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ABSTRACT OF THE DISSERTATION 

Structured Nominal and Modal Reference 

By ADRIAN BRASOVEANU 

Dissertation Director:  

Maria Bittner 

The dissertation argues that discourse reference in natural language involves two 

equally important components with essentially the same interpretive dynamics, namely 

reference to values, i.e. non-singleton sets of objects (individuals and possible worlds), 

and reference to structure, i.e. the correlation / dependency between such sets, which is 

introduced and incrementally elaborated upon in discourse. 

To define and investigate structured discourse reference, a new dynamic system 

couched in classical (many-sorted) type logic is introduced which extends Compositional 

DRT (CDRT, Muskens 1996) with plural information states, i.e. information states are 

modeled as sets of variable assignments (following van den Berg 1996a), which can be 

can be represented as matrices with assignments (sequences) as rows. A plural info state 

encodes both values (the columns of the matrix store sets of objects) and structure (each 

row of the matrix encodes a correlation / dependency between the objects stored in it).

Given the underlying type logic, compositionality at sub-clausal level follows 

automatically and standard techniques from Montague semantics (e.g. type shifting) 

become available. 

The idea that plural info states are semantically necessary is motivated by examples 

with morphologically singular anaphors, in contrast to the previous literature that argues 

for plural info states based on plural anaphora.  

Plural Compositional DRT (PCDRT) enables us compositionally account for a 

variety of phenomena, including: (i) mixed weak & strong donkey anaphora, e.g. Every 
person who buys au computer and has au' credit card uses itu' to pay for itu, (ii) 

quantificational subordination, e.g. Harvey courts au girl at everyu' convention. Sheu

alwaysu' comes to the banquet with him (Karttunen 1976), (iii) modal anaphora and modal 

subordination, e.g. Au wolf mightp come in. Itu wouldp eat Harvey first (based on Roberts 

1989) and (iv) naturally-occurring discourses exhibiting complex interactions between 

modalized conditionals, donkey anaphora, modal subordination and the entailment 

particle therefore, e.g. [A] man cannot live without joy. Therefore, when he is deprived of 
true spiritual joys, it is necessary that he become addicted to carnal pleasures (Thomas 

Aquinas). 

The PCDRT account of these phenomena explicitly and systematically captures the 

anaphoric and quantificational parallels between the individual and modal domains. 
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Chapter 1. Introduction 

Karttunen's seminal paper on Discourse Referents begins with the following 

exhortation: 

"Consider a device designed to read a text in some natural language, interpret it 
and store the content in some manner, say, for the purpose of being able to answer 
questions about it. To accomplish this task, the machine will have to fulfill at least 
the following basic requirement. It has to be able to build a file that consists of 
records of all the individuals, that is, events, objects, etc., mentioned in the text 
and, for each individual, record whatever is said about it."  
(Karttunen 1976: 364) 

The abstract study of such a text interpreter ultimately comes down to a 

reconsideration of the nature of the (literal) meaning of natural language expressions. 

What is being reconsidered is the truth-conditional, referential theory of meaning, aptly 

summarized in Hintikka (1969) as follows: 

"[…] it seems to me in any case completely hopeless to try to divorce the idea of 
the meaning of a sentence from the idea of the information that that the sentence 
can convey to a hearer or reader, should someone truthfully address it to him. 
Now what is this information? Clearly it is just information to the effect that the 
sentence is true, that the world is such as to meet the truth-conditions of the 
sentence." 
(Hintikka 1969: 146) 

Moreover, the truth-conditions are determined in terms of the reference (denotation) 

relations that hold between linguistic expressions and independent, extra-linguistic 

entities. 

Karttunen's exhortation shifts the classical perspective on meaning in two ways. 

First, the central problem is not the interpretation of sentences in isolation, but the 

interpretation of texts, i.e. of discourse. As Kamp (2001) puts it, "discourse meanings are 

more than plain conjunctions of sentence meanings. And this 'more' is often the effect of 

interpretation principles that are an integral part of linguistic knowledge, and thus 

legitimate objects of linguistic study" (Kamp 2001: 57).  



2

Thus, over and above the investigation of how natural language interpretation is 

context dependent, we also need to investigate how the interpretation of a natural 

language expression changes the context, i.e. it creates a new context out of the old one, 

and thereby affects how subsequent expressions are interpreted. As soon as we turn to 

discourse interpretation, the dynamics of meaning comes into focus and we shift from a 

static truth-conditional theory to a theory of meaning as information update. 

The second way in which the perspective on meaning shifts is reflected in the title 

of Karttunen's paper: natural language interpretation crucially involves a notion of 

discourse reference which mediates between linguistic expressions and their reference in 

the classical sense. This is the basic requirement put forth for our abstract text interpreter: 

the interpreter incrementally builds a file that contains records of the individuals 

mentioned in the text. At any given point, the file encodes the current information state of 

the interpreter, i.e. the current discourse context, and we refer to actual individuals via 

this information state: reference in natural language is inextricably discourse reference. 

The present work is part of the general project of investigating the notions of 

discourse reference and information state involved in natural language interpretation. In 

particular, I will argue that over and above the basic requirement that the information 

state should be able to detect when a novel individual is mentioned in discourse and 

"store it along with its characterization for future reference" (Karttunen 1976: 364), the 

information state should also be able to encode dependencies between individuals (or sets 

thereof) that are established and subsequently referred to in discourse. 

The main proposal is that nominal and modal expressions introduce (non-singleton) 

sets of objects, i.e. individuals and possible worlds respectively, and that these sets are 

correlated in discourse: discourse reference involves two equally important components 

with essentially the same interpretive dynamics, namely reference to values, i.e. sets of 

objects, and reference to structure, i.e. the correlation / dependency between such sets, 

which is introduced and incrementally elaborated upon in discourse. Hence the title: 

Structured Nominal and Modal Reference.
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The dissertation focuses on the development of a new dynamic system couched in 

classical type logic that formalizes this notion of discourse reference and in which natural 

language discourses involving complex descriptions of multiple related objects can be 

compositionally translated.  

I will, therefore, have little to say about the problem of interfacing the resulting 

system with a more general theory of discourse structure and anaphora resolution of the 

kind pursued in Hobbs (1979, 1990, 1993), Kameyama (1994), Grosz et al (1995), Kehler 

(1995, 2002) and Asher & Lascarides (2003) among others. In particular, one of the most 

important assumptions I will make throughout the dissertation is that the logical form of 

sentences and discourses comes with the 'intended' anaphoric indexation.  

The dissertation consists of eight chapters, the first one (i.e. the current one) being 

the introduction and last one the conclusion. Chapters 2, 3 and 4 mostly review the 

previous literature and introduce the basic type-logical dynamic system that underlies the 

entire present investigation. The remaining chapters introduce the new contributions: 

chapters 5 and 6 are dedicated to the study of donkey anaphora and quantificational 

subordination respectively (i.e. structured reference in the nominal domain), while 

chapter 7 is dedicated to the study of modal anaphora and modal subordination (i.e. 

structured reference in the modal domain). A more detailed description follows. 

Chapter 2. Dynamic Predicate Logic with Generalized Quantification 

Chapter 2 formally explicates Karttunen's basic requirement for discourse reference. 

The three most important formal systems modeling the notion of discourse reference in 

Karttunen (1976) are Discourse Representation Theory (DRT, Kamp 1981), File Change 

Semantics (FCS, Heim 1982/1988) and Dynamic Predicate Logic (DPL, Groenendijk & 

Stokhof 1991). The empirical coverage of these classical systems is roughly the same 

and, notwithstanding several non-trivial differences between them, they all follow the 

insight in Lewis (1975) that a dynamic information state (in terms of which discourse 

reference is to be defined) is a case, which is modeled as an assignment of values to 

variables.
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"What is a case? […] [A] case may be regarded as the 'tuple of its participants; 
and these participants are values of the variables that occur free in the open 
sentence modified by the adverb. In other words, we are taking the cases to be the 
admissible assignments of values to these variables." 
(Lewis 1975: 5-7) 

The particular version of dynamic semantics surveyed in chapter 2 is DPL – and for 

three reasons. First, the syntax of the system is the familiar syntax of classical first-order 

logic (at least in the original notation; the notation in chapter 2 is a close variant thereof); 

this enables us to focus on what is really new, namely the semantics.  

Second, the semantics of DPL is minimally different from the standard Tarskian 

semantics for first-order logic: instead of interpreting a formula as a set of variable 

assignments (i.e. the set of variable assignments that satisfy the formula in the given 

model), we interpret it as a binary relation between assignments; moreover, this minimal 

semantic modification encodes in a transparent way the core dynamic idea that meaning 

is not merely truth-conditional content, but context change potential.  

Third, just as classical first-order logic can be generalized to static type logic, DPL 

can be generalized to a dynamic version of type logic and we can thereby introduce 

compositionality at the sub-sentential / sub-clausal level – to which chapter 3 is 

dedicated. 

Besides introducing it, chapter 2 extends DPL with a dynamic notion of selective 

generalized quantification (as opposed to the unselective generalized quantification of 

Lewis 1975). This dynamic notion of selective generalized quantification has been 

proposed in various guises by many authors: Bäuerle & Egli (1985), Root (1986) and 

Rooth (1987) put forth the basic proposal and van Eijck & de Vries (1992) and Chierchia 

(1992, 1995) were the first to formulate it in DPL terms; the proposal is also adopted in 

Heim (1990) and Kamp & Reyle (1993). 

Selective generalized quantification enables us to solve the proportion problem and 

account for weak / strong donkey readings.  

The proportion problem is exemplified by sentence (1) below, where, intuitively, we 

do not quantify over most pairs <x, y> such that x is a house-elf that falls in love with a 
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witch y – as unselective quantification would have it – but only over most house-elves x

that fall in love with some witch or other. 

1. Most house-elves who fall in love with a witch buy her an alligator purse. 

The weak / strong ambiguity problem is posed by the donkey sentence in (2) below, 

which has a weak reading, in contrast to the classical donkey sentence in (3), which has a 

strong reading. Sentence (2) exhibits a weak reading in the following sense: its most 

salient interpretation is that every person who has a dime will put some dime s/he has in 

the meter (and not all her / his dimes). Sentence (3) exhibits a strong reading in the sense 

that its most salient interpretation is that every farmer beats every donkey s/he owns. 

2. Every person who has a dime will put it in the meter. (Pelletier & Schubert 1989) 

3. Every farmer who owns a donkey beats it. 

However, the notion of selective generalized quantification introduced to account 

for the weak / strong donkey examples in (2) and (3) above cannot compositionally

account for the mixed weak & strong relative-clause donkey sentences in (4) and (5) 

below. 

4. Every person who buys a book on amazon.com and has a credit card uses it to pay 

for it. 

5. Every man who wants to impress a woman and who has an Arabian horse teaches 

her how to ride it. 

Consider sentence (4): it is interpreted as asserting that, for every book (strong) that 

any credit-card owner buys on amazon.com, there is some credit card (weak) that s/he 

uses to pay for the book. Note, in particular, that the credit card can vary from book to 

book, e.g. I can use my MasterCard to buy set theory books and my Visa to buy detective 

novels, which means that even the weak indefinite a credit card can introduce a (possibly) 

non-singleton set. 

For each buyer, the two sets of objects, i.e. all the books purchased on amazon.com

and some of the credit cards that the buyer has, are correlated and the dependency 

between these sets – left implicit in the restrictor of the quantification – is specified in the 



6

nuclear scope: each book is correlated with the credit card that was used to pay for it. The 

above paraphrase of the meaning of sentence (4) is formalized in classical (static) first-

order logic as shown in (6) below. 

6. ∀x(person(x) ∧ ∃y(book(y) ∧ buy_on_amazon(x, y)) ∧ ∃z(c.card(z) ∧ have(x, z))  

→ ∀y'(book(y') ∧ buy_on_amazon(x, y')      

         → ∃z'(c.card(z') ∧ have(x, z') ∧ use_to_pay(x, z', y')))) 

As the first-order translation in (6) explicitly shows, the challenge posed by 

sentence (4) is to compositionally derive its interpretation while allowing for: (i) the fact 

that the two donkey indefinites in the restrictor of the quantification receive two distinct 

readings (strong and weak respectively) and (ii) the fact that the value of the weak 

indefinite a credit card co-varies with / is dependent on the value of the strong indefinite a 

book although, by the Coordinate Structure Constraint, the strong indefinite cannot 

syntactically scope over the weak one since both DP's are trapped in their respective VP-

conjuncts. Example (5) is a variation on the same theme. 

The fact that DPL with selective quantification cannot compositionally account for 

the mixed reading relative-clause donkey sentences in (4) and (5) above provides the 

basic plot and motivation for the next three chapters of the dissertation, namely chapters 

3, 4 and 5. In particular, chapters 3 and 4 endeavor to recast DPL and its extension with 

selective generalized quantification in classical (many-sorted) type logic, which will 

automatically enable us to define a compositional interpretation procedure of the kind 

available in Montague semantics. 

Chapter 3. Compositional DRT 

Chapter 3 is the last chapter that is almost entirely a review of the previous 

literature. In particular, I review Compositional DRT (CDRT, Muskens 1996), which 

generalizes DPL to a dynamic version of type logic (just as static type logic generalizes 

classical first-order logic). This move enables us to introduce compositionality at the sub-

sentential / sub-clausal level in the tradition of Montague semantics. 
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The first part of the chapter is dedicated to the definition of Dynamic Ty2 (which is 

Muskens' Logic of Change with negligible modifications) and to the translation of DPL 

in Dynamic Ty2. The Dynamic Ty2 translation is shown to preserve the DPL account of 

cross-sentential anaphora, relative-clause donkey sentences and conditional donkey 

sentences. 

The second part defines a type-drive translation procedure based on a rough-and-

ready syntax for a fragment of English. The resulting CDRT system effectively unifies 

DPL and Montague semantics and enables us to compositionally account for a variety of 

anaphoric and quantificational phenomena, including bound variable anaphora, quantifier 

scope ambiguities and donkey anaphora. 

Chapter 4. Compositional DRT with Generalized Quantification 

Chapter 4 is the first one that adds to the previous literature in a more substantial 

way by translating in Dynamic Ty2 the DPL-style definitions of unselective and selective 

generalized quantification introduced in chapter 2.

CDRT is then extended with these two notions of dynamic generalized 

quantification. The resulting system, which I label CDRT+GQ, provides a fully 

compositional account of the proportion problem and of the simple (non-mixed) 

examples of weak / strong donkey sentences. 

The chapter also introduces the analysis of the interaction between anaphora and 

generalized coordination in Muskens (1996). I show that this analysis successfully 

generalizes to account for DP-conjunction donkey sentences like Every boy who has a 

dog and every girl who has a cat must feed it due to Chierchia (1995).  

Such examples are interesting for two reasons. First, Chierchia (1995) uses DP-

conjunction donkey sentences of this kind to argue in favor of an approach to natural 

language interpretation that builds (part of) the dynamics into the semantic value of 

natural language expressions and against approaches that build the dynamics of the 

interpretation into syntactic operations at the level of Logical Form (LF).
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The argument is, in a nutshell, that the same donkey pronoun is semantically bound 

by two distinct donkey indefinites, which can be naturally accounted for in a dynamic 

type-logical system with generalized conjunction (generalized to arbitrary types in the 

sense of Partee & Rooth 1983 among others). This kind of 'double binding', however, 

presents difficulties for approaches that require a particular syntactic configuration at the 

level of LF for the donkey pronouns to be semantically bound – because the same 

pronoun cannot enter two such distinct syntactic configurations. 

The second reason for examining DP-conjunction donkey sentences is that, in the 

following chapter (chapter 5), they will help us distinguish between different accounts of 

mixed reading donkey sentences. 

Chapter 4 concludes with the somewhat surprising observation that CDRT with 

generalized quantification (CDRT+GQ) inherits the problem of DPL with generalized 

quantification: CDRT+GQ is not compositional enough to account for the mixed weak & 

strong relative-clause donkey sentences in (4) (and (5)) above. The main difficulty is due 

to the fact that, in (4), the weak indefinite a credit card co-varies with / is dependent on the 

value of the strong indefinite a book, although the strong indefinite cannot syntactically 

scope over the weak one (recall that they are both trapped in a coordination island).

It will be the task of the following chapter to modify the notion of information state 

employed in CDRT+GQ (and inherited from DRT / FCS / DPL) and thereby provide a 

compositional account of mixed weak & strong relative-clause donkey sentences. 

Chapter 5. Structured Nominal Reference: Donkey Anaphora 

This chapter incrementally introduces a new dynamic system that extends 

CDRT+GQ and within which we can give a compositional account of the donkey 

sentences in (4) and (5) above. 

The main proposal is that discourse reference involves two equally important 

components with essentially the same interpretive dynamics, namely reference to values, 

i.e. sets of objects, and reference to structure, i.e. the correlation / dependency between 

such sets, which is introduced and incrementally elaborated upon in discourse. 
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The main technical innovation is that, just as in the Dynamic Plural Logic of van 

den Berg (1994, 1996a), information states are modeled as sets of variable assignments. 

Such plural info states can be represented as matrices with assignments (sequences) as 

rows, as shown in (7) below. 

 Plural info states encode discourse reference to both values and structure: the 

values are the sets of objects that are stored in the columns of the matrix, e.g. a discourse 

referent (dref) u for individuals stores a set of individuals relative to a plural info state, 

since u is assigned an individual by each assignment (i.e. row). The structure is 

distributively encoded in the rows of the matrix: for each assignment / row in the plural 

info state, the individual assigned to a dref u by that assignment is structurally correlated 

with the individual assigned to some other dref u' by the same assignment. The resulting 

system is dubbed Plural CDRT.

7. Info State I … u u' …

i1 … x1 (i.e. ui1) y1  (i.e. u'i1) … 

i2 … x2  (i.e. ui2) y2  (i.e. u'i2) … 

i3 … x3  (i.e. ui3) y3  (i.e. u'i3) … 

… … … … … 

Values – sets: {x1, x2, x3, …}, {y1, y2, y3, …} Structure – relations: {<x1, y1>, <x2, y2>, <x3, y3>, …} 

In Plural CDRT (PCDRT), sentences denote relations between an input and an 

output plural info state. Indefinites non-deterministically introduce both values and 

structure, i.e. they introduce structured sets of individuals; pronouns are anaphoric to 

such structured sets. Quantification is defined in terms of matrices instead of single 

assignments and the semantics of the non-quantificational part becomes rules for how to 

fill out a matrix. 

The PCDRT analysis of sentence (4) is as follows. First, the weak / strong donkey 

ambiguity is attributed to the indefinite articles. This is the first step towards a 

compositional account because we locally decide for each indefinite article whether it 

receives a weak or a strong reading. The two basic meanings have the format provided in 

(8) below. 
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8. weak indefinites: awk:u ⇝ λP'et. λPet. [u]; P'(u); P(u)      

strong indefinites: astr:u ⇝ λP'et. λPet. max
u(P'(u); P(u)) 

The only difference between a weak and a strong indefinite article is the presence 

vs. absence of a maximization (max) operator. The max operator ensures that, after we 

process a strong indefinite, the output plural info state stores with respect to the dref u the 

maximal set of individuals satisfying both the restrictor dynamic property P' and the 

nuclear scope dynamic property P. In contrast, a weak indefinite will non-

deterministically store some set of individuals satisfying its restrictor and nuclear scope. 

In sentence (4), the indefinite a str:
2

u  book in is strong and the indefinite awk:
3

u  credit 

card is weak. Thus, by the time we are done processing the restrictor of the quantification 

in (4), we will be in an info state that stores: (i) the maximal set of books with respect to 

the dref u2; (ii) some (non-deterministically introduced) set of credit cards with respect to 

the dref u3 (the weak indefinite) and (iii) some (non-deterministically introduced) 

structure correlating the values of u2 and u3.

The nuclear scope of the quantification in (4) is anaphoric to both values and 

structure: we test that the non-deterministically introduced value for u3 and the non-

deterministically introduced structure associating u3 and u2 satisfy the nuclear scope 

condition, i.e., for each assignment in the info state, the u3-card stored in that assignment 

is used to pay for the u2-book stored in the same assignment. That is, the nuclear scope 

elaborates on the unspecified dependency between u3 and u2 introduced in the restrictor 

of the quantification – and, crucially, introducing such a dependency does not require the 

strong indefinite to take scope over the weak one. 

The PCDRT account successfully generalizes to the mixed reading DP-conjunction 

donkey sentences in (9) and (10) below, where the same pronoun is intuitively interpreted 

as having two distinct indefinites as antecedents – and the two indefinites have different 

readings (one is weak and the other is strong). These examples will be used to distinguish 

between PCDRT and D-/E-type approaches to donkey anaphora. 
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9. (Today's newspaper claims that, based on the most recent statistics:)   

Every 1
u  company who hired a str:

2
u  Moldavian man, but no 3

u  company who 

hired a wk:
2

u  Transylvanian man promoted him
2

u  within two weeks of hiring. 

10. (Imagine a Sunday fair where people come to sell their young puppies before they 

get too old and where the entrance fee is one dollar. The fair has two strict rules: 

all the puppies need to be checked for fleas at the gate and, at the same time, the 

one dollar bills also need to be checked for authenticity because of the many faux-

monnayeurs in the area. So:)        

Everyone 1
u  who has a str:

2
u  puppy and everyone 3

u  who has a wk:
2

u  dollar brings 

it
2

u  to the gate to be checked. 

Finally, chapter 5 shows that PCDRT preserves all the previously obtained results, 

including the analysis of bound variable anaphora, the analysis of quantifier scope 

ambiguities and the compositional account of the proportion problem and of the simple 

(non-mixed) examples of weak / strong ambiguities. 

Chapter 6. Structured Nominal Reference: Quantificational Subordination 

Chapter 6 extends the PCDRT system introduced in chapter 5 with a notion of 

dynamic generalized quantification that enables us to give a compositional account of 

quantificational subordination, specifically of the contrast between the interpretations of 

the following two discourses from Karttunen (1976):  

11. a. Harvey courts au girl at every convention.       

b. Sheu is very pretty.

12. a. Harvey courts au girl at every convention.       

b. Sheu always comes to the banquet with him. 

The initial sentence (11a/12a) is ambiguous between two quantifier scopings: 

Harvey courts the same girl at every convention (au girl>>every convention) vs. at every 

convention, Harvey courts a (possibly) different girl (every convention>>au girl).  

However, discourse (11) as a whole allows only for the "same girl" reading, while 

discourse (12) allows for both readings. 
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Using plural information states, we can capture the cross-sentential interaction 

between quantifier scope and anaphora exhibited by (11), in particular, the fact that the 

singular pronoun in sentence (11b) can disambiguate between the two readings of 

sentence (11a) (to see that the disambiguation is due to the singular pronoun, replace 

(11b) with Theyu are very pretty). 

The basic idea is that plural info states enable us to store both quantifier domains 

(i.e. values) and quantificational dependencies (i.e. structure), pass them across sentential 

boundaries and further elaborate on them, e.g. by letting a pronoun constrain the 

cardinality of a previously introduced quantifier domain. More precisely, after processing 

the update contributed by sentence (11a), the dref u will store the set of all girls that 

Harvey courts at some convention or other. The singular pronoun itu in (11b) will then 

constrain this set to be a singleton set; hence, the only available reading for discourse (11) 

as a whole is "wide-scope indefinite" reading. 

The fact that discourse (12) is also compatible with the "narrow-scope indefinite" 

reading is attributed to the presence of the quantificational adverb always in (12b), which 

can take scope over the singular pronoun sheu and thereby neutralize the effect that 

singular number morphology has on the cardinality of the previously introduced set of 

girls. 

PCDRT derives the contrast between the two Karttunen examples with minimal 

stipulations: the dynamic meanings for generalized quantifiers and singular number 

morphology are basically reformulations of their independently motivated static

meanings that incorporate the notion of structured discourse reference argued for in the 

previous chapters. 

