretation of possessives in predicative positions, e.g. John is her / 

Mary's brother, which are not associated with uniqueness implications – I am grateful to Magdalena 

Schwager (p.c.) for bringing this to my attention. 

31
 I assume that the following phrase structure and lexical insertion rules are added to the syntax of our 

English fragment: (PS 13) NP → N (PP); (PS 14) PP → P DP); (LI 12) P → 
�. 
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The meaning of the preposition 
� is given in (65) below – it has the same structure 

as the lexical entry of a transitive verb like 
��. 

65. �
��� � �Qett. �ve. Q(�v'e. [ofe(et){v, v'}]) 

We compositionally derive the following translation for the DP in (64) (the 

subscript on the symbol � indicates the rule applied in translating the mother node): 

66. a. ����
�����
1

u � �FA �ve. [of{v, u1}]                

b. �����������
��
�������������
�����
1

u ��� �GSeq �ve. [alligator_purse{v}, of{v, u1}]         

c. (64) �FA �Pet. [u2 | alligator_purse{u2}, of{u2, u1}]; P(u2) 

 The syntactic structure of the V' is provided in linearized form in (67) below and 

compositionally translated in (68). The Dative GQ ����� 1
u � ����� takes scope over the 

Accusative GQ and also binds the pronoun ���
1

u  contained in it. 

67. ��������
���
�������� 1
u ��
	������������ 2

u �����
��
��������
�����
1

u �����

68. ���
���
�������� 1
u ��
	���� �FA         

 �Q(et)t. �ve. [[u1 | witch{u1}] → Q(�v''e. [give{v, u1, v''}])]     

(67) �FA �ve. [[u1 | witch{u1}]        

   →  [u2 | alligator_purse{u2}, of{u2, u1}, give{v, u1, u2}]] 

Thus, sentence (63) is translated as shown in (69) below and it receives the 

intuitively correct truth-conditions (for its most salient reading), as (70) below shows. 

69. [u3 | u3=Dobby,           

        [u1 | witch{u1}] →  [u2 | alligator_purse{u2}, of{u2, u1}, give{u3, u1, u2}]] 

70. �is. ∃ze(z=dobby ∧          

             ∀xe(witch(x) → ∃ye(alligator_purse(y) ∧ of(y, x) ∧ give(z, x, y)))),  i.e.   

�is. ∀xe(witch(x) → ∃ye(alligator_purse(y) ∧ of(y, x) ∧ give(dobby, x, y))) 
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6.4. Cross-sentential Anaphora 

We can also compositionally assign the intuitively correct interpretation to the three 

paradigm examples we have used in the previous chapter to motivate dynamic semantics. 

The examples are repeated in (71-72), (73) and (74) below; their LF's have two 

distinctive features: on the one hand, they put to use the previously otiose CP and Txt 

categories; on the other hand, they contain an application of the REL & QIn rules.  

The analysis of donkey sentences exhibits a crucial property of CDRT we have 

already hinted at, namely the fact that, as long as these sentences receive the intuitively 

correct co-indexation, we can get the semantics of pronoun binding without c-command 

at the level of the LF. 
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71. A 1
u

 house-elf fell in love with a 2
u

 witch. 

72. He
1

u  bought her
2

u  an 3
u

 alligator purse. 

 

�� 1
u ��
��������

DP
 

�Pet.[u1 | house_elf{u1}]; P(u1) 

VP 

[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] 

                 V' 

�ve.[u2 | witch{u2}, f.i.l{v, u2}] 

����������
���
trV

  

�Q(et)t.�ve.Q(�v'e.[fall_in_lovee(et){v, v'}]) 

�����
I  

�Dt. D 

CP 

Txt 

[u1, u2, u3 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}, alligator_purse{u3}, buy{u1, u2, u3}] 

�� 2
u �������

DP
 

�Pet.[u2 | witch{u2}]; P(u2) 

                            IP 

[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] 

���
1

u �
DP

 

�Pet.P(u1) 

Txt 

CP                                 IP 

[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

�����
I  

�Dt. D 

                                                     VP 

[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

                           V' 

�ve.[u3 | a.p{u3}, buy{v, u2, u3}] 

��� 3
u �����
��
��������

DP
 

�Pet.[u3 | a.purse{u3}]; P(u3) 

                           Vdi' 

�Q(et)t. �ve. Q(�v''e. [buye(e(et)){v, u2, v''}])) 

����
2

u �
DP

 

�Pet.P(u2) 

�	���
diV

  

�Q'(et)t. �Q(et)t. �ve. Q'(�v'e. Q(�v''e. [buye(e(et)){v, v', v''}])) 
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6.5. Relative-clause Donkey Sentences 

73. Every 1
u

 house-elf who falls in love with a 2
u

 witch buys her
2

u  an 3
u

 alligator 

purse. 