Chapter 7. Structured Modal Reference: Modal Anaphora and Subordination 

Chapter 7 shows that PCDRT successfully generalizes to other phenomena 

independent of (yet interacting with) structured donkey anaphora and quantificational 

subordination, while still preserving both the intuitive appeal of the DRT account of 

anaphora and the compositional (Montagovian) character of the analyses. 
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In particular, the fact that we work with finer-grained meanings (given our plural 

info states) enables us to analyze complex interactions between individual-level and 

modal anaphora by simply adding discourse referents (dref's) p, p' etc. for possible 

worlds: a dref p stores a set of worlds, i.e. a proposition, relative to a plural info state and 

it can be structurally correlated with some other modal dref p' and / or with individual-

level dref's u, u' etc. 

The resulting Intensional PCDRT (IP-CDRT) system generalizes the notion of 

dynamic quantification introduced in chapter 6 to the modal domain, thereby enabling us 

to provide an account of the modal subordination that is completely parallel to the 

account of quantificational subordination. In particular, the analysis of the modal 

subordination discourse in (13) below is point-for-point parallel to the analysis of the 

quantificational subordination discourse in (12) above (provided in chapter 6).  

13. a. Au wolf might come in. b. Itu would eat Harvey first. 

Thus, IP-CDRT allows us to systematically capture the anaphoric and 

quantificational parallels between the individual and modal domains argued for in Stone 

(1999), Bittner (2001) and Schlenker (2005b) among others.  

Moreover, chapter 7 also shows that IP-CDRT successfully generalizes to more 

complex interactions between modal and invidual-level anaphora exhibited by naturally 

occurring discourses like (14) below. 

14. a. [A] man cannot live without joy. b. Therefore, when he is deprived of true 

spiritual joys, it is necessary that he become addicted to carnal pleasures.  

(Thomas Aquinas) 

In particular, we are interested in the entailment relation established by therefore

between the modal premise in (14a) and the modal conclusion in (14b) – and, to capture 

this, we need to account for several interrelated phenomena. 

First, we want to capture the meaning of the entailment particle therefore, which 

relates the content of the premise (14a) and the content of the conclusion (14b) and 

requires the latter to be entailed by the former. I take the content of a sentence to be truth-
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conditional in nature, i.e. to be the set of possible worlds in which the sentence is true, 

and entailment to be content inclusion, i.e. (14a) entails (14b) iff for any world w, if (14a) 

is true in w, so is (14b)); 

Second, we want to capture the meanings of (14a) and (14b). I take meaning to be 

context-change potential, i.e. to encode both content (truth-conditions) and anaphoric 

potential.  

Thus, on the one hand, we are interested in the contents of (14a) and (14b). They are 

both modal quantifications: (14a) involves a circumstantial modal base (to use the 

terminology introduced in Kratzer 1981) and asserts that, in view of the circumstances, 

i.e. given that God created man in a particular way, as long as a man is alive, he must find 

some thing or other pleasurable; (14b) involves the same modal base and elaborates on 

the preceding modal quantification: in view of the circumstances, if a man is alive and 

has no spiritual pleasure, he must have a carnal pleasure. Note that we need to make the 

contents of (14a) and (14b) accessible in discourse so that the entailment particle therefore

can relate them. 

On the other hand, we are interested in the anaphoric potential of (14a) and (14b), 

i.e. in the anaphoric connections between them. These connections are explicitly 

represented in discourse (15) below, which is intuitively equivalent to (14) albeit more 

awkwardly phrased. 

15. a. If a 1
u  man is alive, he

1
u  must find something 2

u  pleasurable / he
1

u  must have 

a 2
u  pleasure.           

b. Therefore, if he
1

u  doesn't have any 3
u  spiritual pleasure, he

1
u  must have a 4

u

carnal pleasure. 

Discourse (14/15) is analyzed in Intensional PCDRT (IP-CDRT) as a network of 

structured anaphoric connections and the meaning (and validity) of the Aquinas argument 

emerges as a consequence of the intertwined individual-level and modal anaphora.  

In particular, note that the conditional in (15b) is modally subordinated to the 

antecedent of the conditional in (15a), i.e. (15b) is interpreted as: if a man is alive and he 
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doesn't have any spiritual pleasure, he must have a carnal pleasure. Modal subordination 

is analyzed as simultaneous modal and individual-level anaphora, i.e. the morpheme if in 

(15b) is anaphoric to the modal dref introduced by the antecedent of (15a) and the 

pronoun he
1

u  is anaphoric to the individual-level dref introduced by the indefinite a 1
u  

man in the antecedent of (15a). 

The IP-CDRT account of discourse (14/15) brings further support to the idea that 

the dynamic turn in natural language semantics does not require us to abandon the 

classical approach to meaning and reference. In fact, the analysis of (14/15) does the 

exact opposite: the introduction of propositional dref's in IP-CDRT enables us to recover 

the classical notion of truth-conditional content, which in turn enables us to analyze the 

Aquinas discourse in (14/15) as involving structured discourse reference to the 

propositional contents contributed by the premise and the conclusion of the argument. 

Chapter 8. Conclusion 

The last chapter contains a summary of the main results and briefly presents two 

future extensions of Intensional PCDRT, namely: de se attitudes (focusing on the 

Romanian subjunctive B mood) and plural anaphora and quantification. 

The dissertation is located at the intersection of two major research programs in 

semantics that have gained substantial momentum in the last fifteen years: (i) the 

development of theories and formal systems that unify different semantic frameworks 

and (ii) the investigation of the semantic parallels between the individual, temporal and 

modal domains. As the dissertation shows, one of the outcomes of bringing together these 

two research programs is a novel compositional account of non-local (modal and 

individual-level) quantificational dependencies as anaphora to structure.

Thus, on the one hand, the present investigation takes the program in Muskens 

(1996) (see also Janssen 1986 and Groenendijk & Stokhof 1990 among others) of 
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unifying Montague semantics and dynamic semantics one step further1: Intensional 

PCDRT unifies – in classical type logic – the static Lewis (1973) / Kratzer (1981) 

analysis of modal quantification and van den Berg's Dynamic Plural Logic. 

On the other hand, Intensional PCDRT enables us to explicitly and systematically 

capture the anaphoric and quantificational parallels between the individual and modal 

domains, in particular, between quantificational and modal subordination, thus bringing 

further support to the conjecture that our semantic competence is domain neutral, first put 

forth in Partee (1973, 1984) for the individual and temporal domains and extended to the 

modal domain by Stone (1997, 1999), Bittner (2001) and Schlenker (2005b) among 

others. 

Summarizing, the dissertation can be seen as an extended investigation of a central 

issue raised by the dynamic turn in natural language semantics, namely: what kind of 

information is stored in an information state and how is this information updated in 

discourse? And, in particular: what can anaphora and quantification in both the nominal 

and the modal domain tell us about this? 

The main result of the investigation is a new representation language, i.e. 

Intensional PCDRT, which is couched in classical type logic and in which natural 

language discourses involving complex descriptions of multiple related objects can be 

compositionally translated. Intensional PCDRT formalizes the idea that information 

states involve two equally important components with essentially the same interpretive 

dynamics, namely discourse information about values (sets of objects: individuals and 

possible worlds, but also times, eventualities etc.) and discourse information about 

structure (the correlations / quantificational dependencies between sets of objects that are 

introduced and elaborated upon in discourse). 

                                                

1 The research program of unifying Montague semantics and dynamic semantics goes back at least to Partee 
(1984): "I don't see how to incorporate Montague's elegant treatment of compositionality into the 
framework followed in this paper, nor do I see how to reproduce within Montague's theory the unified and 
explanatory account of nominal and temporal anaphora provided by these extensions of Kamp's, Heim's 
and Hinrichs' work. So the next task is to try to construct a theoretical framework which incorporates the 
insights of both approaches." (Partee 1984: 279). 
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Chapter 2. Dynamic Predicate Logic with Generalized 

Quantification 

1. Introduction 

The main goal of this and the following chapter is to situate the present research 

within the general enterprise of compositional dynamic semantics, in particular:  

• to provide the core framework I will build on throughout the dissertation; 

• to fix notation; 

• to briefly recapitulate the basic empirical generalizations that motivate the dynamic 

approach to semantics and the basic kinds of semantic analyses that this approach 

makes possible. 

Most of the results reported in these two chapters come from the previous literature 

and are meant to set the stage for the more complex formal systems presented in the 

following chapters. The main references are: Kamp (1981), Heim (1982/1988), Kamp & 

Reyle (1993) for the general dynamic framework, i.e. Discourse Representation Theory 

(DRT) / File Change Semantics (FCS); Groenendijk & Stokhof (1991) for the way I 

choose to introduce sentence-level / clause-level compositionality in the framework, i.e. 

their Dynamic Predicate Logic (DPL); and finally Muskens (1995b, 1996) for the way to 

go compositional at the sub-sentential level, i.e. his Compositional DRT (CDRT). In 

particular, the step of going compositional at the sub-sentential level: 

"[…] combine[s] Montague Semantics and Discourse Representation into a 
formalism that is not only notationally adequate, in the sense that the working 
linguist need remember only a few rules and notations, but is also mathematically 
rigorous and based on ordinary type logic. […] DRT's Discourse Representation 
Structures (DRS's or boxes henceforth) are already present in type logic in the 
sense that they can simply be viewed as abbreviations of certain first-order terms, 
provided that some first-order axioms are adopted. […] The presence of boxes in 
type logic permits us to fuse DRT and Montague Grammar in a rather evenhanded 
way: both theories will be recognizable in the result. […] With this unification of 
the theories standard techniques (such as type-shifting) that are used in Montague 
Grammar become available in DRT."  (Muskens (1996): 144-145) 
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Section 2 introduces DPL (Groenendijk & Stokhof 1991). Sections 4 and 5

introduce the two most straightforward ways to extend DPL to account for generalized 

quantification in natural language. In particular, section 4 introduces – following a 

suggestion about adverbs of quantification in Groenendijk & Stokhof (1991) – what can 

be termed unselective generalized quantification – unselective in the sense of Lewis 

(1975), i.e. generalized quantification relating two sets of information states.  

This notion of unselective generalized quantification reproduces in DPL the 

(somewhat implicit) conception of generalized quantification in Kamp (1981) and Heim 

(1982/1988). 

Defining dynamic generalized quantifiers unselectively fails to account for the weak 

/ strong donkey ambiguity and runs into the proportion problem. Based on Bäuerle & 

Egli (1985), Root (1986), Rooth (1987), van Eijck & de Vries (1992) and Chierchia 

(1992, 1995) (see also Heim 1990 and Kamp & Reyle 1993), section 5 extends DPL with 

selective generalized quantification, which can account for the weak / strong donkey 

ambiguity and avoids the proportion problem. 

 The differences between the material in this chapter and the sources mentioned 

above are for the most part presentational. There are only two novel things. The first is 

the DPL-style definition of unselective generalized quantification in section 4 that 

incorporates generalized quantifier conservativity. 

The second one is the introduction – in section 6 – of the mixed weak & strong 

donkey sentences, i.e. relative-clause donkey sentences with two donkey indefinites that 

receive different readings – one strong, the other weak –, e.g. Every person who buys a 

book on amazon.com (strong) and has a credit card (weak) uses it (the credit card) to pay 

for it (the book); this kind of sentences cannot be accounted for in DRT / FCS / DPL even 

when they are extended with selective generalized quantification. Mixed weak & strong 

donkey sentences will provide one of the primary motivations for the subsequent 

revisions and generalizations of CDRT. 
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I will also introduce several new notational conventions (e.g. the λ-style notation for 

DPL-style generalized quantification in section 5) and, on occasion, the departure from 

the original notation entails minor technical modifications. 

But these are basically the only changes I make to the original dynamic systems – 

and they are made in the interest of clarity: given that the matters under discussion and 

the technical apparatus devised to handle them become difficult fairly fast, it seems 

counter-productive to increase the difficulty by repeatedly switching between various 

notations1.

2. Dynamic Predicate Logic (DPL) 

There are three basic kinds of examples that initially motivated a dynamic approach 

to the semantics of natural language. First, discourses in which a singular pronoun is 

anaphoric to an indefinite in a previous sentence, as shown in discourse (1-2) below. 

1. Au house-elf fell in love with au' witch. 

2. Heu bought heru' anu'' alligator purse. 

Following the convention in Barwise (1987), antecedents are indexed with 

superscripts and dependent elements with subscripts. Sentence (2) is interpreted as 

asserting that the house-elf mentioned in (1), namely u, bought an alligator purse to the 

witch mentioned in (1), i.e. to u'. Thus, the pronouns in (2) are interpreted as referring 

back to the entities evoked in the previous discourse. Heim (1982/1988) argues in detail 

that such pronouns do refer back to discourse entities and not some other entities, e.g. 

actual individuals that the speaker 'has in mind' when using the indefinites in (1). The 

hypothesis that the pronominal anaphora in discourse (1-2) is an instance of discourse 

reference (and not some other kind of reference or covert pronoun binding) is supported 

by the donkey sentences in (3), (4) and (5), (6) below. 

                                                

1 For example, the non-conservative definition of unselective generalized quantification in section 4 is not 
given as such in the literature. But the only new thing is the notation – the actual content of the definition is 
an immediate extension of the analysis of adverbs of quantification in Groenendijk & Stokhof (1991): 81-

82 in terms of the 'generalized' implication connectives →Q. 



20

3. Every farmer who owns au donkey beats itu.

4. Every house-elf who falls in love with au witch buys heru anu' alligator purse. 

5. If au farmer owns au' donkey, heu beats itu'.

6. If au house-elf falls in love with au' witch, heu buys heru' anu'' alligator purse. 

Sentence (4), for example, cannot be said to make reference to any given witch u'

that the speaker 'has in mind'; the intuitively most salient interpretation of (4) is that for 

any pair of individuals u and u' such that u is a house-elf and u' is a witch that said elf is 

in love with, u buys u' some alligator purse or other. Moreover, the indefinite au'
 witch in 

(4) cannot bind the pronoun heru' because it is not in the required structural position for 

binding, namely c-command (or some other suitable notion of 'command', depending on 

the reader's favorite syntactic formalism), e.g. in Every witch loves herself, the quantifier 

every witch c-commands and binds the pronoun herself. A similar argument can be put 

forth in the case of donkey anaphora in conditionals, as illustrated by (5) and (6). 

The felicity of the discourse reference patterns instantiated by examples (1) through 

(6) above does not seem to be sensitive to pragmatic factors (e.g. world knowledge, the 

speaker's communicative intentions etc.), which provides prima facie evidence that they 

should be analyzed in semantic terms. However, static formal semantics for natural 

language of the kind proposed in Montague (1974) cannot account for the cross-sentential 

scope of the indefinites in discourse (1-2) or for the co-variation without binding that 

obtains between the pronouns and the indefinites in (3) through (6) above. Hence the 

move to dynamic semantics. 

I will not argue now for the dynamic approach to cross-sentential anaphora and 

donkey sentences as opposed to the family of D-/E-type approaches. I will compare these 

two kinds of approaches as I analyze increasingly complex discourses starting with 

chapter 5. Anticipating, I will make two main points.  

First, as soon as we start examining some of the phenomena that are central to the 

present investigation, namely donkey sentences with multiple instances of donkey 

anaphora that receive different readings (i.e. weak and / or strong), e.g. Every person who 

buys a book on amazon.com (strong) and has a credit card (weak) uses it to pay for it
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(the book)), the D-/E-type approaches that model pronouns as functions of arbitrary arity 

from individuals to individuals2 become increasingly complex and counter-intuitive, as 

opposed to an analysis formulated in a dynamic system formulated in type logic and 

employing plural info states (i.e. sets of variable assignments). 

Second, if we want to extend the other kind of D-/E-type approaches, i.e. the 

situation-based ones (which model pronouns as functions from (minimal) situations to 

individuals3), to account for such examples, we will very likely end up with a system that 

is identical in the relevant respects with the dynamic system I propose.  

Finally, if we want to extend the account of donkey anaphora in the individual 

domain to modal anaphora and modal subordination in such a way that we capture the 

systematic parallels between modal and individual-level anaphora and quantification – 

see Geurts (1999), Frank (1996), Stone (1997, 1999), Bittner (2001) and Schlenker 

(2005) among others for detailed discussion of these parallels –, we can straightforwardly 

capture the modal phenomena and the cross-domain parallels in a type-logical dynamic 

semantics system by simply extending it with another basic type for possible worlds, as 

shown in chapter 7 below (and building on Muskens 1995b and Stone 1999).  

It is much less clear how to execute a similar extension for the two kinds of D-/E-

type approaches mentioned above (i.e. 'individual'-based and situation-based). 

The particular version of dynamic semantics I build on is DPL (Groenendijk & 

Stokhof 1991) – and for three reasons:  

• first, the syntax of the system is the familiar syntax of classical first-order logic (at 

least in the original notation; in my notation, it is a fairly close variant thereof); 

this enables us to focus on what is really new, namely the semantics;  

• second, the semantics of DPL is minimally different from the standard Tarskian 

semantics for first-order logic: instead of interpreting a formula as a set of 

variable assignments (i.e. the set of variable assignments that satisfy the formula 

                                                

2 See Chierchia (1995), section 2.5 for a relatively recent example. 

3 See Heim (1990) for the paradigmatic example. 
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in the given model), we interpret it as a binary relation between assignments4; 

moreover, this minimal semantic modification encodes in a transparent way the 

core dynamic idea that meaning is not merely truth-conditional content, but 

context change potential; 

• third, just as classical predicate logic can be straightforwardly generalized to static 

type logic, DPL can be easily generalized to a dynamic version of type logic, 

which is what Muskens' Compositional DRT is; and CDRT enables us to 

introduce compositionality at the sub-sentential/sub-clausal level in the tradition 

of Montague semantics. 

Besides formally defining an intuitive and easily generalizable notion of dynamic 

semantic value, DPL is able to translate the donkey sentences in (3) through (6) above 

compositionally, with sentences / clauses as the building blocks (i.e., basically, as 

compositional as one can get in first-order logic).  

For instance, sentences (3) and (5) above are translated as shown in (7) and (8) 

below and, when interpreted dynamically, the translations capture the intuitively correct 

truth-conditions. 

7. ∀x(farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y)) → beat(x, y)) 

8. ∃x(farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y))) → beat(x, y) 

Consider (7) first: as it is customary, every is translated as universal quantification 

plus implication and the indefinite as existential quantification plus conjunction; 

moreover, the syntactic scope of the existential quantification is 'local' (restricted to the 

antecedent of the implication), but it does semantically bind the occurrence of the 

                                                

4 Alternatively, and in certain respects equivalently, we can think of the interpretation of a formula as a 
function taking as argument a sets of assignments and returning another set of assignments – this is the 
view underlying FCS, for example. However, in both cases the update is defined pointwise – and a 
relational view of update reflects this more directly. There are other differences between FCS and DPL 
(e.g. using partial and total assignments respectively and disallowing vs. allowing reassignment) – see the 
dynamic cube in Krahmer (1998): 59 for an overview. In particular, the fact that DPL (and CDRT) allows 
reassignment will be an essential ingredient in accounting for the interaction between anaphora and 
generalized conjunction (see section 5 of Chapter 1 below). The "destructive reassignment" or "downdate 
problem" associated with reassignment can be solved using stacks / 'referent systems': see Nouwen (2003) 
for a recent discussion and Bittner (2006) for a set of 'stack' axioms for dynamic type logic. 
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variable y in the consequent. Similarly, in (8) the conditional is translated as implication 

and the indefinites are translated as existentials plus conjunction, again with syntactically 

'local' but semantically 'non-local' scope. 

As these observations indicate, DPL has two crucial properties that enable it to 

provide compositional translations for donkey sentences: DPL makes the equivalences in 

(9) and (10) below valid, so that indefinites can semantically bind outside their syntactic 

scope and indefinitely to the right, which, in combination with the definition of dynamic 

implication, allows them to scope out of the antecedent and universally bind in the 

consequent of the implication.  

9. ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)5

10. ∃x(φ) → ψ ⇔ ∀x(φ → ψ) 

2.1. Definitions and Abbreviations 

DPL is a well-known system, so I will provide the definition of the interpretation 

function without any additional pre-theoretical motivation. The official syntax of DPL 

(i.e. the one in Groenendijk & Stokhof (1991)) is that of classical first-order logic with 

identity. However, in view of subsequent developments, I introduce certain 

modifications: the most salient one is that the symbol for conjunction is ';' (the symbol 

generally used for dynamic sequencing) and not the usual '∧'. Moreover, existential and 

universal quantifications are not officially present in the language; I only define the 

interpretation of the random assignment to a variable x, symbolized as [x] – and the 

existential and universal quantifiers are defined as abbreviations in terms of [x].  

I do not provide the 'official' definition of a well-formed formula (wff) of DPL – it 

is easily recoverable on the basis of the definition of the interpretation function ║⋅║ in 

(11) below. As already indicated, the semantics of DPL interprets formulas as relations 

between variable assignments, which, for our narrow empirical purposes (i.e. elementary 

                                                

5 The symbol '⇔' should be interpreted as requiring the identity of the semantic value of two formulas. 
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aspects of discourse reference to individuals), model the more general dynamic notion of 

information state in a satisfactory way. 

11. Dynamic Predicate Logic (DPL). The definition of the DPL interpretation 

function ║φ║DPL
M relative to a standard first-order model M=<D

M, IM>, where D

is the domain of entities and I is the interpretation function which assigns to each 

n-place relation 'R' a subset of D
n. For readability, I drop the subscript and 

superscript on ║⋅║DPL
M, DM and IM. 'T' and 'F' stand for the two truth values.         

For any pair of M-variable assignments <g, h>:              

a. Atomic formulas ('lexical' relations and identity):    

║R(x1, …, xn)║<g, h> = T        

  iff g=h and <g(x1), …, g(xn)>∈I(R)     

║x1=x2║<g, h> = T         

  iff g=h and g(x1)=g(x2)       

b. Connectives (dynamic conjunction and dynamic negation):   

║φ; ψ║<g, h> = T         

  iff there is a k s.t. ║φ║<g, k> = T and ║ψ║<k, h> = T  

║~φ║<g, h> = T         

  iff g=h and there is no k s.t. ║φ║<g, k> = T,    

  i.e. ║~φ║<g, h> = T iff g=h and g∉Dom(║φ║),    

   where Dom(║φ║) := {g: there is an h s.t. ║φ║<g, h> = T}   

c. Quantifiers (random assignment of value to variables):   

║[x]║<g, h> = T         

  iff for any variable υ, if υ≠x then g(υ)=h(υ)     

d. Truth: A formula φ is true with respect to an input assignment g iff there is an 

output assignment h s.t. ║φ║<g, h> = T, i.e. g∈Dom(║φ║). 

Given that variable assignments are functions from variables to entities, if two 

variable assignments assign identical values to all the variables, they are identical. Hence, 

based on definition (11c), the formula [ ] defines the 'diagonal' of the product G×G, 

where G is the set of all M-variable assignments, as shown in (12). 
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12. ║[ ]║= {<g, g>: g∈G},         

 where G is the set of all M-variable assignments. 

We define the other sentential connectives and the quantifiers as in (13) below. 

13. a. Abbreviations – Connectives (anaphoric closure, disjunction and 

implication):          

 !φ := ~~φ 6,          

  i.e. ║!φ║={<g, h>: g=h and g∈Dom(║φ║)}7    

φ ∨ ψ := ~(~φ; ~ψ),         

  i.e. ║φ ∨ ψ║={<g, h>: g=h and g∈Dom(║φ║)∪Dom(║ψ║)} 

φ → ψ := ~(φ; ~ψ),         

  i.e. ║φ → ψ║={<g, h>: g=h and for any k s.t.║φ║<g, k> = T,  

      there is an l s.t.║ψ║<k, l> = T}8,

  i.e. ║φ → ψ║={<g, h>: g=h and (φ)g ⊆ Dom(║ψ║)},   

   where (φ)g := {h: ║φ║<g, h> = T}     

b. Abbreviations – quantifiers (existential, universal, multiple random 

assignment):           

∃x(φ) := [x]; φ          

∀x(φ) := ~([x]; ~φ),         

  i.e. [x] → φ or, equivalently, ~∃x(~φ),    

  i.e. ║∀x(φ)║={<g, h>: g=h and      

                                                

6 I use the symbol '!' for closure, as in van den Berg (1996b) and unlike Groenendijk & Stokhof (1991), 

who use '◊'. 

7 The connective '!' is labeled 'anaphoric closure' because, when applied to a formula φ, it closes off the 

possibility of subsequent reference to any dref introduced in φ. This is because the input and the output 

assignments in the denotation of !φ are identical. The operator '!' is important because φ and !φ have the 
same truth-conditions – see the definition of truth in (11a), i.e. '!' can be said to factor out the truth-
conditions of a dynamic formula.  

8 This is shown by the following equivalences:: ║φ → ψ║<g, h> = T iff ║~(φ; ~ψ)║<g, h> = T iff g=h and 

there is no k s.t. ║φ; ~ψ║<g, k> = T iff g=h and there is no k and no l s.t.║φ║<g, l> = T and ║~ψ║<l, k> = 

T iff g=h and there is no k and no l s.t.║φ║<g, l> = T and l=k and l∉Dom(║ψ║) iff g=h and there is no k

s.t.║φ║<g, k> = T and k∉Dom(║ψ║) iff g=h and for any k s.t.║φ║<g, k> = T, we have that k∈Dom(║ψ║) 

iff g=h and for any k s.t.║φ║<g, k> = T, there is an l s.t.║ψ║<k, l> = T. Summarizing: ║φ → ψ║<g, h> = 

T iff g=h and for any k s.t.║φ║<g, k> = T, there is an l s.t.║ψ║<k, l> = T. 
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    for any k s.t. g[x]k, there is an l s.t.║φ║<k, l> = T}9, 

  i.e. ║∀x(φ)║={<g, h>: g=h and ([x])g ⊆ Dom(║φ║)}   

 [x1, …, xn] := [x1]; …; [xn] 

Given the definitions of dynamic negation '~' and closure '!', the equivalence in (14) 

below holds; (14) is very useful in proving that many equivalences of interest hold in 

DPL (e.g. the one in (15) below). Two formulas are equivalent, symbolized as '⇔', iff 

they denote the same set of variable assignments. 

14. ~(φ; ψ) ⇔ ~(φ; !ψ)10

The equivalence in (15) below exhibits the limited extent to which the existential 

and universal quantifiers are duals11; this will prove useful, for example, when we try to 

determine the DPL translation of the English determiner no.

15. ~∃x(φ) ⇔ ∀x(~φ)12

The practice of setting up abbreviations as opposed to directly defining various 

connectives and quantifiers might seem cumbersome, but it is useful in at least three 

ways. First, by setting up explicit abbreviations, we see exactly which component of the 

basic dynamic system does the work, e.g. we see that the universal 'effect' of universal 

                                                

9 This is shown by the following equivalences: ║∀x(φ)║<g, h> = T iff ║~([x]; ~φ)║<g, h> = T iff g=h and 

there is no k s.t. ║[x]; ~φ║<g, k> = T iff g=h and there is no k and no l s.t.║[x]║<g, l> = T and ║~φ║<l, k> 

= T iff g=h and there is no k and no l s.t. g[x]l and l=k and l∉Dom(║φ║) iff g=h and there is no k s.t. g[x]k

and k∉Dom(║φ║) iff g=h and for any k s.t. g[x]k, we have that k∈Dom(║φ║) iff g=h and for any k s.t. 

g[x]k, there is an l s.t.║φ║<k, l> = T. Summarizing: ║∀x(φ)║<g, h> = T iff g=h and for any k s.t. g[x]k, 

there is an l s.t.║φ║<k, l> = T. 

10 The equivalence holds because the following equalities hold (I use two abbreviations: (φ)g := {h: ║φ║<g, 

h> = T} and Dom(║φ║) := {g: there is an h s.t. ║φ║<g, h> = T}):  

║~(φ; ψ)║ = {<g, h>: g=h and g∉Dom(║φ; ψ║)} = {<g, h>: g=h and it is not the case that there is a k s.t. 

║φ; ψ║<g, k> = T} = {<g, h>: g=h and it is not the case that there is an l and a k s.t. ║φ║<g, l> = T and 

║ψ║<l, k> = T} = {<g, h>: g=h and there is no l s.t. ║φ║<g, l> = T and l∈Dom(║ψ║)} = {<g, h>: g=h

and (φ)g∩Dom(║ψ║)=Ø} = {<g, h>: g=h and (φ)g∩Dom(║!ψ║)=Ø} = {<g, h>: g=h and g∉Dom(║φ; 

!ψ║)} = ║~(φ; !ψ)║. 

11 The other 'half' of the duality, i.e. ∃x(~φ) ⇔ ~∀x(φ), clearly doesn't hold: using the terminology defined 

in (16), ~∀x(φ) is a test, while ∃x(~φ) isn't. 

12 ~∃x(φ) ⇔ ~([x]; φ) ⇔ (given (14)) ~([x]; !φ) ⇔ ~([x]; ~~φ) ⇔ ∀x(~φ).  
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quantification ∀x(φ), just as the universal unselective binding 'effect' of implication φ →

ψ, is in fact due to dynamic negation13.

Second, distinguishing basic definitions and derived abbreviations will prove useful 

when we start generalizing the system in various ways. The official definition is the 

logical 'core' that undergoes modifications when we define extensions of DPL; the system 

of abbreviations, however, remains more or less constant across extensions. In this way, 

we are able to exhibit in a transparent way the commonalities between the various 

systems we consider and also between the analyses of natural language discourses and 

within these different systems.  

Third, the abbreviations indicate explicitly the relation between the 'core' dynamic 

system and related systems (e.g. DRT). From this perspective, it is useful to add to the 

core layer of definitions in (11) above and the layer of abbreviations in (13) (which 

'recovers' first-order logic) yet another and final layer of abbreviations that 'recovers' 

DRT (Kamp 1981, Kamp & Reyle 1993). 

2.2. Discourse Representation Structures (DRS's) in DPL 

To this end, I define the semantic notion of test and the corresponding syntactic 

notion of condition in (16) and (17) below (see Groenendijk & Stokhof (1991): 57-58, 

Definitions 11 and 12). The relation between them is stated in (18) (see Groenendijk & 

Stokhof (1991): 58, Fact 6).  

16. A wff φ is a test iff ║φ║ ⊆ {<g, g>: g∈G}, where G is the set of all M-variable 

assignments,           

 i.e., in our terms, a wff φ is a test iff ║φ║ ⊆ ║[ ]║ 14.

17. The set of conditions is the smallest set of wff's containing atomic formulas, [ ], 

negative formulas (i.e. formulas whose main connective is dynamic negation '~'15) 

and closed under dynamic conjunction. 

                                                

13 See the observations in van den Berg (1996b): 6, Section 2.3. 

14 Note that φ ⇔ !φ iff φ is a test; see Groenendijk & Stokhof (1991): 62. 
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18. φ is a test iff φ is a condition or a contradiction (φ is a contradiction iff ║φ║= Ø) 

We indicate that a formula is a condition by placing square brackets around it. 

19. Conditions:           

 [φ] is defined iff φ is a condition; when defined, [φ] := φ    

 [φ1, …, φm] := [φ1]; …; [φm] 

We can now define a Discourse Representation Structure (DRS) or linearized 'box' 

as follows: 

20. Discourse Representation Structures (DRS's), a.k.a. linearized 'boxes':

 [x1, …, xn | φ1, …, φm] := [x1, …, xn]; [φ1, …, φm],     

  equivalently: [x1, …, xn | φ1, …, φm] := ∃x1…∃xn([φ1, …, φm]).   

That is, [x1, …, xn | φ1, …, φm] is defined iff φ1, …, φm are conditions and, if 

defined:          

║[x1, …, xn | φ1, …, φm]║:= {<g, h>:  g[x1, …, xn]h and    

     ║φ1║<h, h> = T and … ║φm ║<h, h> = T} 

3. Anaphora in DPL 

The benefit of setting up this system of abbreviations becomes clear as soon as we 

begin translating natural language discourses into DPL.  

3.1. Cross-sentential Anaphora 

Consider again discourse (1-2) above, repeated in (21-22) below. 

21. Ax house-elf fell in love with ay witch. 

22. Hex bought hery anz alligator purse. 

                                                                                                                                                

15 Note that, given our abbreviations in (13) above, the set of negative formulas includes closed formulas 

(i.e. formulas of the form '!φ'), disjunctions, implications and universally quantified formulas. 
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The representation of (21-22) in the unabbreviated system is provided in (23) below; 

the 'first-order'-style abbreviation is provided in (24) and the DRT-style abbreviation in 

(25). 

23. [x]; house_elf(x); [y]; witch(y); fall_in_love(x, y);       

[z]; alligator_purse(z); buy(x, y, z) 

24. ∃x(house_elf(x); ∃y(witch(y); fall_in_love(x, y)));      

∃z(alligator_purse(z); buy(x, y, z)) 

25. [x, y | house_elf(x), witch(y), fall_in_love(x, y)];       

[z | alligator_purse(z), buy(x, y, z)] 

3.2. Relative-clause Donkey Sentences 

Consider now the relative-clause donkey sentence in (26) below (repeated from (4) 

above). The 'first-order'-style translation in terms of universal quantification and 

implication is provided in (27) and the DRT-style translation in (28). One way to see that 

the two translations are equivalent is to notice that both of them are equivalent to the 

formula in (29). 

26. Everyx house-elf who falls in love with ay witch buys hery anz alligator purse. 

27. ∀x(house_elf(x); ∃y(witch(y); fall_in_love(x, y))      

→ ∃z(alligator_purse(z); buy(x, y, z))) 

28. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]      

→ [z | alligator_purse(z), buy(x, y, z)] 

29. [x]; house_elf(x); [y]; witch(y); fall_in_love(x, y)      

→ [z]; alligator_purse(z); buy(x, y, z) 

Moreover, the three translations in (27), (28) and (29) are all equivalent (in DPL) to 

the formula in (30) below, which is the formula that assigns sentence (26) the intuitively 

correct truth-conditions when interpreted as in classical first-order logic. 

30. ∀x∀y(house_elf(x); witch(y); fall_in_love(x, y)      

→ ∃z(alligator_purse(z); buy(x, y, z))) 
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As already noted, the formulas in (27) through (30) are equivalent because DPL 

validates the equivalence in (10) above, i.e. ∃x(φ) → ψ ⇔ ∀x(φ → ψ)16.

3.3. Conditional Donkey Sentences 

Finally, the conditional donkey sentence in (31) below (repeated from (6)) is truth-

conditionally equivalent to the relative clause donkey sentence in (26), as shown by the 

fact that they receive the same DRT-style translation, which is provided in (32) below. 

The 'first-order'-style compositional translation – equivalent to the DRT-style translation 

and all the other formulas listed above – is given in (33). 

31. If ax house-elf falls in love with ay witch, hex buys hery anz alligator purse. 

32. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]      

→ [z | alligator_purse(z), buy(x, y, z)] 

33. ∃x(house_elf(x); ∃y(witch(y); fall_in_love(x, y)))      

→ ∃z(alligator_purse(z); buy(x, y, z)) 

I conclude this section with the DPL analysis of two negative donkey sentences. 

34. Nox house-elf who falls in love with ay witch buys hery anz alligator purse. 

35. If ax house-elf falls in love with ay witch, hex never buys hery anz alligator purse. 

If we follow the canons of classical first-order logic in translating sentence (34), we 

have a choice between a combination of negation and existential quantification and a 

combination of negation and universal quantification. But the limited duality exhibited by 

existential and universal quantification in DPL (see (15) above) is of help here. To see 

this, note first that the duality can be generalized to the equivalence in (36) below.

36. ~∃x(φ; ψ) ⇔ ∀x(φ → ~ψ) 17,18

                                                

16 ∃x(φ) → ψ ⇔ ∀x(φ → ψ) iff ([x]; φ) → ψ ⇔ ~([x]; ~(φ → ψ)) iff ~(([x]; φ); ~ψ) ⇔ ~([x]; ~~(φ; ~ψ)) iff 

~([x]; (φ; ~ψ)) ⇔ ~([x]; ~~(φ; ~ψ)) iff ~([x]; (φ; ~ψ)) ⇔ ~([x]; !(φ; ~ψ)). The last equivalence holds 

because it is an instance of the more general equivalence ~(φ; ψ) ⇔ ~(φ; !ψ) (see (14) above). 

17 The equivalence holds because: ~∃x(φ; ψ) ⇔ (by (15)) ∀x(~(φ; ψ)) ⇔ (by (14)) ∀x(~(φ; !ψ)) ⇔ ∀x(~(φ; 

~~ψ)) ⇔ ∀x(φ → ~ψ). 
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Now, given that the equivalence in (36) holds, we can translate sentence (34) either 

way, as shown in (37) and (38). Moreover, both translations are equivalent to the formula 

in (39), which explicitly shows that we quantify universally over all pairs of house-elves 

and witches standing in the 'fall in love' relation.  

37. ~∃x(house_elf(x); ∃y(witch(y); fall_in_love(x, y));      

        ∃z(alligator_purse(z); buy(x, y, z))) 

38. ∀x(house_elf(x); ∃y(witch(y); fall_in_love(x, y))      

→ ~∃z(alligator_purse(z); buy(x, y, z))) 

39. ∀x∀y(house_elf(x); witch(y); fall_in_love(x, y)     

→ ~∃z(alligator_purse(z); buy(x, y, z))) 

Consider now sentence (35). There is a compositional DPL translation for it, which 

becomes apparent as soon as we consider the intuitively equivalent English sentence in 

(40) below. Both sentence (35) and sentence (40) are compositionally translated as in 

(41).  

40. If ax house-elf falls in love with ay witch, hex doesn't buy hery anz alligator purse. 

41. ∃x(house_elf(x); ∃y(witch(y); fall_in_love(x, y)))      

→ ~∃z(alligator_purse(z); buy(x, y, z)) 

It is easily seen that the DPL translations capture the fact that the English sentences 

in (34), (35) and (40) are intuitively equivalent. 

                                                                                                                                                

18 The equivalence ~∃x(φ; ψ) ⇔ ∀x(φ → ~ψ) in (36) is a generalization of the equivalence ~∃x(φ) ⇔
∀x(~φ) in (15) expressing the partial duality of the two quantifiers because we can obtain (15) from (36) by 

inserting [ ] in the place of φ in (36). In particular, the two equivalences in (i) and (ii) below hold: 

(i) [ ]; φ ⇔ φ,     hence ~∃x([ ]; φ) ⇔ ~∃x(φ) 

(ii) [ ] → ~φ ⇔ ~([ ]; ~~φ) ⇔ ~~~φ ⇔ ~φ,     hence ∀x([ ] → ~φ) ⇔ ∀x(~φ)  

Moreover, we have (by (36)) that ~∃x([ ]; φ) ⇔ ∀x([ ] → ~φ); it follows that ~∃x(φ) ⇔ ∀x(~φ), i.e. (15), 
holds. 
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4. Extending DPL with Unselective Generalized Quantification 

As the translations of the every- and if-examples in (26) and (31) above indicate, 

there is a systematic correspondence in DPL between the generalized quantifier every and 

the unselective implication connective19. The same point is established by the 

equivalence of the DPL translations of the no- and never-examples in (34) and (35). The 

correspondence between every and implication is concisely captured by the equivalence 

in (42) (which is none other than the equivalence we mentioned at the beginning of the 

previous section – see (10) above). 

42. ∀x(φ → ψ) ⇔ ([x]; φ) → ψ 20

Moreover, as indicated in (13a) above, when interpreted relative to an input 

assignment g, the implication connective φ → ψ boils down to an inclusion relation 

between two sets of assignments: (φ)g ⊆ Dom(║ψ║), where (φ)g:={h: ║φ║<g, h> = T}21

and Dom(║ψ║):={h: there is a k s.t. ║φ║<h, k> = T}. The inclusion relation between the 

two sets is precisely the relation expressed by the static generalized quantifier EVERY

when applied to the two sets in question, i.e. EVERY((φ)g, Dom(║ψ║)). We can 

therefore give an alternative definition of implication using the static quantifier EVERY, 

as shown in (43) below. 

43. ║φ → ψ║ = {<g, h>: g=h and EVERY((φ)g, Dom(║ψ║))},   

 where EVERY is the usual static generalized quantifier. 

Putting together (42) and (43), we obtain a definition of the natural language 

quantifier every as a binary operator over two DPL formulas: 

                                                

19 Implication is unselective basically because it is a sentential connective. 

20 ║∀x(φ → ψ)║<g, h> = T iff ║[x] → (φ → ψ)║<g, h> = T iff g=h and for any k s.t.║[x]║<g, k> = T, 

there is an l s.t.║φ → ψ║<k, l> = T iff g=h and for any k s.t. g[x]k, there is an l s.t. k=l and for any k'

s.t.║φ║<k, k'> = T, there is an l' s.t.║ψ║<k', l'> = T iff g=h and for any k and k' s.t. g[x]k and ║φ║<k, k'> = 

T, there is an l s.t.║ψ║<k', l> = T iff g=h and for any k s.t. ║[x]; φ║<g, k> = T, there is an l s.t.║ψ║<k, l> 

= T iff ║([x]; φ) → ψ║<g, h> = T. 

21 That is, (φ)g is the image of the singleton set {g} under the relation ║φ║. 
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44. ║everyx(φ, ψ)║ = {<g, h>: g=h and EVERY(([x]; φ)g, Dom(║ψ║))} 

It is easily checked that the equivalence in (42) can be extended as shown in (45) 

below. 

45. ∀x(φ → ψ) ⇔ ([x]; φ) → ψ ⇔ everyx(φ, ψ) 

This equivalence shows that the operator everyx(φ, ψ) can be successfully used to 

translate donkey sentences with every and assign them the intuitively correct truth-

conditions. The 'in love house-elf' example and its DPL translation are repeated in (46) 

and (47) below. The equivalent translation based on the binary every operator is provided 

in (48). 

46. Everyx house-elf who falls in love with ay witch buys hery anz alligator purse. 

47. ∀x(house_elf(x); ∃y(witch(y); fall_in_love(x, y))      

  → ∃z(alligator_purse(z); buy(x, y, z))) 

48. everyx(house_elf(x); ∃y(witch(y); fall_in_love(x, y)),  

∃z(alligator_purse(z); buy(x, y, z))) 

We can define in a similar way a binary operator over DPL formulas nox(φ, ψ). 

49. ║nox(φ, ψ)║ = {<g, h>: g=h and NO(([x]; φ)g, Dom(║ψ║))},   

 i.e. ║nox(φ, ψ)║ = {<g, h>: g=h and ([x]; φ)g∩Dom(║ψ║)=Ø} 

It is easily checked that the equivalence in (36) above extends as shown in (50). 

50. ~∃x(φ; ψ) ⇔ ∀x(φ → ~ψ) ⇔ nox(φ, ψ) 

Consequently, we can translate sentence (34), repeated as (51), as shown in (52) 

below. 

51. Nox house-elf who falls in love with ay witch buys hery anz alligator purse. 

52. nox(house_elf(x); ∃y(witch(y); fall_in_love(x, y)),     

       ∃z(alligator_purse(z); buy(x, y, z))) 
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4.1. Dynamic Unselective Generalized Quantification

The definitions of every and no in (44) and (49) and the way in which these 

operators are used to translate the English sentences in (48) and (51) suggest a way to add 

generalized quantification to DPL so that we can analyze donkey sentences like (53) and 

(54) below. 

53. Mostx house-elves who fall in love with ay witch buy hery anz alligator purse. 

54. Fewx house-elves who fall in love with ay witch buy hery anz alligator purse. 

Let's first define the family of unselective binary operators det 
22.

55. ║det(φ, ψ)║ = {<g, h>: g=h and DET((φ)g, Dom(║ψ║))},    

 where DET is the corresponding static determiner 23.

The fact that the det sentential operators are unselective is semantically reflected in 

the fact that they express generalized quantification between two sets of info states (a.k.a. 

variable assignments), namely (φ)g and Dom(║ψ║). And this will bring their downfall: it 

is their unselectivity (i.e. generalized quantification over info states) that leads them 

straight into the proportion problem and makes them incapable of accounting for the 

ambiguity between weak and strong donkey readings. But before we come to that, we 

need a couple more definitions. 

First, note that a formula of the form det(φ, ψ) is a test. So, we should also extend 

our syntactic notion of condition defined for DPL in (17) above. The revised definition is: 

56. The set of conditions is the smallest set of wff's containing atomic formulas, 

formulas whose main connective is dynamic negation '~' or a det operator and 

closed under dynamic conjunction. 

The revised definition in (56) enables us to construct DRS's of the form [… | …, 

det(φ, ψ), …]. 
                                                

22 Again, note that they are unselective because they are essentially sentential operators. 

23 Given that Dom(║ψ║)=Dom(║!ψ║), it is a direct consequence of this definition that det(φ, ψ) ⇔ det(φ, 

!ψ). 
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The natural language generalized determiners are defined in terms of the unselective 

det operators, as shown in (57) below. 

57. detx(φ, ψ) := det([x]; φ, ψ) 

The determiners everyx(φ, ψ) and nox(φ, ψ), i.e. the every and no instances of the 

general definition in (57), are none other than the determiners directly defined in (44) and 

(49) above. The generalized determiners defined in this way are still unselective, despite 

the presence of the variable x: the variable x in detx is only meant to indicate the presence 

of the additional update [x], but the basic operator is still the unselective det. That is, we 

still determine the denotation of detx(φ, ψ) by checking whether the static determiner 

DET applies to two sets of info states – and not to two sets of individuals. 

Let us make explicit the connections with the previous literature before turning to 

some examples. First, the definition of det(φ, ψ) in (55) above is just the definition of 

quantificational adverbs in Groenendijk & Stokhof (1991): 81-82, which follows Lewis 

(1975) in taking adverbs to quantify over cases – i.e. information states (in dynamic 

terms).  For example, never is translated in Groenendijk & Stokhof (1991): 82 as the 

binary implication connective →no and the definition of φ →no ψ is exactly the definition 

of no(φ, ψ).  

The analysis can be extended in the obvious way to other adverbs of quantification, 

e.g. always can be interpreted as every(φ, ψ) (just like bare conditionals), often and 

usually as most(φ, ψ) and rarely as few(φ, ψ) – where the corresponding static 

determiners MOST and FEW are interpreted as more than half and less than half 

respectively. 

Second, the definition of detx(φ, ψ) is actually equivalent to the (implicit) definition 

of generalized quantification in Kamp (1981) and Heim (1982/1988).  

A welcome consequence of defining detx in terms of det (as in (57) above) is that 

the systematic natural language correspondence between adverbs of quantification and 

generalized quantifiers, e.g. the correspondence between no and never in examples (34) 

and (35) above, is explicitly captured. 
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4.2. Limitations of Unselectivity: Proportions 

Another seemingly welcome consequence is that we can now provide an analysis of 

donkey sentences with most and few that can capture the anaphoric connections between 

the indefinites in the restrictor and the pronouns in the nuclear scope, as shown below in 

(59) and (62) ('predicate logic'-style) and (60) and (63) (DRT-style). 