 

VP 

[u2 | witch{u2}, fall_in_love{v'', u2}] 

                        V' 

�ve.[u2 | witch{u2}, fall_in_love{v, u2}] 

����������
���
trV

  

�Q(et)t.�ve.Q(�v'e.[fall_in_lovee(et){v, v'}]) 

CP 

�� 2
u �������

DP
 

�Pet.[u2 | witch{u2}]; P(u2) 

Txt 

                                                                   IP 

[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → [u3 | alligator_purse{u3}, buy{u1, u2, u3}]] 

����
I  

�Dt. D 

VP 

[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → [u3 | a.p{u3}, buy{u1, u2, u3}]] 

                           V' 

�ve.[u3 | a.p{u3}, buy{v, u2, u3}] 

	������
2

u �� 3
u �����
��
�������  

                              DP 

�Pet.[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → P(u1)] 

������ 1
u �

D
 

�P'et.�Pet.[([u1]; P'(u1)) → P(u1)] 

NP 

�ve.[u2 | house_elf{v}, witch{u2}, fall_in_love{v, u2}] 

��
��������
N

�

�ve.[house_elfet{v}] 

CP 

�v''e.[u2 | witch{u2}, fall_in_love{v'', u2}] 

���
�
DP

��� 

�Pet.P 

CP 

                                IP 

[u2 | witch{u2}, fall_in_love{v'', u2}] 

����
I  

�Dt. D 

������ DP
 

�Pet.P(v''e) 
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6.6. Conditional Donkey Sentences 

74. If a 1
u

 house-elf falls in love with a 2
u

 witch, he
1

u  buys her
2

u  an 3
u

 alligator purse. 

 

I leave it to the reader to show that sentences (75) and (76) below – which involve 

coordination structures – can be compositionally assigned the intuitively correct 

interpretation in CDRT. 

75. If a 1
u

 house-elf falls in love with a 2
u

 witch and she
2

u  likes fancy handbags, he
1

u  

buys her
2

u  an 3
u

 alligator purse. 

76. If a 1
u

 farmer owns a 2
u

 donkey, he
1

u  beats it
2

u  or he
1

u  feeds it
2

u  poorly. 

7. Summary 

The goal of this chapter and of the previous one was to situate the present research 

within the general enterprise of compositional dynamic semantics, in particular: 

• to provide the basic framework that I will build on throughout the present work;  

• to fix notation; 

CP 

[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → [u3 | alligator_purse{u3}, buy{u1, u2, u3}]] 

IP 

[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] 

Txt 

                                IP 

[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

��
1

u �	�������
2

u ��� 3
u �����
��
��������

� 1
u ��
������������������
��������� 2

u �������

                              CP 

�Dt.[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → D] 

����
C

�

�D't. �Dt. [D' → D] 
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• to briefly recapitulate the basic empirical generalizations that motivate the dynamic 

approach to semantics and the basic kinds of semantic analyses that this approach 

makes possible. 

The main achievement is the introduction of the basic compositional dynamic 

system couched in type logic in sections 2 and 5 above (i.e. the introduction of Dynamic 

Ty2 and CDRT). 

The differences between the material introduced in this and the previous chapter and 

the cited sources are for the most part presentational. The six novel things are: 

• the DPL-style definition of unselective generalized quantification that incorporates 

generalized quantifier conservativity (chapter 2);  

• the introduction of the mixed weak & strong donkey sentences, i.e. relative-clause 

donkey sentences with two donkey indefinites that receive different readings – one 

strong, the other weak –, e.g. Every person who buys a book on amazon.com 

(strong) and has a credit card (weak) uses it (the credit card) to pay for it (the 

book); this kind of sentence cannot be accounted for in DRT / FCS / DPL or CDRT 

for that matter, even if they are extended with selective generalized quantification. 

Mixed weak & strong donkey sentences will provide one of the primary 

motivations for the subsequent revisions and generalizations of CDRT (see chapter 

5); 

• the complete definition of the underlying Dynamic Ty2 logic (chapter 3); 

• the fact that Dynamic Ty2 allows static objects of arbitrary types as dref values 

(chapter 3); 

• the indefinite-like analysis of proper names adopted in the present version of CDRT 

(chapter 3); 

• the novel dynamic analysis of ditransitive verbs and of the scoping properties of 

their Dative and Accusative objects (chapter 3). 

Building on the foundations layed out in this chapter, the next chapter will add to 

the previous literature in a more substantial way by reformulating the DPL-style 

definitions of unselective and selective generalized quantification in type logic and, thus, 
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extending CDRT to CDRT+GQ in a way that enables it to account for the weak / strong 

donkey ambiguity and the proportion problem. 

 