58. Mostx house-elves who fall in love with ay witch buy hery anz alligator purse. 

59. mostx(house_elf(x); ∃y(witch(y); fall_in_love(x, y)),     

           ∃z(alligator_purse(z); buy(x, y, z))) 

60. mostx([y | house_elf(x), witch(y), fall_in_love(x, y)],       

           [z | alligator_purse(z), buy(x, y, z)]) 

61. Fewx house-elves who fall in love with ay witch buy hery anz alligator purse. 

62. fewx(house_elf(x); ∃y(witch(y); fall_in_love(x, y)),       

         ∃z(alligator_purse(z); buy(x, y, z))) 

63. fewx([y | house_elf(x), witch(y), fall_in_love(x, y)],       

         [z | alligator_purse(z), buy(x, y, z)]) 

The unselective analysis is successful in capturing the donkey anaphoric 

connections, but it is not successful in capturing the intuitively correct truth-conditions. 

As shown in Partee (1984)24, Rooth (1987), Kadmon (1987) and Heim (1990), the 

analysis has a proportion problem25.

Consider sentence (1) above and its DRT-style representation in (60). It is easy to 

see that the representation does not capture the intuitively correct truth-conditions if we 

examine the equivalent formula in (64) below. 

                                                

24 "[…] when we have to deal with quantification with a complicated and possibly uncertain underlying 
ontology, we need to specify a 'sort' (for the quantifier to 'live on' in the sense of Barwise & Cooper 1981) 
separately from whatever further restrictions we want to add (perhaps in terms of 'cases') about which 
instances of the sort we are quantifying over. In terms of Kamp's framework this means that we have to 
worry not only about what belongs in the antecedent box but also how to distinguish a substructure within 
it that plays the role of sortal (the head noun in the NP case)." (Partee 1984: 278). 

25 The 'proportion problem' terminology is due to Kadmon (1987): 312. 
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64. most([x, y | house_elf(x), witch(y), fall_in_love(x, y)],      

          [z | alligator_purse(z), buy(x, y, z)]) 

The representation in (64) makes clear that we are quantifying over most pairs <x, 

y> where x is a house-elf that fell in love with a witch y. For most such pairs <x, y>, the 

requirement in the nuclear scope, i.e. x bought y some alligator purse z, should be 

satisfied. 

However, following Partee (1984), Rooth (1987), Kadmon (1987) and Heim (1990), 

we can produce a scenario in which the English sentence in (1) is intuitively false while 

the formula in (64) is true: imagine that there are ten house-elves that fell in love with 

some witch or other; one of them, call him Dobby, is a Don Juan of sorts, he fell in love 

with more than one thousand witches26 and he bought them all alligator purses; the other 

nine house-elves are less exceptional: they each fell in love with only one witch and they 

bought them new brooms, not alligator purses.

Sentence (1) is intuitively false in this scenario, while formula (64) is true: all the 

Dobby-based pairs that satisfy the restrictor also satisfy the nuclear scope – and these 

pairs are more than half, i.e. most, of the pairs under consideration. 

4.3. Limitations of Unselectivity: Weak / Strong Ambiguities 

In addition, the unselective analysis of generalized quantifiers fails to account for 

the fact that the same donkey sentence can exhibit two different readings, a strong one 

and a weak one. Consider again the classical sentence in (65) below. 

65. Everyx farmer who owns ay donkey beats ity.

The most salient reading of this sentence is that every farmer behaves violently 

towards each and every one of his donkeys, i.e. the so-called strong reading. The everyx

operator correctly captures this reading, as shown in (66) below; the equivalent formulas 

                                                

26 To be more precise, one thousand and three witches only in Spain. 
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in (67) and (68) are provided because they display the 'strength' of the reading in a clearer 

way. 

66. everyx([y | farmer(x), donkey(y), own(x, y)],  [beat(x, y)]) 

67. every([x, y | farmer(x), donkey(y), own(x, y)],  [beat(x, y)]) 

68. ∀x∀y(farmer(x); donkey(y); own(x, y) → beat(x, y)) 

However, sentence (65) can receive another, weak reading, wherein every farmer 

beats some donkey that he owns, but not necessarily each and every one of them27. 

Chierchia (1995): 64 provides a context in which the most salient reading is the weak 

one: imagine that the farmers under discussion are all part of an anger management 

program and they are encouraged by the psychotherapist in charge to channel their 

aggressiveness towards their donkeys (should they own any) rather than towards each 

other. The farmers scrupulously follow the psychotherapist's advice – in which case we 

can assert (65) even if the donkey-owning farmers beat only some of their donkeys.

Furthermore, there are donkey sentences for which the weak reading is the most 

salient one: 

69. Every person who has a dime will put it in the meter.      

(Pelletier & Schubert 1989) 

70. Yesterday, every person who had a credit card paid his bill with it.     

(R. Cooper, apud Chierchia 1995: 63, (3a)) 

Thus, both readings seem to be semantically available28 and the unselective analysis 

of dynamic generalized quantifiers does not allow for both of them. 

                                                

27 Partee (1984) seems to be (one of) the first to notice weak donkey readings: the example in (i) below is 
from Partee (1984): 280, fn. 12. 

(i) If you have a credit card, you should use it here instead of cash. 

28 See for example the discussion in Chierchia (1995): 62-65, in particular the argument that the strong 
reading is not a conversational implicature triggered in certain contexts. 



39

The weak/strong ambiguity also provides an argument against the unselective 

analysis of conditionals and adverbs of quantification, as shown, for example, by (71) 

below.   

71. If ax farmer owns ay donkey, hex (always/usually/often/rarely/never) beats ity.

For a detailed discussion of such conditionals, see (among others) Chierchia (1995): 

66-69. I will only mention the generalization reached in Kadmon (1987) and summarized 

in Heim (1990): 153: "Kadmon's generalization is that a multi-case conditional with two 

indefinites in the antecedent generally allows three interpretations: one where the 

QAdverb quantifies over pairs, one where it quantifies over instances of the first 

indefinite and one where it quantifies over instances of the second". 

It should be mentioned, however, that a partial solution to the problem posed by the 

existence of the weak donkey readings is available in classical DRT / FCS (Kamp 1981 

and Heim 1982/1988) and DPL: Groenendijk & Stokhof (1991): 89 point out that we can 

define an alternative implication connective, as shown in (72) below. 

72. φ ֏ ψ := ~φ ∨ (φ; ψ),         

 i.e. ║φ ֏ ψ║ = {<g, h>: g=h and g∉Dom(║φ║) or (φ)g∩Dom(║ψ║)≠Ø} 

 i.e. ║φ ֏ ψ║ = {<g, h>: g=h and g∉Dom(║φ║) or (φ; !ψ)g≠Ø}29.

The weak reading of sentence (73) (repeated from above) is presumably analyzed as 

shown in (74), which is 'unpacked' in the equivalent (75). The strong reading is given in 

(76) and (77) for ease of comparison. 

                                                

29 Note that an alternative definition could simply be: φ ֏ ψ := !(φ; !ψ), i.e. ║φ ֏ ψ║ = {<g, h>: g=h and 

(φ; !ψ)g≠Ø}. The difference between this definition and the one in (72) is that this one removes the first 

disjunct g∉Dom(║φ║) (hence, it is more restrictive). Arguably, this is a justified move, since a conditional 
or a universal quantification have an 'existential' presupposition: there is a presupposition that the 
antecedent of the conditional, respectively the restrictor of the universal quantification, are satisfiable with 

respect to the current input info state g, i.e. that g∈Dom(║φ║).  

However, given the DPL definition of the universal quantifier ∀, this definition would yield the incorrect 
truth conditions for weak reading of sentence (73) if (73) were represented as in (74): the reading would in 
fact be a lot 'stronger' than intended – all individuals are required to be farmers and to have some donkey or 
other that they beat. 
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73. Everyx farmer who owns ay donkey beats ity.

74. weak reading:  ∀x(farmer(x); ∃y(donkey(y); own(x, y)) ֏ beat(x, y)) 

75. weak reading:  [x] → ([y | farmer(x), donkey(y), own(x, y)] ֏ [beat(x, y)]) 

76. strong reading:  ∀x(farmer(x); ∃y(donkey(y); own(x, y)) → beat(x, y)) 

77. strong reading:  [x] → ([y | farmer(x), donkey(y), own(x, y)] → [beat(x, y)]) 

However, this analysis of weak implication faces (at least) three problems. First, as 

we can see from the 'unpacked' formula in (75), we still need the 'strong' implication 

connective → in addition to the 'weak' one ֏ to capture the correct truth-conditions for 

the weak reading of sentence (73), i.e. the weak reading is obtained via a combination of 

'strong' and 'weak' implication.  

Consequently, this solution fails to extend to weak readings of conditionals: as 

argued by Kadmon, the conditional in (78) below can receive a weak reading that is 

equivalent to the weak reading of the every donkey sentence in (73) above. However, this 

reading is not captured by the formula in (79), precisely because the equivalence ∃x(φ) ֏

ψ ⇔ ∀x(φ ֏ ψ) fails for 'weak' implication – and we do want it to fail with respect to the 

indefinite ay
 donkey, but not with respect to the indefinite ax

 farmer.

78.  If ax farmer owns ay donkey, hex beats ity.

79. ∃x(farmer(x); ∃y(donkey(y); own(x, y))) ֏ beat(x, y) 

Second, the 'weak' implication solution does not generalize to other determiners 

(consider for example most). Third, it does not account for the proportion problem. 

In sum, upon closer examination, a donkey sentence turns out to be ambiguous 

between a weak and a strong reading. The strong reading is intuitively paraphrasable by 

replacing the donkey pronoun in the nuclear scope of the donkey quantification with an 

every DP. The weak reading is intuitively paraphrasable by replacing the donkey pronoun 

in the nuclear scope of the donkey quantification with a some DP.  
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Extending DPL with an unselective form of generalized quantification fails to 

account for the weak / strong donkey ambiguity and for the proportion problem – hence 

the need to further extend DPL with a selective form of dynamic generalized 

quantification. 

4.4. Conservativity and Unselective Quantification 

A final observation before turning to this task: defining dynamic det's in terms of 

static DET's (as we did in (55) and (57) above) provides us with a version of unselective 

dynamic conservativity that underlies the definition of selective generalized 

quantification introduced in the next section. Consider again the definition in (55) above: 

║det(φ, ψ)║ = {<g, h>: g=h and DET((φ)g, Dom(║ψ║))}. Assuming that the static 

determiner DET is conservative, we have that DET((φ)g, Dom(║ψ║)) holds iff 

DET((φ)g, (φ)g∩Dom(║ψ║)) holds.  

The latter formula encodes an intuitively appealing meaning for unselective 

dynamic generalized quantification30: a dynamic generalized determiner relates two sets 

of info states, the first of which is the set of output states compatible with the restrictor, 

i.e. (φ)g, while the second one is the set of output states compatible with the restrictor that 

can be further updated by the nuclear scope, i.e. (φ)g∩Dom(ψ).  

To reformulate this intuition in a more formal way, note that the formula DET((φ)g, 

(φ)g∩Dom(║ψ║)), which has conservativity built-in, is equivalent to DET((φ)g, (φ; 

!ψ)g)). Thus, assuming that all static generalized determiners DET are conservative, we 

can restate the definition in (55) above as follows: 

80. Built-in unselective dynamic conservativity:     

║det(φ, ψ)║ = {<g, h>: g=h and DET((φ)g, (φ; !ψ)g))} 

                                                

30 This has been previously noted with respect to the dynamic definition of selective generalized 
quantification – see for example Chiechia (1992, 1995) and Kamp & Reyle (1993) among others. 
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Now, putting together the definition of detx(φ, ψ) in (57), i.e. detx(φ, ψ):=det([x]; φ, 

ψ), and the 'conservative' definition in (80), we obtain the following definition of 

generalized quantification: 

81. Generalized quantification with built-in dynamic conservativity (unselective 

version):           

║detx(φ, ψ)║ = {<g, h>: g=h and DET(([x]; φ)g, ([x]; φ; !ψ)g))} 

The definition of conservative unselective quantification in (81) can in fact be 

thought of as the basis for the definition of selective generalized quantification introduced 

in Chierchia (1995) among others (see section 5 below): given that we have access to the 

variable x in both the restrictor of the static determiner DET, i.e. [x]; φ, and in its nuclear 

scope, i.e. [x]; φ; !ψ, we can be selective and (somehow) λ-abstract over the variable x in 

both formulas. We will consequently obtain two sets of individuals and we will require 

the static determiner DET to apply to these two sets individuals and not to the 

corresponding sets of info states31.

5. Extending DPL with Selective Generalized Quantification 
(DPL+GQ)  

The notion of selective generalized quantification introduced in this section has been 

proposed in various guises by many authors: Bäuerle & Egli (1985), Root (1986) and 

Rooth (1987) put forth the basic proposal and van Eijck & de Vries (1992) and Chierchia 

(1992, 1995) were the first to formulate it in DPL terms. The proposal is also adopted in 

Heim (1990) and Kamp & Reyle (1993)32.

In defining it, I will use the notation introduced above, i.e. selective dynamic 

generalized quantification will have the form detx(φ, ψ), where x is the bound variable, φ

is the restrictor and ψ is the nuclear scope. Of course, since detx(φ, ψ) is selective, it will 

                                                

31 It might be interesting to pursue in more detail the relation between unselective dynamic conservativity 
as defined in (80) above and selective dynamic conservativity as defined and argued for in Chierchia 
(1995): 97 et seqq and Kanazawa (1994a, b). 

32 The particular form of the definition of selective generalized quantification I provide here is based on the 
one in van den Berg (1994): 4 and van den Berg (1996b): 7. 
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be directly defined, i.e. it won't be an abbreviation of a formula containing the unselective 

operator det(φ, ψ), and it will involve a relation between two sets of individuals. 

5.1. Dynamic Selective Generalized Quantification 

The fact that detx(φ, ψ) is defined in terms of sets of individuals (and not of info 

states) will enable us to account for the proportion problem. The weak/strong donkey 

ambiguity will be attributed to an ambiguity in the interpretation of the selective 

generalized quantifier, basically following the proposals in Bäuerle & Egli (1985), Rooth 

(1987), Reinhart (1987), Heim (1990) and Kanazawa (1994a, b)33.

That is, for each dynamic generalized determiner, we will have a weak lexical entry 

det
wk

x(φ, ψ) and a strong lexical entry det
str

x(φ, ψ). An English sentence containing a 

determiner det is ambiguous between the two readings – or, to put it in more appealing 

terms, any English determiner is underspecified with respect to one of the two readings. 

The choice of a particular, fully specified lexical entry for any det is determined in 

each particular instance by a variety of factors, including world-knowledge, information 

structure, monotonicity of quantifiers etc.  

The basic dynamic analysis does not have anything to say about how the choice 

between the weak and the strong reading depends on such factors – and, arguably, it 

shouldn't have anything to say about how the choice is made given that:  

• which reading is selected in each particular case is influenced by a diversity of 

factors;  

• the generalizations correlating these factors and the weak/strong readings have a 

defeasible character typically associated with pragmatic phenomena34.

The determiners det
wk and det

str are both defined in terms of the corresponding 

static determiner DET as follows35: 

                                                

33 Strictly speaking, Kanazawa (1994a, b) does not endorse an ambiguity analysis, but a vagueness account 
of dynamic selective generalized quantification. See also the discussion in Geurts (2002): 149 et seqq. 

34 For more details, see the section 6.1  in chapter 5 below. 
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82. ║det
wk

x(φ, ψ)║ = {<g, h>: g=h and DET(λx. (φ)g,  λx. (φ; ψ)g)}          

║det
str

x(φ, ψ)║ = {<g, h>: g=h and DET(λx. (φ)g,  λx. (φ → ψ)g)},    

 where (φ)g := {h: ║φ║<g, h> = T}       

 and λx. (φ)g := {h(x): h∈([x]; φ)g}36       

 and DET is the corresponding static determiner. 

Several observations before we turn to an example: first, both lexical entries are 

selective in the sense that the static determiner DET relates two sets of individuals, 

represented by means of abbreviations of the form λx. (…)g. To my knowledge, this 

abbreviation has not been used in the previous literature despite its rather obvious and 

intuitive character. 

Second, the only difference between the weak and the strong entries has to do with 

how the nuclear scope of the static quantification is obtained: we employ dynamic 

conjunction λx. (φ; ψ)g in the weak case and dynamic implication λx. (φ → ψ)g in the 

strong case. 

Dynamic conjunction yields the weak reading because an existential quantifier in 

the restrictor λx. (φ)g will still be an existential in the nuclear scope λx. (φ; ψ)g: every 

farmer that owns some donkey beats some donkey he owns. Dynamic implication yields 

the strong reading because it has universal quantification built into it37: as we noticed 

right from the beginning (see (10) above), DPL validates the equivalence ∃x(φ) → ψ ⇔

∀x(φ → ψ), so an indefinite in the restrictor ends up being universally quantified in the 

nuclear scope: every farmer that owns some donkey beats every donkey he owns. 

                                                                                                                                                

35 Note the formal similarities between:  

• the alternative definition of implication in (72); 

• the unselective generalized quantification with built-in conservativity defined in (80);  

• the present definition of selective generalized quantification. 

36 Note that the abbreviation λx. (φ)g := {h(x): h∈([x]; φ)g} really boils down to λ-abstraction in static terms: 

λx. (φ)g is the set of entities a s.t. ║φ║static
g[x/a] = T, where ║⋅║static is the usual static interpretation function 

(see for example Gallin 1975). 

37 Incidentally, recall that the universal force of dynamic implication is actually due to dynamic negation '~' 

since φ → ψ := ~(φ; ~ψ). 
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Third, note that the unselective conservative entry defined in (81) above provides 

the basic format for the selective entries. In particular, assuming that, in (82) above, [x] is 

not reintroduced in ψ (and it cannot be if we want the definitions to work properly), it is 

always the case that: 

83. λx. (φ; ψ)g = λx. (φ; !ψ)g     and     λx. (φ → ψ)g = λx. (φ → !ψ)g 38.

More generally, the weak and strong selective generalized determiners in (82) above 

can be defined in terms of generalized quantification over info states if we make use of 

the closure operator '!' as shown in (84) below. It is easily checked that the two pairs of 

definitions are equivalent given the fact that there is a bijection between the sets of 

individuals quantified over in (82) and the set of info states (i.e. variable assignments) 

quantified over in (84)39.

84. ║det
wk

x(φ, ψ)║ = {<g, h>: g=h and DET(([x | !φ])g, ([x | !(φ; ψ)])g)}          

║det
str

x(φ, ψ)║ = {<g, h>: g=h and DET(([x | !φ])g, ([x | !(φ → ψ)])g)}40,   

 where (φ)g := {h: ║φ║<g, h> = T}       

 and DET is the corresponding static determiner. 

                                                

38 For dynamic implication →, we have the more general result that φ → ψ ⇔ φ → !ψ, which follows 
directly from the equivalence in (14) above. 

39 λx. (φ)g := {h(x): h∈([x]; φ)g}  =  {a: there is an h s.t. ║[x]; φ║<g, h> = T and a=h(x)}  

 = {a: there is a k and an h s.t. g[x]k and ║φ║<k, h> = T and a=h(x)}   

(since x is not reintroduced in φ, k(x)=h(x)) 

=  {a: there is a k and an h s.t. g[x]k and ║φ║<k, h> = T and a=k(x)} 

= {a: there is a k s.t.  a=k(x) and g[x]k and there is an h s.t. ║φ║<k, h> = T }  

= {a: there is a k s.t. a=k(x) and g[x]k and k∈ Dom(║φ║}  =  {a: there is a k s.t. k∈([x]; !φ)g and a=k(x)}. 

Thus, λx. (φ)g = {a: there is a h s.t. h∈([x]; !φ)g and a=h(x)}. Let f be a function from the set of assignments 

([x]; !φ)g to the set of individuals λx. (φ)g s.t. f(h)=h(x). By the above equality, f is surjective. Since for any 

assignment g and individual a there is a unique assignment h s.t. g[x]h and h(x)=a, f is injective. �

40 Since !(φ → ψ) ⇔ φ → ψ, the strong determiner can be more simply defined as ║det
str

x(φ, ψ)║ = {<g, 

h>: g=h and DET(([x | !φ])g, ([x | φ → ψ])g)}. 
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Finally, according to definition (82), a formula of the form det
wk

x(φ, ψ) or det
str

x(φ, 

ψ) is a test. So, we should further extend the syntactic notion of condition with selective 

generalized determiners41. The new definition is: 

85. The set of conditions is the smallest set of wff's containing atomic formulas, 

formulas whose main connective is dynamic negation '~', a det operator or a 

det
wk/str

υ operator (for any variable υ) and closed under dynamic conjunction. 

The definition in (85) enables us to construct DRS's of the form [… | …, det
wk/str

x(φ, 

ψ), …]. 

5.2. Accounting for Weak / Strong Ambiguities 

Let us see how the above definitions derive the weak and strong readings of the 

classical example in (86) below (repeated from (65)). 

86. Everyx farmer who owns ay donkey beats ity.

The two lexical entries for every are given in (87) below and simplified in (88). 

87. ║every
wk

x(φ, ψ)║ = {<g, h>: g=h and EVERY(λx. (φ)g, λx. (φ; ψ)g)}   

║every
str

x(φ, ψ)║ = {<g, h>: g=h and EVERY(λx. (φ)g, λx. (φ → ψ)g)} 

88. ║every
wk

x(φ, ψ)║ = {<g, h>: g=h and λx. (φ)g ⊆ λx. (φ; ψ)g}       

║every
str

x(φ, ψ)║ = {<g, h>: g=h and λx. (φ)g ⊆ λx. (φ → ψ)g}

The weak reading of (86) is represented in (89) and simplified in (90)42.

                                                

41 Recall that the definition of conditions for DPL was given in (17) above and was extended with 
unselective determiners in (56). 

42 In more detail, the simplification proceeds as follows: 

║every
wk

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))║ =  

{<g,g>: λx. (farmer(x); [y]; donkey(y); own(x, y))g ⊆ λx. (farmer(x); [y]; donkey(y); own(x, y); beat(x, y))g}=  

{<g, g>: {h(x): h∈([x]; farmer(x); [y]; donkey(y); own(x, y))g} ⊆      

  {h(x): h∈([x]; farmer(x); [y]; donkey(y); own(x, y); beat(x, y))g}} =  

{<g, g>: {h(x): g[x, y]h, h(x)∈I(farmer), h(y)∈I(donkey), <h(x), h(y)>∈I(own)} ⊆    

  {h(x): g[x, y]h, h(x)∈I(farmer), h(y)∈I(donkey), <h(x), h(y)>∈(I(own)∩I(beat)}} =  
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89. every
wk

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))  

90. ║every
wk

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))║ =         

{<g, g>: λx. (farmer(x); [y]; donkey(y); own(x, y))g ⊆     

    λx. (farmer(x); [y]; donkey(y); own(x, y); beat(x, y))g} =         

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆

{a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈(I(own)∩I(beat)}}=  

{<g, g>: any farmer a who owns a donkey b is s.t. he owns and beats a donkey b'}

As the simplification in (90) shows, the formula in (89) delivers the weak reading 

because the donkey-owning farmers do not have to beat all the donkeys they own – they 

only have to beat some of their donkeys. 

The strong reading of (86) is represented in (91) and simplified in (92)43.

                                                                                                                                                

{<g, g>: {a: there is a b s.t. a∈I(farmer), b∈I(donkey), <a, b>∈I(own)} ⊆     

  {a: there is a b s.t. a∈I(farmer), b∈I(donkey), <a, b>∈(I(own)∩I(beat)}} = 

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆    

 {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈(I(own)∩I(beat)}} =  

{<g, g>: any farmer a who owns a donkey b is such that he owns and beats a donkey b'}. 

43 In more detail, the simplification proceeds as follows: 

║every
str

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))║ =  

{<g, g>: λx. (farmer(x); [y]; donkey(y); own(x, y))g ⊆ λx. (farmer(x); [y]; donkey(y); own(x, y) → beat(x, 
y))g} =  

{<g, g>: {h(x): h∈([x]; farmer(x); [y]; donkey(y); own(x, y))g} ⊆      

  {h(x): h∈([x]; (farmer(x); [y]; donkey(y); own(x, y) → beat(x, y)))g}} = 

{<g, g>: {h(x): g[x, y]h, h(x)∈I(farmer), h(y)∈I(donkey), <h(x), h(y)>∈I(own)} ⊆    

  {h(x): h∈([x]; ~(farmer(x); [y]; donkey(y); own(x, y); ~beat(x, y)))g}} =  

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆        
{h(x): there is a k s.t. g[x]k and ║~(farmer(x); [y]; donkey(y); own(x, y); ~beat(x, y))║<k, h> = T}} = 

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆    
 {h(x): g[x]h and there is no l s.t. ║farmer(x); [y]; donkey(y); own(x, y); ~beat(x, y)║<h, l> = T}} = 

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆         

{h(x): g[x]h and there is no l s.t. h[y]l, l(x)∈I(farmer), l(y)∈I(donkey), <l(x), l(y)>∈I(own), <l(x), 

l(y)>∉I(beat)}} =  

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆         

{h(x): g[x]h and for any l, if h[y]l, l(x)∈I(farmer), l(y)∈I(donkey), <l(x), l(y)>∈I(own), then <l(x), 

l(y)>∈I(beat)}} =  
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91. every
str

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))  

92. ║every
str

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))║ =         

{<g, g>: λx. (farmer(x); [y]; donkey(y); own(x, y))g ⊆     

    λx. (farmer(x); [y]; donkey(y); own(x, y) → beat(x, y))g} =        

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆

{a: any b s.t. a∈I(farmer), b∈I(donkey), <a, b>∈I(own) is s.t. <a, b>∈I(beat)}} =   

{<g, g>: any farmer a who owns a donkey b beats any donkey b' that he owns} 

As the simplification in (92) shows, the formula in (91) delivers the strong reading 

because the donkey-owning farmers have to beat all the donkeys they own. 

5.3. Solving Proportions 

Selective generalized quantification also solves the proportion problem. Consider 

again sentence (1), repeated in (93) below. The most salient reading of this sentence 

seems to be the strong one, represented in (94), just as the most salient reading of the 

structurally similar sentence in (95) is the weak one, represented in (96) below. 

If the reader's intuitions about the 'strength' of (93) are not very sharp, s/he should 

consider sentence (97) instead (example (49) in Heim 1990: 162), whose most salient 

reading is indeed the strong one. 

93. Mostx house-elves who fall in love with ay witch buy hery anz alligator purse. 

94. most
str

x(house_elf(x); [y]; witch(y); fall_in_love(x, y),      

   [z]; alligator_purse(z); buy(x, y, z)) 

95. Mostx drivers who have ay dime will put ity in the meter. 

96. most
wk

x(driver(x); [y]; dime(y); have(x, y),  put_in_meter(x, y)) 

                                                                                                                                                

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆         

{h(x): g[x]h and for any b, if h(x)∈I(farmer), b∈I(donkey) and <h(x), b>∈I(own), then <h(x), b>∈I(beat)}} 
= 

{<g, g>: {a: a∈I(farmer) and there is a b s.t. b∈I(donkey) and <a, b>∈I(own)} ⊆    

  {a: any b s.t. a∈I(farmer), b∈I(donkey) and <a, b>∈I(own) is s.t. <a, b>∈I(beat)}}} = 

{<g, g>: any farmer a who owns a donkey b beats any donkey b' that he owns}. 
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97. Mostx people that owned ay slave also owned hisy offspring.      

(Heim 1990: 162, (49)) 

The formula in (94) is true iff more than half of the house-elves who fall in love 

with a witch are such that they buy any witch that they fall in love with (strong reading) 

some alligator purse or other. This formula is false in the 'Dobby as Don Juan' scenario 

above, in agreement with our intuitions about the corresponding English sentence in (93). 

The formula in (96) makes similarly correct predictions about the truth-conditions 

of the English sentence in (95): both of them are true in a scenario in which there are ten 

drivers, each of them has ten dimes in his/her pocket and nine of them put exactly one 

dime in their respective meters. Out of the one hundred possible pairs of drivers and 

dimes they have, only nine pairs (far less than half) satisfy the nuclear scope of the 

quantification, but this is irrelevant as long as a majority of drivers (and not of pairs) 

satisfies it. 

6. Limitations of DPL+GQ: Mixed Weak & Strong Donkey 
Sentences 

However, the dynamic notion of selective generalized quantification introduced in 

the previous section does not offer a completely general account of the weak/strong 

donkey ambiguity: it fails for more complex weak & strong donkey sentences much as 

the unselective notion failed for the simplest ones. 

Consider again the dime example from Pelletier & Schubert (1989), repeated in (98) 

below. Unselective generalized quantification fails to assign the correct weak 

interpretation to this example because it cannot distinguish between the various discourse 

referents (dref's) introduced in the restrictor of the generalized quantifier: x (the persons) 

should be quantified over universally, while y (their dimes) should be quantified over 

existentially.  

Selective generalized quantification provides a solution to this problem because it 

can distinguish between x, which is the dref contributed by the generalized determiner, 

and y, which is the dref contributed by the indefinite in the restrictor of the determiner. 
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98. Everyx person who has ay dime will put ity in the meter. 

Thus, selective generalized quantification can only distinguish between the 'main' 

quantified-over dref and the other dref's introduced in the restrictor – it cannot further 

distinguish between the latter ones, which are collectively interpreted as either weak or 

strong. Since the decision about the 'strength' of their interpretation is not made on an 

individual basis, selective generalized quantification as defined in (82) above fails to 

account for any examples in which two indefinites in the restrictor of a generalized 

quantifier are not interpreted as both weak or both strong.  

Sentences (4) and (5) below are such counter-examples. 

99. Everyx person who buys ay book on amazon.com and has az credit card uses itz to 

pay for ity.

100. Everyx man who wants to impress ay woman and who has anz Arabian horse 

teaches hery how to ride itz.

The most salient interpretation of (4) is strong with respect to ay
 book and weak with 

respect to az
 credit card, i.e. for every book bought on amazon.com by any person that is 

a credit-card owner, the person uses some credit card or other to pay for the book. In 

particular, note that the credit card might vary from book to book, i.e. the strong 

indefinite ay
 book seems to be able to 'take scope' over the weak indefinite az

 credit card: 

I can use my Mastercard to buy set theory books and my Visa to buy fantasy novels. This 

means that, despite the fact that it receives a weak reading, the indefinite au'
 credit card

can introduce a possibly non-singleton set of credit cards. 

Similarly, in the case of (5), the indefinite ay
 woman is interpreted as strong and the 

indefinite an
z
 Arabian horse as weak; and yet again, the strong indefinite seems to 'take 

scope' over the weak one: the horse used in the pedagogic activity might vary from 

female student to female student. 

Finally, note that we can easily construct examples of this kind if we are willing to 

countenance other anaphoric expressions besides pronouns. Sentence (4) for example 
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does not sound clumsy anymore if we replace one of the non-animate pronouns with a 

definite description – as shown in (101) below44.

101. Everyx person who buys ay book on amazon.com and has az credit card uses thez

card to pay for ity.

I will not attempt to explicitly extend the DPL-style selective quantification in a 

way that can discriminate between the dref's introduced by indefinites in the restrictor. 

The basic idea would be to introduce additional lexical entries for generalized 

determiners which would bind universally or existentially the indefinites in their 

restrictor, e.g. the determiner most would have a 'single quantifier' entry of the form 

everyx, two 'double quantifier' entries of the form mostx∀y and mostx∃y, four 'triple 

quantifier' entries of the form mostx∀y∀z, mostx∀y∃z, mostx∃y∀z, mostx∃y∃z etc.45

Note that interpreting English sentences in terms of such determiners is not 

compositional, e.g. to interpret (5), we need a 'triple quantifier' of the form everyx∀y∃z, 

which requires us to look inside the second relative clause, identify the indefinite an
z

Arabian horse and assign it a weak interpretation.  

The situation is in fact even more complicated and non-compositional: as already 

indicated, the indefinites in the restrictor can enter pseudo-scopal relations since the value 

of the weak indefinite can vary with the value of the strong indefinite, e.g. the same 'triple 

quantifier' everyx∀y∃z has a choice of scoping ∀y over ∃z or the other way around, i.e. 

everyx∃z∀y
46.

I take these relations to be pseudo-scopal because the two donkey indefinites in both 

(4) and (5) are 'trapped' in a coordination island and none of them can scope out of their 

                                                

44 I substitute a definite description for the pronoun that enters the anaphoric dependency receiving a weak 
reading; substituting a definite description for the strong pronoun might bring in the additional complexity 
that the strong reading is in fact due to the use of the (maximal) definite description (see for example the D-
/E-type analyses in Neale 1990, Lappin & Francez 1994 and Krifka 1996b). 

45 See for example Heim (1990): 163-164 for sample lexical entries for the 'double' quantifiers formulated 
both in terms of quantification over individuals and in terms of quantification over minimal situations. 

46 Note that the latter entry everyx∃z∀y is not identical with the other 'triple quantifier' everyx∃y∀z. 
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VP- or CP-conjunct to take scope over the other47. Note that the impossibility of scoping 

out of a coordination structure is not dependent on any particular scoping mechanism; to 

see this, consider the two sentences in (102) and (103) below showing that a quantifier 

like every cannot scope out of VP- or CP-coordination structures. 

102. #Every person who buys everyx
Harry Potter book on amazon.com and gives itx

to a friend must be a Harry Potter addict. 

103. #Every boy who wanted to impress everyx girl in his class and who planned to 

buy herx a fancy Christmas gift asked his best friend for advice. 

Quite a few accounts of weak and strong readings – including the dynamic account 

in van den Berg (1994, 1996) and the hybrid dynamic & D-/E-type approach in Chierchia 

(1992, 1995) – fail to analyze such conjunction-based, mixed weak & strong donkey 

sentences: the main difficulty for them is that they cannot allow for the weak 'strong' 

indefinite to be a (possibly) non-singleton set and to co-vary with the value of the strong 

indefinite despite the fact that the strong donkey indefinite cannot scope over the weak 

donkey indefinite. 

It will be the main goal of chapter 5 to provide an analysis of the weak/strong 

donkey ambiguity which (i) is completely general in the sense that it is able to 

discriminate between the indefinites in the restrictor of a dynamic generalized determiner, 

(ii) does not postulate an ambiguity in the generalized determiner but only in the 

interpretation of the indefinites and (iii) is compositional. 

This completes the review of the DPL (and therefore of classical DRT / FCS) and of 

the two most straightforward extensions of DPL with generalized quantification. The next 

two chapters (i.e. chapters 3 and 4) are dedicated to the reformulation of DPL and of its 

extensions with generalized quantification in type logic, following Muskens (1995b, 

1996). 

                                                

47 Incidentally, note that that any such scope-taking has to ensure that the indefinites still have narrow scope 
with respect to the quantifiers every

x
 person and every

x
 man. 
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Chapter 3 reformulates DPL. The goal is to define an interpretation procedure for 

English sentences that is both dynamic and compositional at the sub-sentential / sub-

clausal level.  

Chapter 4 will extend the type-logical formulation of DPL with the notions of 

unselective and selective quantification defined for DPL in sections 4 and 5 above. 
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Chapter 3. Compositional DRT 

1. Introduction 

The main goal of this chapter is to reformulate DPL (i.e. DPL without unselective 

and selective generalized quantification.) in type logic so that we will be able to define an 

interpretation procedure for English sentences that is both dynamic and compositional at 

the sub-sentential / sub-clausal level. 

Section 2 provides the basics of the dynamic type-logical system, i.e. it defines the 

underlying dynamic logic, which I will label Dynamic Ty21. I follow the Compositional 

DRT (CDRT) and the Logic of Change in Muskens (1996) as closely as possible, the 

single most obvious exception being that I model discourse referents (dref's) as functions 

– as Muskens (1995b) does. 

The choice to model dref's as functions is motivated by the fact that the resulting 

system can be more easily compared with situation-based D-/E-type approaches (in 

which pronouns are basically functions from minimal situations to individuals) and by the 

fact that the system can be more easily generalized to account for:  

• multiple donkey sentences involving both weak and strong donkey anaphora, e.g. 

Every person who buys a book on amazon.com (strong) and has a credit card 

(weak) uses it (the credit card) to pay for it (the book);  

• plural anaphora, e.g. Some / Three men came in. They sat down;  

• modal anaphora and modal subordination, e.g. A wolf might enter the cabin. It 

would attack John first (example based on Roberts (1989)) 

Section 3 shows how to translate the DPL system into Dynamic Ty2.  

                                                

1 Dynamic Ty2 is basically the Logic of Change in Muskens (1991, 1995b, 1996). I label it "Dynamic Ty2" 
to make more transparent the fact that it actually is a generalization of Dynamic Predicate Logic 
(Groenendijk & Stokhof 1991). 
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Building on the translation of DPL into type logic, the following two sections 

introduce compositionality at the sub-sentential level: section 4 describes a rough-and-

ready syntax for the English fragment we will be concerned with, while section 5 defines 

its semantics (i.e. a type-driven translation procedure). The resulting version of CDRT is 

the basis for all the formal systems introduced throughout the remainder of the 

dissertation.  

Section 6 provides the CDRT analyses of a fairly wide range of examples – for 

example, we show how CDRT derives the two possible quantifier scopings of the 'every 

man loves a woman' kind of examples. 

The differences between the material in this chapter and Muskens (1995b, 1996) are 

for the most part presentational. The main four differences are: 

• the fact that section 2 provides a complete, detailed definition of the underlying 

Dynamic Ty2 logic; 

• the fact that Dynamic Ty2 allows static objects of arbitrary types as dref values; 

• the different analysis of proper names I end up adopting; 

• the novel dynamic analysis of ditransitive verbs and the scoping properties of their 

Dative and Accusative objects in section 6.

Building on the foundations layed out in this chapter, the next chapter will add to 

the previous literature in a more substantial way by reformulating the DPL-style 

definitions of unselective and selective generalized quantification in type logic and, thus, 

extending CDRT to CDRT+GQ in a way that enables it to account for the weak / strong 

donkey ambiguity and the proportion problem. 

The chapter concludes with a summary of the main results (section 7). 

2. Dynamic Ty2 

I have already indicated in the previous chapter that Compositional DRT (CDRT) 

combines Montague semantics and DRT in a formalism based on ordinary type logic. As 

Muskens (1991) puts it: 
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"[The unification is] based on two assumptions and one technical insight. The first 
assumption is that meaning is compositional. The meaning of words (roughly) are 
the smallest building blocks of meaning and meanings may combine into larger 
and larger structures by the rule that the meaning of a complex expression is given 
by the meaning of its parts.  
The second assumption is that meaning is computational. Texts effect change, in 
particular, texts effect changes in context. The meaning of a sentence or text can 
be viewed as a relation between context states, much in the way that the meaning 
of a computer program can be viewed as a relation between program states. 
[…] The technical insight […] is that virtually all programming concepts to be 
found in the usual imperative computer languages are available in classical type 
theory. We can do any amount of programming in type theory. This suggests that 
type theory is an adequate tool for studying how languages can program context 
change. Since there is also some evidence that type theory is also a good vehicle 
for modelling how the meaning of a complex expression depends on the meaning 
of its parts, we may hope that it is adequate for a combined theory: a 
compositional theory of the computational aspects of natural language 
meaning."(Muskens (1991): 3-42) 

2.1. Preliminaries 

The logic that underlies the entire present investigation is Ty2 (Gallin 1975; see also 

Janssen 1986 and Carpenter 1998). The set of basic types is {t, e, s}. Type t is the type of 

truth values; the logic is bivalent and total: the domain of type t (Dt ) is {T, F}. Type e is 

the type of individuals; I assume (for the time being) that De contains only atomic 

entities, i.e. there are no pluralities. The domain of type s (Ds) models DPL's variable 

assignments; several axioms will be needed to ensure that the entities of type s do 

actually behave as DPL variable assignments. 

Dref's are modeled as functions that take 'assignments' as arguments (i.e. entities of 

type s) and return a static object as value, e.g. an individual (type e). A dref for 

individuals will therefore be of type se. This is not as different from the DPL way of 

modeling dref's as it might seem: DPL models dref's as variables and a variable x is 

basically an instruction to look in the current info state, i.e. the current variable 

assignment g, and retrieve whatever individual the current info state associates with x – 

that individual is, of course, g(x).  

                                                

2 Page references are to the online version. 
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Therefore, instead of working directly with variables, we can work with their 'type-

lifted' versions, i.e. instead of x, we can take a dref to be a function of the form λg. g(x), 

which is basically the (set-theoretic) xth projection function, which projects the sequence 

g onto the coordinate x.

This is precisely what Dynamic Ty2 does: instead of modeling discourse referents 

as atomic entities (variables) and info states as functions taking dref's as arguments (i.e. 

variable assignments), we model info states as atomic entities (of type s)3 and dref's as 

functions taking info states as arguments. Thus, dref's are similar to Montague's 

individual concepts: they do not refer directly, but only as a function of the current 

discourse context. 

2.2. Definitions and Abbreviations 

Let us turn now to the definition of Dynamic Ty2. For the most part, the definitions 

are the usual Ty2 ones. I will state what makes this logic a Dynamic Ty2 in plain words 

before or after each definition. The reader should feel free to just glance at these 

observations and move on to section 3, which shows how to translate DPL into Dynamic 

Ty2 and, by doing this, indirectly provides the empirical motivation for Dynamic Ty2.

The definition of types in (1) below isolates a subset of types as the types of dref's: 

these are functions from 'assignments' (type s) to static objects of arbitrary type. This 

seems to be more than sufficient for all the analyses in the present work4. We restrict our 

dref's to functions from 'variable assignments' to static objects of arbitrary types because, 

if we allow for arbitrary dref types, e.g. s(st), we might run into counterparts of Russell's 

paradox – see Muskens (1995b): 179-180, fn. 10. 

                                                

3 We can define a notion of 'info state' g that is closer to the DPL variable assignments, e.g. for any 

'assignment' i of type s, let gi be λυτ. υi, where τ∈DrefTyp.  If we consider only dref's for individuals, i.e. τ
:= se, g

i is a function of type (se)e, that assigns values to dref's much like a DPL variable assignment 
assigns values to variables. 

4 But see Stone & Hardt (1999) for an account of strict/sloppy readings that employs 'dynamic' drefs, i.e. 
dref's of type s(s(…)). These are just the pointers introduced in Janssen (1986). 
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In fact, throughout this work, I will be much more restrictive and use dref's that 

have basic static types (other than t) as codomains. The fact that we do not require dref's 

for higher-order static objects in our analyses can be to a certain extent taken to support 

the empirical hypothesis that natural languages strongly prefer to use discourse referents 

for entities of a basic static type5.

The logic, however, should allow for dref's that have any arbitrary static type as 

their codomain, given that the logic should provide a framework within which any 

plausible analysis can be formulated (including analyses involving dref's for higher-order 

static objects) and compared with alternative accounts. 

1. Dynamic Ty2 – the set of dref types DRefTyp and the set of types Typ.             

a. The set of basic static types BasSTyp: {t, e} (truth-values and individuals).            

b. The set of static types STyp: the smallest set including BasSTyp and s.t., if 

σ,τ∈STyp, then (στ)∈STyp.                   

c. The set of dref types DRefTyp: the smallest set s.t., if σ∈STyp, then 

(sσ)∈DRefTyp.          

d. The set of basic types BasTyp: BasSTyp∪{s} ('variable assignments').             

e. The set of types Typ: the smallest set including BasTyp and s.t., if σ,τ∈Typ, 

then (στ)∈Typ.

The definition in (2) below provides some typical examples of expressions of 

various types and introduces several notational conventions that will improve the 

readability of the subsequent analyses. 

2. Dynamic Ty2 – basic expressions.              

For any type τ∈Typ, there is a denumerable set of τ-constants Conτ and a 

denumerably infinite set of τ-variables Varτ = {υτ,0, υτ,1, …}, e.g.       

Cone = {john, mary, dobby, …, a, a', …, b, b', …, a0, a1, a2, …}       

Conet = {donkey, farmer, house_elf, witch, …, leave, drunk, walk, …}     

Cone(et) = {fall_in_love, own, beat, have, …}         

                                                

5 See also the related "No higher-order variables" hypothesis in Landman (2006). 
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Cons = {h, h', …, i, i', …, j, j', …, k, k', …, h0, h1, …, i0, i1, …}     

Conse = {u, u', u'', …, u0, u1, u2, …}               

Notational conventions:         

x, x',…, y, y', …, z, z',…, x0, x1, … are variables of type e;   

h, h', h'', …, i, i', i'', …, j, j', j'', … are variables of type s;    

f, f', f'', … f0, f1, f2, … are variables over terms of type τ,    

  for any τ∈STyp;       

v, v', v'', …, v0, v1, v2, … are variables over terms of type τ,    

  for any τ∈Typ.

The definition in (3) introduces the term i[δ]j of type t that is meant to model the 

DPL random variable assignment. Intuitively, the formula i[δ]j requires the info states i

and j to differ at most with respect to the value they assign to def δ. Unlike Muskens 

(1995b, 1996), I introduce this as a basic formula of the language and not as an 

abbreviation, because the set DRefTyp of dref types is infinite and the abbreviation 

would require an infinite conjunction of formulas (as indicated in (4d) below). 

I also introduce identity as a basic operator of the language; although it can be 

defined when the logic is interpreted relative to standard frames (as in (4a) below), I want 

to allow for the possibility of interpreting it relative to generalized (Henkin) frames, in 

which case identity is not definable anymore, just as it is not in many-sorted first-order 

logic. 

Finally, note that proper names with capitals, e.g. John, are dref's for individuals 

(type se) and they are constant functions, a.k.a. specific dref's (see Muskens (1996)). 

They are defined in terms of the corresponding constant of type e, e.g. john.

3. Dynamic Ty2 – terms.                

For any type τ∈Typ, the set of τ-terms Termτ is the smallest set s.t.:  

Conτ∪Varτ ⊆ Termτ;        

α(β)∈Termτ if α∈Termστ and β∈Termσ for any σ∈Typ;   

 (λv. α)∈Termτ if τ=(σρ), v∈Varσ and α∈Termρ for any σ,ρ∈Typ; 

 (α=β)∈Termτ if τ=t and α,β∈Termσ for any σ∈Typ;   



60

 (i[δ]j)∈Termτ if τ=t and i,i'∈Vars and δ∈Termσ, for any σ∈DRefTyp.        

Abbreviations (the subscripts on terms indicate their type):    

Johnse := λis. johne, Maryse := λis. marye …;     

T := λft. f = λft. f;  F := λft. ft = λft. T;     

¬ := λft. ft = F;   ∧ := λftf't. (λf''tt. f''(f)=f') = λf''tt. f''(T)) 6;  

→ := λftf't.  (f ∧ f') = f;  ∨ := λftf't. ¬f → f';     

∀v(φ) := λv. φ = λv. T;  ∃v(φ) := λv. ¬φ ≠ λv. T.

Definition (4) introduces four axioms that Dynamic Ty2 models have to satisfy. 

These axioms make sure that the entities of type s actually behave as variable 

assignments intuitively do7.

First, Axiom1 employs a non-logical constant udref to identify unspecific dref's, i.e. 

the dref's that are supposed to behave as the DPL variables, e.g. u0, u1 etc. The constant 

function John (John := λi. johne – see (3) above) for example is a specific dref: although 

it is of type se, i.e. the type of dref's for individuals, it does not behave as a DPL variable 

– its value does not vary from 'assignment' to 'assignment'; if anything, specific dref's are 

the counterpart of DPL constants, not variables. 

Axiom2 makes sure that all the unspecific dref names actually name different 

functions: if two distinct names denoted the same function, we would accidentally update 

both whenever we would update one of them. 

Axiom3 ensures that, just like DPL variable assignments, two 'assignments' (i.e. two 

entities of type s) are different only if they assign different values to some dref δ. If they 

assign the same values to all dref's, the 'assignments' are identical.

Finally, Axiom4 ensures that we have enough 'assignments': for any given 

'assignment' i, any unspecific dref v and any possible dref value (i.e. static object) f of the 

                                                

6 Equivalently, ∧ := λftf't. ∀f''t(tt)(f''(f, f') = f''(T, T)) or ∧ := λftf't. ∀f''tt(f = (f''(f) = f''(f'))). 

7 To get a better grasp of the axioms, the reader might find it instructive to construct a model for them, i.e. 
to construct the domain Ds given the domain De and the set of udref names. 
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appropriate type, there is an 'assignment' j that differs from i at most with respect to the 

value it assigns to v and which in fact assigns f as the value of v.

4. Dynamic Ty2 – frames, models, assignments, interpretation and truth.            

a. A standard frame F for Dynamic Ty2 is a set D = {Dτ: τ∈Typ} s.t. De, Dt and 

Ds are pairwise disjoint sets and Dστ = {f: f is a total function from Dσ to Dτ}, for 

any σ,τ∈Typ.           

b. A model M for Dynamic Ty2 is a pair <F
M, ║⋅║M> s.t.:     

- FM is a standard frame for Dynamic Ty2;                  

- ║⋅║M assigns  an object ║α║M∈D
M

τ to each α∈Conτ for any τ∈Typ,   

 i.e. ║⋅║M respects typing;                 

- M satisfies the following axioms8:                  

Axiom1 ("Unspecific dref's"): udref(δ),       

 for any unspecific dref name δ of any type (sτ)∈DRefTyp,    

  e.g. u0, u1, … but not John, Mary, …;    

udref is a non-logical constant9 intuitively identifying the 'variable' dref's,  

  i.e. the non-constant functions of type sτ (for any τ∈STyp)  

  intended to model DPL-like variables.               

Axiom2 ("Dref's have unique dref names"): udref(δ) ∧ udref(δ') → δ≠δ',   

 for any two distinct dref names δ and δ' of type τ,     

 for any type τ∈DRefTyp,       

  i.e. we make sure that we do not accidentally update a dref δ' when 

  we update δ.         

Axiom3 ("Identity of 'assignments'"): ∀isjs(i[]j → i=j).              

Axiom4 ("Enough 'assignments'"): ∀is∀vsτ∀fτ(udref(v) → ∃js(i[v]j ∧ vj=f)), 

 for any type τ∈ STyp.                  

                                                

8 The axioms / axiom schemes are based on Muskens (1995b, 1996). 

9 In fact, udref stands for an infinite family of non-logical constants of type (τt) for any τ∈DRefTyp. 
Alternatively, we can assume a polymorphic type logic with infinite sum types, in which udref is a 
polymorphic function. For a discussion of sum types, see for example Carpenter (1998): 69 et seqq.  
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c. An M-assignment θ is a function that assigns to each variable v∈Varτ an 

element θ(v)∈D
M

τ for any τ∈Typ. Given an M-assignment θ, if v∈Varτ and 

d∈D
M

τ, then θv/d is the M-assignment identical with θ except that it assigns d to v.  

d. The interpretation function ║⋅║M,θ is defined as follows:    

║α║M,θ = ║α║M     if     α∈Conτ for any τ∈Typ;    

║α║M,θ = θ(α)        if     α∈Varτ for any τ∈Typ;    

║α(β)║M,θ = ║α║M,θ (║β║M,θ);      

║λv. α║M,θ = 〈║α║M, /θv d

: d∈D
M

σ〉     if     v∈Varσ;    

║α=β║M,θ = T     if     ║α║M,θ =║β║M,θ     

        = F     otherwise.       

║i[δ]j║M,θ = T     if     δ∈Termσ, σ∈DRefTyp and     

║∀vσ(udref(v) ∧ v≠δ → vi=vj)║M,θ = T and      

║∀vτ(udref(v) → vi=vj║M,θ = T for all τ≠σ, τ∈DRefTyp   

         = F     otherwise.                 

e. Truth: A formula φ∈Termt is true in M relative to θ iff ║φ║M,θ = T.       

A formula φ∈Termt is true in M iff it is true in M relative to any assignment θ.

3. Translating DPL into Dynamic Ty2 

In this section, we will see how to encode DPL (and therefore classical DRT / FCS) 

in Dynamic Ty2. We do this by providing a list of abbreviations that follows closely the 

definition of DPL in the previous chapter: the definiendum has the form of a DPL 

expression, while the definiens is a term of Dynamic Ty2. As soon as the abbreviations 

are in place, we will see how they are employed by analyzing the examples we have 

previously used as empirical motivation for DPL. 

3.1. Definitions and Abbreviations 

Definition (5) below corresponds to the DPL definition in the preceding chapter. 

Note that '∧' is the Dynamic Ty2 conjunction, i.e. the official, type-logical conjunction, 

and '¬' is the Dynamic Ty2 negation, i.e. the official, type-logical negation. In contrast, 

dynamic conjunction ';' and dynamic negation '~' are simply abbreviations.  
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Note also that the DPL notion of random assignment [x] has as its direct 

correspondent the random assignment [u] of Dynamic Ty2. 

The DPL distinction between conditions and DRS's is formulated in terms of types. 

Conditions are terms of type st, i.e. they denote sets of 'assignments'; intuitively, 

conditions denote the set of 'assignments' that satisfy them. DRS's are terms of type s(st), 

i.e. binary relations between 'assignments'; intuitively, a DRS D is satisfied by a pair of 

two 'assignments' i and j, i.e. Dij=T
10, iff the output 'assignment' j is the result of non-

deterministically updating the input 'assignment' i with D.

5. DPL in Dynamic Ty2 (subscripts on terms represent their types).            

a. Atomic conditions – type st:        

R{u1, …, un} := λis. R(u1i, …, uni),       

  for any non-logical constant R of type en
t,     

  where en
t is defined as follows: e0

t := t and em+1
t := e(em

t)11

u1=u2 := λis. u1i=u2i                             

b. Atomic DRS's (DRS's containing exactly one atomic condition) – type s(st)   

(corresponding to DPL atomic formulas):       

 [R{u1, …, un}] := λisjs. i=j ∧ R{u1, …, un}j      

 [u1=u2] := λisjs. i=j ∧ u1j=u2j                             

c. Condition-level connectives (negation), i.e. non-atomic conditions:  

 ~D := λis. ¬∃ks(Dik) 12,     where D is a DRS (term of type s(st))  

  i.e. ~D := λis. i∉Dom(D),     where Dom(D) := {is: ∃js(Dij)}           

d. Tests (generalizing 'atomic' DRS's):       

                                                

10 Recall that T and F are the model-theoretic objects intuitively modeling 'True' and 'False', while their 
bolded counterparts T and F are the Dynamic Ty2 constants whose semantic values are T and F 
respectively. 

11 The definition of en
t is due to Muskens (1996): 157-158. 

12 Strictly speaking, the Dynamic Ty2 translation of DPL negation is defined as TR(~φ) := [~TR(φ)], i.e.  

TR(~φ) := [λis. ¬∃ks(TR(φ)ik)]. TR is the translation function from DPL to Dynamic Ty2 which is 
recursively defined in the expected way, e.g. for DPL atomic formulas, we have that TR(R(x1, …, xn)) := 
[R{u1, …, un}] and TR(x1=x2) := u1=u2. 
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 [C1, …, Cm] := λisjs. i=j ∧ C1j ∧ … ∧ Cmj 
13,      

  where C1, …, Cm are conditions (atomic or not) of type st.             

e. DRS-level connectives (dynamic conjunction):      

D1; D2 := λisjs. ∃hs(D1ih ∧ D2hj),     where D1 and D2 are DRS's (type s(st))           

f. Quantifiers (random assignment of value to a dref):     

 [u] := λisjs. i[u]j                   

g. Truth: A DRS D (type s(st)) is true with respect to an input info state is iff 

∃js(Dij), i.e.  i∈Dom(D) 14.

The abbreviations introduced in definition (6) below correspond to the DPL 

abbreviations defined in the previous chapter. '∃' and '∀' are the official type-logical 

existential and universal quantifiers, while ' ' and ' ' are the abbreviations corresponding 

to the dynamic (DPL-style) existential and universal quantifiers. I use '→' and '∨' both for 

the official Dynamic Ty2 and for the dynamic DPL-style implication and, respectively, 

disjunction; they can be easily disambiguated in context. 

6. a. Additional abbreviations – condition-level connectives (closure, 

disjunction, implication):        

 !D:= ~[~D] 15,         

  i.e. !D := λis. ∃ks(Dik) or simply: !D := Dom(D)   

D1 ∨ D2 := ~([~D1]; [~D2]),        

  i.e. D1 ∨ D2 := ~[~D1, ~D2]      

  i.e. D1 ∨ D2 := λis. ∃ks(D1ik ∨ D2ik);      

                                                

13 Alternatively, [C1, …, Cm] can be defined using dynamic conjunction as follows:  

[C1, …, Cm] := λisjs. ([C1]; …; [Cm])ij, where [C] := λisjs. i=j ∧ Cj. 

14 Or, equivalently, i∈!D – see the abbreviation of '!' in (6) below. 

15 Strictly speaking, DPL anaphoric closure is translated in Dynamic Ty2 as TR(!φ) := [~TR(~φ)], i.e.  

TR(!φ) := [~[~TR(φ)]] = [~[λjs. ¬∃ls(TR(φ)jl)]] = [λis. ¬∃ks([λjs. ¬∃ls(TR(φ)jl)]ik)], i.e.  TR(!φ) := [λis. 

¬∃ks(i=k ∧ ¬∃ls(TR(φ)kl))] = [λis. ¬(¬∃ls(TR(φ)il))], i.e. TR(!φ) := [λis. ∃ls(TR(φ)il)] = Dom(TR(φ)).  

TR is the translation function from DPL to Dynamic Ty2 – see fn. 12 above. 
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  equivalently: D1 ∨ D2 := Dom(D1)∪Dom(D2) 
16    

D1 → D2 := ~(D1; [~D2]),        

  i.e. D1 → D2 := λis. ∀hs(D1ih → ∃ks(D2hk)) 17,    

  i.e. D1 → D2 := λis. (D1)i ⊆ Dom(D2),     where (D)i := {js: Dij}           

b. Additional abbreviations – DRS-level quantifiers (multiple random 

assignment, existential quantification):       

 [u1, …, un] := [u1]; …; [un]        

u(D) := [u]; D                   

c. Additional abbreviations – condition-level quantifiers (universal 

quantification):          

u(D) := ~([u]; [~D]),       

  i.e. ~[u | ~D] or [u] → D or equivalently ~ u([~D]),   

  i.e. u(D) := λis. ∀hs(i[u]h → ∃ks(Dhk)),     

  i.e. u(D) := λis. ([u])i ⊆ Dom(D)               

d. Additional abbreviations – DRS's (a.k.a. linearized 'boxes'):    

 [u1, …, un | C1, …, Cm] := λisjs. ([u1, …, un]; [C1, …, Cm])ij,    

  where C1, …, Cm are conditions (atomic or not),    

  i.e. [u1, …, un | C1, …, Cm] := λisjs. i[u1, …, un]j ∧ C1j ∧ … ∧ Cmj.

3.2. Cross-sentential Anaphora 

Going through the examples that motivated DPL and classical DRT / FCS in the 

first place will help us get familiar with Dynamic Ty2 translations and, at the same time, 

provide the empirical motivation for various features of the formal system. Consider 

again the mini-discourse in (7-8) below, containing two instances of cross-sentential 

anaphora. 

                                                

16
D1 ∨ D2 := ~([~D1]; [~D2]) = λi. ¬∃k(([~D1]; [~D2])ik) = λi. ¬∃kl([~D1]il ∧ [~D2]lk) = λi. ¬∃kl(i=l ∧

¬∃h(D1ih) ∧ l=k ∧¬∃h'(D2lh')) = λi. ¬(¬∃h(D1ih) ∧ ¬∃h'(D2ih')) = λi. ∃h(D1ih) ∨ ∃h'(D2ih') = λi. ∃k(D1ik

∨ D2ik). 

17
D1 → D2 := ~(D1; [~D2]) = λi. ¬∃k((D1; [~D2])ik) = λi. ¬∃kl(D1il ∧ [~D2]lk) = λi. ¬∃kl(D1il ∧ l=k

∧¬∃h(D2lh)) = λi. ¬∃k(D1ik ∧ ¬∃h(D2kh)) = λi. ∀k(D1ik → ∃h(D2kh)). 
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7. A 1
u  house-elf fell in love with a 2

u  witch. 

8. He
1

u  bought her
2

u  an 3
u  alligator purse. 

I provide its DRT-style representation in DPL and its DRT-style representation in 

Dynamic Ty2 in (9) and (10) below. The formula in (11) is the 'unpacked' type-logical 

term of type s(st) translating the discourse in (7-8). Finally, the formula in (12) provides 

the truth-conditions associated with the Dynamic Ty2 term in (11), derived on the basis 

of the definition of truth for DRS's in (5g) and the "Enough States" axiom (Axiom4 in 

(4b) above).  

Note that the formula in (12) capturing the truth-conditions of discourse (7-8) 

contains a vacuous λ-abstraction over input 'assignments', which is intuitively correct 

given that the discourse does not contain any item whose reference is dependent on the 

input context, as for example a deictically used pronoun would be. 

9. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]; [z | alligator_purse(z), buy(x, y,

z)] 

10. [u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];      

[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

11. λisjs. i[u1, u2, u3]j ∧ house_elf(u1j) ∧ witch(u2j) ∧ fall_in_love(u1j, u2j) ∧   

          alligator_purse(u3j) ∧ buy(u1j, u2j, u3j) 

12. λis. ∃xe∃ye∃ze(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y) ∧    

            alligator_purse(z) ∧ buy(x, y, z)) 

3.3. Relative-Clause Donkey Sentences 

Let us turn now to the relative-clause donkey example in (13) below. The formula in 

(14) is its DPL translation (abbreviated DRT-style), while the corresponding Dynamic 

Ty2 formula is provided in (15). Note the double square brackets on the left- and right-

hand side of the Ty2 representation: the external square brackets are due to the fact that 

dynamic implication '→' is a condition-level connective (see definition (6a) above), so we 

need the extra square brackets to obtain a test, i.e. a DRS (which is a term of type s(st)), 

out of a condition of type st.
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13. Every 1
u  house-elf who falls in love with a 2

u  witch buys her
2

u  an 3
u  alligator 

purse. 

14. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]      

→ [z | alligator_purse(z), buy(x, y, z)] 

15. [[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}]     

→ [u3 | alligator_purse{u3}, buy{u1, u2, u3}]] 

The DRT-style representation in (15) above is 'unpacked' as the type-logical term in 

(16) below, whose truth-conditions are given in (17); note again the vacuous λ-

abstraction over 'assignments', followed by a static first-order formula that captures the 

intuitively correct truth-conditions for sentence (13) above. 

16. λisjs. i=j ∧ ∀hs(i[u1, u2]h ∧ house_elf(u1h) ∧ witch(u2h) ∧ fall_in_love(u1h, u2h)  

  → ∃ks(h[u3]k ∧ alligator_purse(u3k) ∧ buy(u1k, u2k, u3k))) 

17. λis. ∀xe∀ye(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y)     

       → ∃ze(alligator_purse(z) ∧ buy(x, y, z))) 

3.4. Conditional Donkey Sentences 

The conditional donkey sentence repeated in (18) below receives the same Dynamic 

Ty2 translation and the same truth-conditions as the relative-clause donkey sentence in 

(13) above (see (15), (16) and (17)). Thus, just as DPL, the Dynamic Ty2 translations 

capture the intuitive correspondence between the generalized determiner every and bare 

conditional structures. 

18. If a 1
u  house-elf falls in love with a 2

u  witch, he
1

u  buys her
2

u  an 3
u  alligator purse. 

Finally, we turn to the intuitively equivalent negative donkey sentences we have 

analyzed in DPL in the previous chapter – repeated in (19), (20) and (21) below. 

19. Nox house-elf who falls in love with ay witch buys hery anz alligator purse. 

20. If ax house-elf falls in love with ay witch, hex never buys hery anz alligator purse. 

21. If ax house-elf falls in love with ay witch, hex doesn't buy hery anz alligator purse. 
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Just as in the case of the DPL, we can translate sentence (19) in Dynamic Ty2 in 

two different ways, i.e. we can translate the determiner no either by means of a 

combination of negation and existential quantification or by means of a combination of 

negation and universal quantification. But this is not a problem for Dynamic Ty2 just as it 

wasn't for DPL: as expected, the DPL partial duality between existential and universal 

quantification is inherited in Dynamic Ty2, so the two translations, i.e. the two st terms in 

(22) below, are identical.  

The terms in (22) are of type st because both dynamic negation '~' and universal 

quantification  are condition-level connectives. The corresponding tests – which are 

DRS's, i.e. terms of type s(st) – are obviously identical if the conditions they are based on 

are identical. 

22. ~ u(D; D') = u([D → [~D']]) 18

And, given the identity in (22), we can translate sentence (19) either way19, as 

shown in (23) and (25) below. Furthermore, these equivalent translations are also 

equivalent to the DRT-style formulas in (24) and (26).  

Note that the universal quantification over pairs of house-elves and witches is 

exhibited in the clearest way by (26), since any dref introduced in the antecedent of a 

conditional ends up being quantified over universally20.

                                                

18
u(D → [~D']) = λis. ∀hs([u]ih → ∃ks((D → [~D'])hk)) 

= λis. ∀hs([u]ih → ∃ks(h=k ∧ ∀h's(Dhh' → ∃k's([~D']h'k'))) = λis. ∀hs([u]ih → ∀h's(Dhh' → ∃k's(h'=k' ∧
(~D')k'))) 

= λis. ∀hs([u]ih → ∀h's(Dhh' → (~D')h')) = λis. ∀hs([u]ih → ∀h's(Dhh' → ¬∃ks(Dh'k)) 

= λis. ∀hs([u]ih → ∀h's(Dhh' → ¬∃ks(Dh'k)) = λis. ¬∃hs([u]ih ∧ ¬∀h's(Dhh' → ¬∃ks(Dh'k)) 

= λis. ¬∃hs([u]ih ∧ ∃h's¬(Dhh' → ¬∃ks(Dh'k)) = λis. ¬∃hs([u]ih ∧ ∃h's(Dhh' ∧ ∃ks(Dh'k)) 

= λis. ¬∃hs∃h's∃ks([u]ih ∧ Dhh' ∧ Dh'k) = λis. ¬∃ks(([u]; D; D')ik) = ~ u(D; D')  

19 I assume that terms that are equivalent to (Dynamic Ty2 translations of DPL) translations of English 
sentences are also acceptable as translations. 

20 It is easily checked that the following identities hold:  

u([D → D']) = [u] → [D → D'] = ([u]; D) → D' = u(D) → D'. 
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23. [~ u1([house_elf{u1}]; u2([witch{u2}, fall_in_love{u1, u2}]);   

u3([alligator_purse{u3}, buy{u1, u2, u3}]))] 

24. [~[u1, u2, u3 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2},    

           alligator_purse{u3}, buy{u1, u2, u3}]] 

25. [ u1([house_elf{u1}]; u2([witch{u2}, fall_in_love{u1, u2}])    

→ [~ u3([alligator_purse{u3}, buy{u1, u2, u3}])])] 

26. [[u1, u2| house_elf{u1}, witch{u2}, fall_in_love{u1, u2}]     

→ [~[u3 | alligator_purse{u3}, buy{u1, u2, u3}]]] 

Note also that the formula in (26) is in fact the compositional translation of the 

negative conditional sentences in (20) and (21) above.  

The Dynamic Ty2 truth-conditions for all three sentences are most easily derived 

from formula (24) – and they are provided in (27) below. Just as before, we have vacuous 

λ-abstraction over 'assignments', followed by a static first-order formula that captures the 

intuitively correct truth-conditions for the three English sentences under consideration. 

27. λis. ¬∃xe∃ye∃ze(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y) ∧    

    alligator_purse(z) ∧ buy(x, y, z)) 

Thus, we see that Dynamic Ty2 can capture everything that DPL (hence classical 

DRT / FCS) does – including compositionality down to sentence- / clause-level. 

However, with Dynamic Ty2, we have all the ingredients to go compositional at the sub-

sentential / sub-clausal level, which is what sections 4 and 5 below endeavor to do. I 

conclude this section with a brief discussion of the Dynamic Ty2 analysis of proper 

names.  

Intermezzo: Proper Names in Dynamic Ty2 

The main choice for the analysis of proper names in Dynamic Ty2 is between: (i) a 

pronoun-like analysis, whereby a proper name is basically interpreted as a deictically 

used pronoun, whose referent is specified by the input discourse context, and (ii) an 

indefinite-like analysis, whereby a proper name introduces a new individual-level dref 
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whose referent is constrained to be the individual (rigidly) designated by the proper 

name. 

Following Muskens (1996), I have introduced specific dref's corresponding to 

proper names, i.e. constant functions from 'assignments' to individuals, e.g. John := λis. 

johne. However, unlike Muskens – who chooses the pronoun-like analysis of proper 

names –, I will not interpret proper names as denoting such specific dref's, but I will 

instead let proper names introduce an unspecific dref and an identity condition between 

the unspecific dref and the specific dref that is the Dynamic Ty2 correspondent of the 

proper name. For example, the proper name John is represented as shown in (28) below. 

28. Johnu ⇝ [u | u=John],     i.e. λisjs. i[u]j ∧ uj=Johnj,     i.e. λisjs. i[u]j ∧ uj=john

As (28) shows, the newly introduced unspecific dref is constrained to have the value 

johne in the output info state j. This interpretation of proper names is in fact equivalent to 

the external anchoring of proper names in Kamp & Reyle (1993): 248 – and it is similar 

to the interpretation of proper names in Kamp (1981). Moreover, pronouns anaphoric to 

proper names are taken to be anaphoric to the unspecific dref introduced by the proper 

name, as exemplified by (29) below. 

29. … John
u … heu …

As Muskens (1996): 151-153 observes, this kind of representation seems needlessly 

complex: why not simply take the proper name to be anaphoric to its corresponding 

specific dref? This would basically be equivalent to using the proper name as a deictic 

anaphor, interpreted directly relative to the input context (a.k.a. info state or 

'assignment')21. Moreover, a pronoun anaphoric to a proper name would be anaphoric to 

the corresponding specific dref, as shown in (30) below. From this perspective, the use of 

a pronoun anaphoric to a proper name and the use of the proper name itself are not really 

different. 

                                                

21 Which is basically what the causal chain theory of proper names proposes – see Kripke (1972) and 
Kaplan (1977/1989a, 1989b) among others. 
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30. … JohnJohn … heJohn …

This conflation of proper names and pronouns requires additional justification, as 

the two are different in at least two respects. First, a proper name is completely felicitous 

in a discourse initial position, while a felicitous pronoun requires a suitable context 

(linguistic or non-linguistic) to have previously been set up – as shown in (31) and (32) 

below. 

31. Dobby entered The Three Broomsticks. 

32. ??HeDobby entered The Three Broomsticks. 

Second, when the proper name has been (recently) mentioned, using an anaphoric 

pronoun is felicitous, while using the proper name again is usually not, as shown in (33) 

and (34) below. 

33. Dobby entered the Three Broomsticks. HeDobby ordered a butterbeer. 

34. Dobby entered the Three Broomsticks. ??Dobby ordered a butterbeer. 

These two observations seem to argue for the indefinite-like and against the 

pronoun-like analysis of proper names.  

However, the pronoun-like analysis of proper names, i.e. representing proper names 

as deictic pronouns together with the assumption that proper names are by default salient 

in the input context, is supported by the interaction between anaphora to proper names 

and negation. Generally, an indefinite introduced in the scope of negation is not 

anaphorically accessible to a subsequent pronoun, as shown in (35) below. In contrast, a 

proper name is anaphorically accessible when it occurs in the scope of negation, as (36) 

shows. 

35. Hermione didn't see au / anyu house-elf in the Three Broomsticks.         

#Heu was on vacation in the Bahamas. 

36. Hermione didn't see Dobby in the Three Broomsticks.          

HeDobby was on vacation in the Bahamas. 

The fact that dynamic negation is defined as a condition in (5c) above, i.e. as 

externally static, correctly predicts the infelicity of anaphora in (35): the pronoun, despite 
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being co-indexed with the indefinite, ends up being interpreted as a deictic pronoun, 

picking up whatever the input context associates with the dref u.

And this is the reason for the infelicity of the discourse in (35): the co-indexation of 

the indefinite and the pronoun formally encodes that the pronoun should be 'bound' by the 

indefinite, i.e., as far as the speaker is concerned, the indefinite and the pronoun should 

be co-referent / anaphorically connected. However, the pronoun is actually 'unbound', i.e. 

independent of the individual non-deterministically made salient by the indefinite, since 

the pronoun ends up referring to some (arbitrary) individual that is already salient in the 

input discourse context – and this happens despite the fact that the speaker intended the 

pronoun to refer to the individual made salient by the indefinite. 

Therefore, the hypothesis that proper names are by default salient in the input 

context (which underlies the representation of proper names as deictically used pronouns 

of some sort) correctly predicts that the anaphoric pronoun in (36) is felicitously used – 

while the indefinite-like analysis of proper names, according to which they introduce an 

unspecific dref to which subsequent pronouns are anaphoric to, makes incorrect 

predictions: we would expect anaphora to proper names introduced under negation to be 

infelicitous just as the corresponding anaphora to indefinites. 

The very simple (and simplified22) data presented above does not completely 

support either the indefinite-like or the pronoun-like analysis of proper names – and it is 

not the goal of the present investigation to settle these difficult matters23. I will 

henceforth use the indefinite-like analysis only because it is more easily made compatible 

with the independently motivated formal developments in the following chapters – and 

the above discussion was only meant to lend some plausibility to this choice24.

                                                

22 There are many other factors that can influence the accessibility of referents in discourse and that should 
be taken into account, e.g. information structure, epistemic specificity in the sense of Farkas (2002) etc. 

23 For a recent in-depth discussion of the linguistic and philosophical issues raised by the interpretation of 
proper names, see Cumming (2006). 

24 The development I have in mind is the van den Berg-style analysis of dynamic generalized quantifiers 

(see chapter 6 below), which requires the introduction of a dummy/'exception'/'undefined' individual # (# is 
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I will account for the felicitous anaphora in (36) above, which is problematic for the 

indefinite-like analysis of proper names, by assuming that pronouns can be indexed not 

only with unspecific dref's, but also with specific drefs like Dobby or John. That is, in 

addition to the anaphoric pattern in (29) above, I will also allow for the kind of 

connection between a pronoun and a proper name schematically represented in (37) 

below. 

37. … John
u … heJohn …

Strictly speaking, the pronoun is not co-referring with the proper name, i.e. the 

pronoun heJohn is different from the co-indexed pronoun heu as far as their context-change 

potentials go. However, the truth-conditional import of the two pronouns is the same in 

most cases; an exception is, of course, discourse (36) above, where only the pronoun 

heJohn can account both for the felicity of the pseudo anaphoric connection and for the 

truth-conditions of the discourse. Sentence (36) (repeated in (38) below with the intended 

indexation) is analyzed as shown in (39). The reader can easily check that the 

representation in (39) delivers the intuitively correct truth-conditions. 

38. Hermione 1
u  didn't see Dobby 2

u  in the Three Broomsticks.          

  HeDobby was on vacation in the Bahamas. 

39. [u1 | u1=Hermione, ~[u2 | u2=Dobby, see_in_TB{u1, u2}]];              

  [on_vacation_in_Bahamas{Dobby}] 

                                                                                                                                                

a designated element of type e; van den Berg's symbol is in fact ⋆). In certain contexts, we will need some 
'assignments' i to assign this dummy individual to individual dref's, e.g. for some dref u, we will have ui=#.  

We will ultimately have to enforce a similar requirement with respect to proper names: the mention of a 
proper name, e.g. John, will be taken to simultaneously update some 'assignments' with the actual value of 

the proper name, e.g. johne, and other assignments with the dummy value #. Interpreting proper names 
directly in terms of specific drefs, i.e. in terms of constant functions, e.g. John := λis. johne, does not allow 
for the option of introducing a dref whose values are either the individual (rigidly) designated by the proper 
name or the dummy individual. 
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4. Syntax of a Fragment of English 

Now that we have translated DPL in type logic, we can go compositional at the sub-

sentential/sub-clausal level. For this purpose, I will define a basic transformational syntax 

for a small fragment of English in the tradition of Chomsky (1981). The definition is 

mostly based on Muskens (1996): 159-163 and Muskens (2005). 

4.1. Indexation 

"The most important requirement that we impose is that the syntactic component of 

the grammar assigns indices to all names, pronouns and determiners" (Muskens 1996: 

159). Unlike Muskens (1996), I will let indices be specific and unspecific dref's (recall 

that they are all constants of type se), e.g. u, u', u1, Dobby etc. Just as before, the 

antecedents are indexed with superscripts and dependent elements with subscripts, 

following the convention in Barwise (1987). 

I will also allow variables that have the appropriate dref type as indices on traces of 

movement, e.g. vse, v'se, v0,se, v1,se etc. – but such indices appear only on traces, because 

they are needed only on traces. As Muskens (1996): 169 puts it: "In Montague's PTQ 

(Montague 197[4]) the Quantifying-in rules served two purposes: (a) to obtain scope 

ambiguities between noun phrases and other scope bearing elements, such as noun 

phrases, negations and intensional contexts, and (b) to bind pronouns appearing in the 

expression that the noun phrase took scope over. In the present set-up the mechanism of 

discourse referents takes over the second task". 

The fact that we use distinct indices for the two purposes enables us to keep track of 

when our indexation makes an essentially dynamic contribution to the semantics and 

when it is an artifact of the particular scoping mechanism and the particular 

syntax/semantics interface we employ. In this way, it will be fairly straightforward for the 

reader to reformulate the analyses we develop in her/his favorite syntactic formalism. 

Thus, the choice of a particular (version of a particular) syntactic formalism is 

largely orthogonal to the matters addressed in the present work and is motivated only by 

presentational considerations: whichever syntactic formalism the reader favors, it is a 
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reasonable expectation that s/he will have at least a nodding acquaintance with the Y-

model (a.k.a. the T-model) of GB syntax. The syntax-semantics interface defined in this 

section (which is no more than a proof of concept) is merely meant to give the reader a 

basic idea of how to design a proper 'interface' between the semantics proposed here and 

her/his favorite syntactic formalism. 

4.2. Phrase Structure and Lexical Insertion Rules 

The Y-model of syntax has four components:  D-structure (DS), S-Structure (SS), 

Logical Form (LF) and Phonological Form (PF). We will be interested in the first three, 

in particular in the level of LF, which provides the input to the semantic interpretation 

procedure. 

The DS component consists of all the trees that can be generated by the phrase 

structure rules PS1-PS12 and the lexical insertion rules LI1-LI11 in (40) below. We could 

in fact do away with rule PS1 (the necessary recursion is already built into PS2), but I 

will keep it as a reminder that sequencing two sentences in discourse occurs at a supra-

sentential, textual level. 

40. Phrase structure rules and lexical insertion rules 
25

.

(PS 1)  Txt  →  (Txt)  CP (PS 5)  VP  →  DP  V' (PS 9)  Vdi'  →  Vdi  DP 

(PS 2)  CP  →  (CP)  IP (PS 6)  V'  →  Vin (PS 10)  DP  →  D  NP 

(PS 3)  CP  →  C  IP (PS 7)  V'  →  Vtr  DP (PS 11)  NP  →  N  (CP) 

(PS 4)  IP  →  I  VP (PS 8)  V'  →  Vdi'  DP (PS 12)  X  →  X+  Conj  X 

(LI 1) D  →  au, everyu, mostu, fewu, 
nou, someu, anyu, au', everyu', …

(LI 5) N  →  farmer, house-elf, 
donkey, …

(LI 9) I  →  Ø, doesn't, don't, -
ed, -s, didn't, …

(LI 2) DP  →  heu, sheu, itu, heu', ..., 
heJohn, sheMary, …, tv, tv', …

(LI 6) Vtr  →  own, beat, … (LI 10) C  →  if

(LI 3) DP  →  Johnu, Maryu, Johnu', ... (LI 7) Vin  →  sleep, walk, … (LI 11) Conj  →  and, or

(LI 4) DP  →  who, whom, which (LI 8) Vdi  →  buy, give, …

                                                

25 I am temporarily overloading the symbol '→', which (as it is customary in the literature) is used to define 
the production rules of our grammar. 
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Subjects are assumed to be VP-internal and this is where they remain by default 

even at LF (they are raised out of VP only at PF). In this way, we can interpret sentential 

negation as having scope over quantifiers in subject position. Similarly, V-heads move to 

the inflectional I-head only at PF. 

4.3. Relativization and Quantifier Raising 

DS and SS are connected via the obligatory movement rule of Relativization (REL). 

A tree Θ' follows by REL from a tree Θ iff Θ' is the result of replacing some sub-tree of Θ

of the form [CP [IP X [DP wh] Y] ], where X and Y are (possibly empty) strings and wh is 

either who, whom or which, by a tree [CP [DP wh]v [CP [IP X tv Y] ] ], where v is a fresh variable 

index (not occurring in Θ as a superscript). REL is basically CP adjunction. 

41. Relativization (REL): [CP [IP X [DP wh] Y ] ]  →  [CP [DP wh]v [CP [IP X tv Y ] ] ] 

For example, the DP au
 girl who every

u'
 boy adores has the syntactic representation 

in (42) below, obtained by an application of REL: 

42. [DPau  [NP[N girl]  [CP[DP who]v  [CP[IP[I -s]  [VP [DP everyu' boy]  [V'  [Vtr adore]  tv ]]]]]]] 

Formally, SS is the smallest set of trees that includes DS and is closed under REL; 

thus, DS⊆SS. 

Finally, we turn to the definition of LF, the syntactic component that is the input to 

our semantics. This is the level where quantifier scope ambiguities are resolved. We 

define an optional rule of Quantifier Raising (QR) (May 1977) which adjoins DP's to IP's 

or DP's to VP's (we need VP-adjunction for ditransitive verbs among other things) and 

which is basically the Quantifying-In rule of Montague (1974).  

A tree Θ' follows by QR from a tree Θ iff: (a) Θ' is the result of replacing some sub-

tree Σ of Θ of the form [IP X [DP Z] Y] by a tree [IP [DP Z]v [IP X tv Y] ], where v is a fresh 

variable index (not occurring in Θ as a superscript); or (b) Θ' is the result of replacing 

some sub-tree Σ of Θ of the form [VP X [DP Z] Y] by a tree [VP [DP Z]v [VP X tv Y] ], where v

is a fresh variable index (not occurring in Θ as a superscript). The conditions on the QR 
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rule are that Z is not a pronoun or a wh-word and that [DP Z] is not a proper sub-tree of a 

DP sub-tree [DP W] of Σ 26.

43. Quantifier Raising (QR): a. [IP X [DP Z] Y ]  →  [IP [DP Z]v [IP X tv Y ] ]  

        b. [VP X [DP Z] Y ]  →  [VP [DP Z]v [VP X tv Y ] ] 

For example, the reverse scope of every
u
 house-elf adores a

u'
 witch can be obtained 

by QR to IP, as shown in (44) below (of course, it could also be obtained by QR to VP). 

44. [IP  [DP au' witch]v  [IP  [I -s]  [VP  [DP everyu house-elf]  [V'  [Vtr adore]  tv ]]]]  

LF is defined as the smallest set of trees that includes SS and is closed under QR; 

thus, SS⊆LF. 

5. Type-driven Translation 

In a Fregean / Montagovian framework, the compositional aspect of the 

interpretation is largely determined by the types for the 'saturated' expressions, i.e. names 

and sentences. Let's abbreviate them as e and t. An extensional static logic without 

pluralities (i.e. classical higher-order logic) is the simplest: e is e (atomic entities) and t is 

t (truth-values). The English verb sleep, for example, is represented by a term sleep of 

type (et), i.e. (et), and the generalized quantifier (GQ) every man by a term of type ((et)t), 

i.e. ((et)t). 

This setup can be complicated in various ways27. In particular, Dynamic Ty2 

complicates it by adding another basic type s whose elements model DPL variable 

assignments, i.e. (simplified versions of) dynamic info states. A sentence is interpreted as 

                                                

26 For example, if the DP sub-tree [DP W] of Σ contains a relative clause which in its turn contains [DP Z], we 
do not want to QR [DP Z] all the way out of the relative clause. 

27 See for example Lewis (1972) and Creswell (1973), which use the same technique to introduce 
intensionality, i.e., in their case, t := st and s is the sort of indices of evaluation (however one wants to think 
of them, e.g. as worlds, <world, time> pairs etc.; see Muskens 1995a for a set of axioms that make the 
atomic objects of type s behave as <world, time> pairs). 



78

a relation between an input and an output 'assignment', i.e. t := (s(st)), and a name 

denotes an individual dref, i.e. e := (se) 28.

The English verb sleep is still translated by a term of type (et), but now this means 

that it takes a dref u of type e and it relates two info states i and i' of type s if and only if 

i=i' and the entity denoted by u in info state i, i.e. ui, has the sleep property of type (et), 

i.e. the static 'sleep'-property.  

5.1. Translating Basic Expressions 

Table (45) below provides examples of basic meanings for the lexical items in (40) 

above: the first column contains the lexical item, the second column its Dynamic Ty2 

translation and the third column its type, assuming the above two abbreviations, i.e. t := 

(s(st)) and e := (se). Note that the abbreviated types have exactly the form we would 

expect them to have in Montague semantics (e.g. the translation of the intransitive verb 

sleep is of type et, the translation of the pronoun he is of type (et)t, the translations of the 

indefinite article a and of the determiner every are of type (et)((et)t) etc.). The list of basic 

meanings constitutes rule TR0 of our type-driven translation procedure for the English 

fragment. 

Transitive verbs like own are assumed to take a generalized quantifier (GQ) as their 

direct object (type (et)t), which captures the fact that the default quantifier scoping is 

subject over object. The reverse scope is obtained by QR.  

Ditransitive verbs like buy are assumed to take two GQ's as objects; the default 

relative scope of the two (encoded in the lexical entry) is their left-to-right surface order, 

i.e. the first of them (e.g. the Dative GQ) takes scope over the second (e.g. the Accusative 

GQ). Arguably, this is the correct prediction, since the most salient quantifier scoping in 

                                                

28 Despite appearances, relativizing the interpretation of names to 'assignments' is not different from the 
Montagovian interpretation of names (or the Tarskian interpretation of individual constants in first-order 
logic): just as a name like 'John' is assigned the same individual, namely johne, relative to any variable 
assignment g in a static Montagovian system, CDRT interprets proper names in terms of constant functions 
of type se, e.g. the semantic value of the name 'John' is given in terms of the constant function Johnse that 
maps each 'assignment' is to the individual johne, i.e. Johnse := λis. johne (see also the discussion in section 0
above). 
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the sentence Dobby bought every witch an alligator purse follows the left-to-right linear 

order: the Dative GQ takes scope over the Accusative GQ, so that the purses co-vary with 

the witches. The reverse scope has to be obtained by QR (to VP or IP). 

Note that the Dative GQ takes scope over the Accusative GQ despite their relative 

syntactic position: given the phrase structure rules PS8 and PS9 in (40) above, the Dative 

GQ is actually c-commanded by the Accusative GQ. The fact that a quantifier can take 

scope over another without c-commanding it syntactically is one of the advantages of 

working with a dynamic system, in which quantifier scope is encoded in the order in 

which the updates are sequenced.

Thus, in a dynamic framework, syntactic structure affects quantifier scope only to 

the extent to which syntactic relations (e.g. c-command) are ultimately reflected in update 

sequencing. The lexical entry for ditransitive verbs in (45) below 'neutralizes' syntactic c-

command: it sequences the updates contributed by the two GQ objects according to their 

linear order and not according to their syntactic structure. 

Defaulting to linear order (as opposed to syntactic c-command) has welcome 

empirical consequences in the case at hand: besides the fact that we capture the 

correlation between linear order and quantifier scope, we can also account for the fact 

that the Dative GQ is able to bind pronouns within the Accusative GQ without c-

commanding them, as for example in Dobby gave every
u
 witch heru broom.

It is in fact not unexpected that a dynamic system can account for pronoun binding 

without c-command given that donkey anaphora is a paradigmatic example of such 

binding without c-command. The point made by the present analysis of ditransitive verbs 

is that the dynamic account of donkey sentences can successfully generalize beyond the 

phenomena that provided the initial empirical motivation.  

Pronouns of the form heu and traces of the form tv are interpreted as in Montague 

(1974), i.e. as the GQ-lift of their index, which, for pronouns, is a dref (i.e. a constant of 

type e := se) and, for traces, is an actual variable (again of type e := se). We will see in 

chapter 5 that this kind of 'lifted' interpretation for pronouns (coupled with the type-raised 

interpretation of transitive and ditransitive verbs) is not necessarily a 'worst case' 
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generalization, but it is actually motivated by the distributive interpretation of singular 

number morphology occurring on donkey pronouns. 

Proper names are basically analyzed as indefinites – see the discussion at the very 

end of section 3 above, in particular (28). The only difference is that they are now 

translated as the corresponding GQ-lift. 

Indefinites have the type of (dynamic) generalized determiners, as needed for the 

definition of the compositional interpretation procedure, but their crucial dynamic 

contribution is the introduction of a new dref, which has to satisfy the restrictor property 

and the nuclear scope property in this order. The DPL-style abbreviation explicitly 

exhibits the existential quantification built into the indefinite. 

The universal quantifier every also has the type of generalized determiners and it is 

interpreted as expected: the DPL-style abbreviation speaks for itself. Note the square 

brackets surrounding the formula – they are due to the fact that, unlike the indefinite 

determiner a, the universal determiner every contributes a test – it is internally dynamic 

but externally static, just as classical DRT / FCS and DPL would have it. 

The negative quantifier no also contributes a test; I provide its two equivalent 

translations, one of them based on negation and existential quantification, the other based 

on negation and universal quantification. 

The wh-words that enter the construction of relative clauses are analyzed as identity 

functions over the property contributed by the relative clause. This property will then be 

'sequenced' with the property contributed by the preceding common noun to yield a 

'conjoined' property that is a suitable argument for a generalized determiner. The order in 

which the common noun and the relative clause are sequenced follows the linear surface 

order. The rule that achieves this dynamic 'conjunction' / 'sequencing' of properties 

generalizes both the static Predicate Modification rule in Heim & Kratzer (1998) and the 

dynamic Sequencing rule in Muskens (1996) – see (48) below. 
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45. TR 0: Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 
         Type         
e := se  t := s(st) 

[sleep]
inV
 ⇝ λve. [sleepet{v}] et

[own]
trV
 ⇝ λQ(et)t.λve. Q(λv'e. [owne(et){v, v'}]) ((et)t)(et)

[buy]
diV
 ⇝ λQ'(et)t.λQ(et)t.λve. Q'(λv'e. Q(λv''e. [buye(e(et)){v, v', v''}])) (ett)((ett)(et)) 

[house-elf]
N
 ⇝ λve. [house_elfet{v}] et

[heu] DP
 ⇝ λPet. P(ue) (et)t 

[tv] DP
 ⇝ λPet. P(ve) (et)t 

[heDobby] DP
 ⇝ λPet. P(Dobbye) (et)t 

[Dobbyu]
DP

 ⇝ λPet. [u | u=Dobby]; P(u) (et)t 

[au]
D
 ⇝ λP'et.λPet. [u]; P'(u); P(u),    

  i.e. λP'et.λPet. u(P'(u); P(u)) 
(et)((et)t) 

[everyu]
D
 ⇝ λP'et.λPet. [([u]; P'(u)) → P(u)],   

  i.e. λP'et.λPet. [ u(P'(u) → P(u))] 
(et)((et)t) 

[nou]
D
 ⇝ λP'et.λPet. [~([u]; P'(u); P(u))],    

  i.e. λP'et.λPet. [~ u(P'(u); P(u))]          

⇝ λP'et.λPet. [([u]; P'(u)) → [~P(u)]],   
  i.e. λP'et.λPet. [ u(P'(u) → [~P(u)])] 

(et)((et)t) 

[who]
DP

 ⇝ λPet. P (et)(et)

[Ø]
I
 / [-ed]

I
 / [-s]

I
 ⇝ λDt. D tt 

[doesn't]
I
 / [didn't]

I
 ⇝ λDt. [~D] tt 

[if]
C
 ⇝ λD't.λDt. [D' → D] t(tt) 

[and]
Conj

 ⇝ λD't.λDt. D'; D t(tt) 

[or]
Conj

 ⇝ λD't.λDt. [D' ∨ D] t(tt) 
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Non-negative inflectional heads are interpreted as identity functions over DRS 

meanings (type t := s(st)).  Negative inflectional heads are interpreted as expected: their 

value is a test, containing a condition that negates the argument DRS. 

The conditional if is a binary DRS connective: it takes two DRS's as arguments and 

it returns a test containing a dynamic implication condition that relates the two argument 

DRS's. 

The coordinating elements and and or will be discussed in more detail in section 5.1

of the following chapter (chapter 4); I provide here the entries for the simplest case, 

namely coordination of two sentences (i.e. DRS's). 

5.2. Translating Complex Expressions 

Based on TR0, we can obtain the translation of more complex LF structures by 

specifying how the translation of a mother node depends on the translations of its 

daughters. I provide five such rules, the last of which (TR5: Coordination – see (50) 

below) will be generalized in the following chapter. 

The first rule covers non-branching nodes: the mother inherits the translation of the 

daughter. 

46. TR 1 – Non-branching Nodes (NN).       

 If A ⇝ α and A is the only daughter of B,      

 then B ⇝ α.

The second rule is functional application: the translation of the mother is the result 

of applying the translation of one daughter to the translation of the other. 

47. TR 2 – Functional Application (FA).       

 If A ⇝ α and B ⇝ β and A and B are the only daughters of C,   

 then C ⇝ α(β), provided that this is a well-formed term.

The third rule is a generalized sequencing (i.e. a generalized dynamic conjunction) 

rule. For one thing, it translates the meaning of complex texts (Txt) that are formed out of 



83

a text (Txt) and a sentence (CP) – see PS1 in (40) above. In this sense, it is a 

generalization of the Sequencing rule in Muskens (1996). But it also handles predicate 

modification in general, e.g. it translates the meaning of an NP that is formed out of a 

common noun N and a relative clause CP – see PS11 in (40) above. In this sense, it is a 

generalization of the Predicate Modification rule in Heim & Kratzer (1998). 

48. TR 3 – Generalized Sequencing (GSeq) (i.e. Sequencing + Predicate 

Modification).          

 If A ⇝ α, B ⇝ β, A and B are the only daughters of C in that order (i.e.  

 C → A B) and α and β are of the same type τ of the form t or (σt) for  

 some σ∈Typ,         

 then C ⇝ α; β if τ=t or C ⇝ λvσ. α(v); β(v), if τ=(σt),    

 provided that this is a well-formed term.

The fourth rule handles Quantifying-In, both for quantifiers and for relativizers (i.e. 

wh-words). 

49. TR 4 – Quantifying-In (QIn).        

 If DPv
⇝ α, B ⇝ β and DPv and B are daughters of C,    

 then C ⇝ α(λv. β), provided that this is a well-formed term.

The final rule handles binary coordinations (it will be generalized to an arbitrary 

finite number of coordinated elements in the next chapter). 

50. TR 5 – Coordination (Co).         

 If A1 ⇝ α1, Conj ⇝ β, A2 ⇝ α2 and A1, Conj and A2 are the only   

 daughters of A in that order (i.e. A → A1 Conj A2),     

 then A ⇝ β(α1)(α2),         

 provided this a well-formed term and has the same type as α1 and α2.

The translation procedure, i.e. the relation 'tree Θ translates as term α', is formally 

defined as the smallest relation ⇝ between trees and Dynamic Ty2 terms that is conform 
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to TR0-TR5 and is closed under the reduction of the type-logical terms, e.g. if tree Θ

translates as term α and term β follows from α by λ-conversion, then Θ translates as β.

6. Anaphora and Quantification in Compositional DRT (CDRT) 

We are now ready to go through some examples. This section will show how CDRT 

can account for bound variable anaphora (6.1), quantifier scope ambiguities (6.2) and 

quantifier scope with ditransitive verbs (6.3). Finally, we will see how to analyze in 

CDRT the three paradigm examples that motivate dynamic semantics: cross-sentential 

anaphora (6.4), relative-clause donkey sentences (6.5) and, finally, conditional donkey 

sentences (6.6). 

6.1. Bound Variable Anaphora 

First, we can capture bound anaphora in CDRT without using the syntactic rule QR 

(Quantifier Raising, see (43) above) and the corresponding semantic rule QIn 

(Quantifying-In, see (49) above): we simply need the pronoun to be co-indexed with the 

antecedent, as shown in (51) below. 

51. Every 1
u  house-elf hates himself

1
u .

Co-indexation is enough for binding because binding in CDRT (just like in DPL) is 

actually taken care of by the explicit (and, in this case, unselective) quantification over 

'assignments' built into the meaning of quantifiers. In classical static logic, the 

quantification over assignments is only implicit (and selective, but this is not directly 

relevant for the matter at hand): the paradigm example is λ-abstraction, which selectively 

quantifies over assignments that differ at most with respect to the variable that is 

abstracted over. Therefore, if we want to obtain bound variable anaphora in a static 

system, co-indexation, i.e. using the same variable, is not enough: we also need to create 

a suitable λ-abstraction configuration that will ensure the semantic co-variation via 

selective quantification over assignments.  
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Sentence (51) receives the Dynamic Ty2 representation in (52) below – or, 

equivalently, the one in (53). The formulas deliver the intuitively correct truth-conditions, 

as shown in (54).  

52. [[u1 | house_elf{u1}] → [hate{u1, u1}]] 

53. [ u1([house_elf{u1}] → [hate{u1, u1}])] 

54. λis. ∀xe(house_elf(x) → hate(x, x)) 

Most importantly, CDRT associates the correct Dynamic Ty2 translation with 

sentence (51) in a compositional way, as shown by the LF in (55) below, with the nodes 

in the tree decorated with their corresponding translations. I do not explicitly show what 

rules of type-driven translation are applied at various points in the calculation – the reader 

will have no difficulty identifying them. Note only that, by the NN rule for non-branching 

nodes (see (46) above), the translation of the topmost node Txt is the same as the 

translation of the IP node dominated by it. 

55. Every 1
u  house-elf hates himself

1
u .

[every 1
u ]

D

λP'et.λPet.[([u1]; P'(u1)) → P(u1)]

[house-elf]
N
 

λve.[house_elfet{v}]

NP 

λve.[house_elfet{v}]

DP 

λPet.[[u1 | house_elf{u1}] → P(u1)] 

VP 

[[u1 | house_elf{u1}] → [hate{u1, u1}]] 

V' 

λve.[hate{v, u1}] 

[hate]
trV

  

λQ(et)t.λve.Q(λv'e.[hatee(et){v, v'}])

[himself
1

u ]
DP

λPet.P(u1)

[-s]
I

λDt. D

IP 

[[u1 | house_elf{u1}] → [hate{u1, u1}]] 

CP

Txt
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Thus, we see that CDRT can compositionally account for bound anaphora in 

English without QR or QIn: co-indexation is enough for binding, since the basic meaning 

of the determiner every universally quantifies over assignments. This universal 

quantification can be ultimately traced back to dynamic negation – see the discussion of 

DPL universal quantification and dynamic implication in the previous chapter. 

6.2. Quantifier Scope Ambiguities 

We turn now to an application of QR and QIn. Consider the sentence in (56) below, 

which is ambiguous between two quantifier scopings: the surface-based scope 

every 1
u >>a 2

u  and the reverse scope a 2
u >>every 1

u . The reverse scope is obtained by an 

application of QR. The two LF's yield the translations in (57) and (59) below, which 

capture the intuitively correct truth-conditions for the two readings, as shown in (58) and 

(60). 

56. Every 1
u  house-elf adores a 2

u  witch. 

57. every 1
u >>a 2

u : [[u1 | house_elf{u1}] → [u2 | witch{u2}, adore{u1, u2}]] 

58. every 1
u >>a 2

u : λis. ∀xe(house_elf(x) → ∃ye(witch(y) ∧ adore(x, y))) 

59. a 2
u >>every 1

u : [u2 | witch{u2}, [u1 | house_elf{u1}] → [adore{u1, u2}]] 

60. a 2
u >>every 1

u : λis. ∃ye(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y))) 

The two LFs are provided in (61) and (62) below. 
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61. every 1
u >>a 2

u : Every 1
u  house-elf adores a 2

u  witch. 

The reverse scope is obtained by applying the QR rule to the indefinite DP a 2
u  

witch, as shown in (62) below. Note that the application of the QR rule yields the reverse 

scope not because it places the indefinite DP in a c-commanding position, but because it 

reverses the order of updates. From this perspective, having a syntactic level for 

quantifier scoping that encodes dominance in addition to linear precedence relations 

seems like overkill (see also the discussion of the ditransitive sentence in (63) below. 

every 1
u  house-elf

DP 

λPet.[[u1 | house_elf{u1}] → P(u1)] 

VP 

[[u1 | house_elf{u1}] → [u2 | witch{u2}, adore{u1, u2}]] 

V' 
λve.[u2 | witch{u2}, adore{v, u2}] 

[adore]
trV

  

λQ(et)t.λve.Q(λv'e.[adoree(et){v, v'}])

[-s]
I

λDt. D

CP

Txt

DP 
λPet.[u2 | witch{u2}]; P(u2) 

a 2
u  witch

IP 

[[u1 | house_elf{u1}] → [u2 | witch{u2}, adore{u1, u2}]] 
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62. (a 2
u >>every 1

u ) Every 1
u  house-elf adores a 2

u  witch. 

6.3. Quantifier Scope with Ditransitive Verbs 

Given that donkey sentences with ditransitive verbs will feature quite prominently 

throughout the remainder of the dissertation, I will show in detail how sentences with 

ditransitive verbs are analyzed in CDRT. Consider the sentence in (63) below, in which 

the Dative GQ both takes scope over and binds into the Accusative GQ – without c-

commanding it. 

63. Dobby 3
u  gave every 1

u  witch her
1

u  alligator purse.  

This example simultaneously exhibits two of the most interesting aspects of CDRT:  

every 1
u  house-elf

DP 

λPet.[[u1 | house_elf{u1}] → P(u1)] 

VP 

[[u1 | house_elf{u1}] → [adore{u1, v''}]] 

V' 

λve.[adore{v, v''}] 

[adore]
trV

  

λQ(et)t.λve.Q(λv'e.[adoree(et){v, v'}])

[-s]
I

λDt. D

CP

Txt

DPv''

λPet.[u2 | witch{u2}]; P(u2) 

a 2
u  witch

IP 

[u2 | witch{u2}, [u1 | house_elf{u1}] → [adore{u1, u2}]] 

[tv''] DP

λPet.P(v''e) 

IP 

[[u1 | house_elf{u1}] → [adore{u1, v''}]] 



89

• we can have binding of pronouns without c-command and without QR, i.e. 

without the covert syntactic manipulations associated with the level of LF – see 

also (51) and (73) above;  

• a quantifier can have wide scope over another without c-commanding it as long as 

the update it contributes is sequenced before the update of the other quantifier: the 

lexical entry for ditransitive verbs specifies that the Dative GQ update is 

sequenced / takes scope over the Accusative GQ update – and this is enough to 

nullify the fact that, syntactically, the former does not take scope over the latter.  

Both features of CDRT point to the fact that the syntactic level of LF provides a 

needlessly rich, i.e. complex, input to the semantic interpretation procedure. In particular, 

the dominance relations that the LF level encodes are not (always) relevant for 

interpretation; the only two semantically relevant features of the LF level are: (i) the co-

indexation of the referring expressions and (ii) the linear precedence (i.e. sequencing) of 

the updates29.

Following the simplified LF for possessive DP's proposed in Heim & Kratzer 

(1998)30, I analyze her alligator purse as the DP in (64) below31.

64. [DP a 2
u  [NP  [N alligator purse] [PP of her

1
u ]  ]  ]  

                                                

29 I will not further pursue this perspective on meaning composition in the present work. Note however that 
coupling this perspective on meaning composition with the plural info states we will introduce in chapter 6
below (plural in the sense that the dynamic info states are sets of 'assignments' and not single 'assignments') 
promises to provide a novel and intuitively appealing analysis of cataphora on the one hand and the non-
standard ('choice-function') scopal behavior of indefinites on the other hand (see for example Chierchia 
1995: Chapter 3 for cataphora and Chierchia 2001 and references therein for 'choice-function' indefinites). 

See also the online update of Bittner (2006), where said properties of CDRT (i.e. the fact that the only two 
semantically relevant features of the LF level are indexation and sequencing of updates) take center stage. 

30 Although the LF in (64) is similar to the one in Heim & Kratzer (1998), the analysis is different: while 
Heim & Kratzer (1998) take possessives to be covertly definite DP's (and adopt a Fregean analysis of 
definite descriptions), I analyze them here as covertly indefinite DP's. The indefinite analysis of possessive 
DP's is empirically supported by the interpretation of possessives in predicative positions, e.g. John is her / 

Mary's brother, which are not associated with uniqueness implications – I am grateful to Magdalena 
Schwager (p.c.) for bringing this to my attention.

31 I assume that the following phrase structure and lexical insertion rules are added to the syntax of our 

English fragment: (PS 13) NP → N (PP); (PS 14) PP → P DP); (LI 12) P → of. 
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The meaning of the preposition of is given in (65) below – it has the same structure 

as the lexical entry of a transitive verb like own.

65. [of]P ⇝ λQett. λve. Q(λv'e. [ofe(et){v, v'}]) 

We compositionally derive the following translation for the DP in (64) (the 

subscript on the symbol ⇝ indicates the rule applied in translating the mother node): 

66. a. [PP of her
1

u ] ⇝FA λve. [of{v, u1}]                

b. [NP [N alligator purse] [PP of her
1

u ] ] ⇝GSeq λve. [alligator_purse{v}, of{v, u1}]         

c. (64) ⇝FA λPet. [u2 | alligator_purse{u2}, of{u2, u1}]; P(u2) 

 The syntactic structure of the V' is provided in linearized form in (67) below and 

compositionally translated in (68). The Dative GQ every 1
u  witch takes scope over the 

Accusative GQ and also binds the pronoun her
1

u  contained in it. 

67. [V'  [Vdi' give every 1
u  witch ]   [DP a 2

u  alligator purse of her
1

u ]  ] 

68. [Vdi' give every 1
u  witch ] ⇝FA         

λQ(et)t. λve. [[u1 | witch{u1}] → Q(λv''e. [give{v, u1, v''}])]     

(67) ⇝FA λve. [[u1 | witch{u1}]        

   →  [u2 | alligator_purse{u2}, of{u2, u1}, give{v, u1, u2}]] 

Thus, sentence (63) is translated as shown in (69) below and it receives the 

intuitively correct truth-conditions (for its most salient reading), as (70) below shows. 

69. [u3 | u3=Dobby,           

        [u1 | witch{u1}] →  [u2 | alligator_purse{u2}, of{u2, u1}, give{u3, u1, u2}]] 

70. λis. ∃ze(z=dobby ∧          

             ∀xe(witch(x) → ∃ye(alligator_purse(y) ∧ of(y, x) ∧ give(z, x, y)))),  i.e.   

λis. ∀xe(witch(x) → ∃ye(alligator_purse(y) ∧ of(y, x) ∧ give(dobby, x, y))) 



91

6.4. Cross-sentential Anaphora 

We can also compositionally assign the intuitively correct interpretation to the three 

paradigm examples we have used in the previous chapter to motivate dynamic semantics. 

The examples are repeated in (71-72), (73) and (74) below; their LF's have two 

distinctive features: on the one hand, they put to use the previously otiose CP and Txt 

categories; on the other hand, they contain an application of the REL & QIn rules.  

The analysis of donkey sentences exhibits a crucial property of CDRT we have 

already hinted at, namely the fact that, as long as these sentences receive the intuitively 

correct co-indexation, we can get the semantics of pronoun binding without c-command 

at the level of the LF. 
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71. A 1
u  house-elf fell in love with a 2

u  witch. 

72. He
1

u  bought her
2

u  an 3
u  alligator purse. 

[a 1
u  house-elf]

DP

λPet.[u1 | house_elf{u1}]; P(u1) 

VP 
[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}]

                 V' 
λve.[u2 | witch{u2}, f.i.l{v, u2}] 

[fall in love]
trV

  

λQ(et)t.λve.Q(λv'e.[fall_in_lovee(et){v, v'}])

[-ed]
I

λDt. D

CP

Txt 
[u1, u2, u3 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}, alligator_purse{u3}, buy{u1, u2, u3}] 

[a 2
u  witch]

DP

λPet.[u2 | witch{u2}]; P(u2) 

                            IP 
[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] 

[he
1

u ]
DP

λPet.P(u1) 

Txt

CP                                 IP 
[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

[-ed]
I

λDt. D

                                                     VP 
[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

                           V' 
λve.[u3 | a.p{u3}, buy{v, u2, u3}] 

[an 3
u  alligator purse]

DP

λPet.[u3 | a.purse{u3}]; P(u3)

                           Vdi' 
λQ(et)t. λve. Q(λv''e. [buye(e(et)){v, u2, v''}])) 

[her
2

u ]
DP

λPet.P(u2) 

[buy]
diV

  

λQ'(et)t. λQ(et)t. λve. Q'(λv'e. Q(λv''e. [buye(e(et)){v, v', v''}]))
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6.5. Relative-clause Donkey Sentences 

73. Every 1
u  house-elf who falls in love with a 2

u  witch buys her
2

u  an 3
u  alligator 

purse. 

VP 
[u2 | witch{u2}, fall_in_love{v'', u2}]

                        V' 
λve.[u2 | witch{u2}, fall_in_love{v, u2}] 

[fall in love]
trV

  

λQ(et)t.λve.Q(λv'e.[fall_in_lovee(et){v, v'}])

CP

[a 2
u  witch]

DP

λPet.[u2 | witch{u2}]; P(u2) 

Txt

                                                                   IP 

[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → [u3 | alligator_purse{u3}, buy{u1, u2, u3}]]

[-s]
I

λDt. D

VP 

[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → [u3 | a.p{u3}, buy{u1, u2, u3}]] 

                           V' 
λve.[u3 | a.p{u3}, buy{v, u2, u3}] 

buy her
2

u an 3
u  alligator purse  

                              DP 

λPet.[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → P(u1)] 

[every 1
u ]

D

λP'et.λPet.[([u1]; P'(u1)) → P(u1)]

NP 
λve.[u2 | house_elf{v}, witch{u2}, fall_in_love{v, u2}]

[house-elf]
N
 

λve.[house_elfet{v}]

CP 
λv''e.[u2 | witch{u2}, fall_in_love{v'', u2}] 

[who]
DP

v''

λPet.P

CP

                                IP 
[u2 | witch{u2}, fall_in_love{v'', u2}] 

[-s]
I

λDt. D

[tv''] DP

λPet.P(v''e) 



94

6.6. Conditional Donkey Sentences 

74. If a 1
u  house-elf falls in love with a 2

u  witch, he
1

u  buys her
2

u  an 3
u  alligator purse. 

I leave it to the reader to show that sentences (75) and (76) below – which involve 

coordination structures – can be compositionally assigned the intuitively correct 

interpretation in CDRT. 

75. If a 1
u  house-elf falls in love with a 2

u  witch and she
2

u  likes fancy handbags, he
1

u

buys her
2

u  an 3
u  alligator purse. 

76. If a 1
u  farmer owns a 2

u  donkey, he
1

u  beats it
2

u  or he
1

u  feeds it
2

u  poorly. 

7. Summary

The goal of this chapter and of the previous one was to situate the present research 

within the general enterprise of compositional dynamic semantics, in particular: 

• to provide the basic framework that I will build on throughout the present work;  

• to fix notation; 

CP 

[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → [u3 | alligator_purse{u3}, buy{u1, u2, u3}]] 

IP 
[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] 

Txt

                                IP 
[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

he
1

u  buys her
2

u  an 3
u  alligator purse 

a 1
u  house-elf falls in love with a 2

u  witch 

                              CP 

λDt.[[u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}] → D] 

[if]
C
 

λD't. λDt. [D' → D]
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• to briefly recapitulate the basic empirical generalizations that motivate the dynamic 

approach to semantics and the basic kinds of semantic analyses that this approach 

makes possible. 

The main achievement is the introduction of the basic compositional dynamic 

system couched in type logic in sections 2 and 5 above (i.e. the introduction of Dynamic 

Ty2 and CDRT). 

The differences between the material introduced in this and the previous chapter and 

the cited sources are for the most part presentational. The six novel things are: 

• the DPL-style definition of unselective generalized quantification that incorporates 

generalized quantifier conservativity (chapter 2);  

• the introduction of the mixed weak & strong donkey sentences, i.e. relative-clause 

donkey sentences with two donkey indefinites that receive different readings – one 

strong, the other weak –, e.g. Every person who buys a book on amazon.com

(strong) and has a credit card (weak) uses it (the credit card) to pay for it (the 

book); this kind of sentence cannot be accounted for in DRT / FCS / DPL or CDRT 

for that matter, even if they are extended with selective generalized quantification. 

Mixed weak & strong donkey sentences will provide one of the primary 

motivations for the subsequent revisions and generalizations of CDRT (see chapter 

5); 

• the complete definition of the underlying Dynamic Ty2 logic (chapter 3); 

• the fact that Dynamic Ty2 allows static objects of arbitrary types as dref values 

(chapter 3); 

• the indefinite-like analysis of proper names adopted in the present version of CDRT 

(chapter 3); 

• the novel dynamic analysis of ditransitive verbs and of the scoping properties of 

their Dative and Accusative objects (chapter 3). 

Building on the foundations layed out in this chapter, the next chapter will add to 

the previous literature in a more substantial way by reformulating the DPL-style 

definitions of unselective and selective generalized quantification in type logic and, thus, 
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extending CDRT to CDRT+GQ in a way that enables it to account for the weak / strong 

donkey ambiguity and the proportion problem. 
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Chapter 4. Compositional DRT with Generalized Quantification 

1. Introduction 

This chapter is the first one that adds to the previous literature in a more substantial 

way. Sections 2 and 3 are the central ones: they reformulate in type logic the DPL-style 

definitions of unselective and selective generalized quantification introduced in chapter 2.

Section 4 then extends CDRT (introduced in the previous chapter) with these two 

notions of dynamic generalized quantification. The resulting system, which I will label 

CDRT+GQ, provides a fully compositional account of the proportion problem and of the 

weak / strong donkey ambiguity.  

Section 5 introduces the analysis of the interaction between anaphora and 

generalized coordination in Muskens (1996): 176-182. I show that this analysis 

successfully generalizes to account for donkey sentences that contain a DP conjunction, 

e.g. Every boy who has a dog and every girl who has a cat must feed it (example (38) in 

Chierchia 1995: 77).  

DP-conjunction donkey sentences of this kind are crucial for the argument that 

Chierchia (1995) develops in favor of an approach to natural language interpretation that 

builds (part of) the dynamics into the semantic value of natural language expressions and 

against approaches that build the dynamics of the interpretation into syntactic operations 

at the level of Logical Form (LF).  

In a nutshell, the argument is that the same donkey pronoun is semantically bound 

by two distinct donkey indefinites, which can be naturally accounted for in a dynamic 

type-logical system with generalized conjunction (generalized to arbitrary types in the 

sense of Partee & Rooth 1983 among others). However, this kind of 'double binding' 

presents difficulties for approaches that require a particular syntactic configuration at the 

level of LF for the donkey pronouns to be semantically bound – because the same 

pronoun cannot enter two such distinct syntactic configurations. 
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Thus, by extension, such examples provide an argument for CDRT, which, just as 

DPL, aims to capture the dynamics of interpretation in terms of semantic values (i.e. 

meanings) and not syntactic representations. 

The second reason for examining DP-conjunction donkey sentences is that this kind 

of examples will appear in the following chapter and they will help us distinguish 

between various (dynamic and static) accounts of the weak / strong donkey ambiguity. 

Finally, section 6 shows that CDRT+GQ inherits the problems of DPL+GQ, i.e. it is 

not compositional enough. Just as in the case of DPL+GQ (see chapter 2), the argument 

relies on mixed weak & strong donkey sentences, i.e. relative-clause donkey sentences 

with multiple indefinites in the restrictor of the donkey quantification that receive 

different readings.  

In particular, I will show that determining which indefinite receives a weak reading 

and which one receives a strong reading cannot be compositionally implemented if we 

account for the weak / strong donkey ambiguity in terms of an ambiguity in the dynamic 

generalized determiner. This section paves the way for chapter 5, which provides such a 

compositional account formulated in a version of CDRT with plural information states, 

i.e. info states which are modeled as sets of 'assignments' (type st) and not as single 

'assignments' (type s). 

The chapter ends with a summary of the main results (section 7). 

2. Translating Unselective Quantification into Dynamic Ty2 

Consider again the definition of DPL-style unselective generalized quantification 

introduced in chapter 2.

1. ║det(φ, ψ)║ = {<g, h>: g=h and DET((φ)g, Dom(║ψ║))},    

 where DET is the corresponding static determiner    

 and (φ)g := {h: ║φ║<g, h> = T}       

 and Dom(║φ║) := {g: there is an h s.t. ║φ║<g, h> = T}. 

2. detx(φ, ψ) := det([x]; φ, ψ) 
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Based on the definition schemes in (1) and (2), we were able to derive meanings for 

the natural language determiners every and no that were equivalent to the meanings 

assigned to them in DPL – as shown in (3) through (6) below. 

3. ║everyx(φ, ψ)║ = {<g, h>: g=h and EVERY(([x]; φ)g, Dom(║ψ║))},   

 i.e. ║everyx(φ, ψ)║ = {<g, h>: g=h and ([x]; φ)g ⊆ Dom(║ψ║)} 

4. ║nox(φ, ψ)║ = {<g, h>: g=h and NO(([x]; φ)g, Dom(║ψ║))},   

 i.e. ║nox(φ, ψ)║ = {<g, h>: g=h and ([x]; φ)g∩Dom(║ψ║)=Ø} 

5. ∀x(φ → ψ) ⇔ ∃x(φ) → ψ ⇔ ([x]; φ) → ψ ⇔ everyx(φ, ψ) 

6. ~∃x(φ; ψ) ⇔ ∀x(φ → ~ψ) ⇔ ~([x]; φ; ψ) ⇔ nox(φ, ψ) 

It is straightforward to provide the corresponding definitions in Dynamic Ty2. 

Given that the above DPL formulas are tests, they will be translated as conditions, i.e. as 

terms of type st.

7. det(D, D') := λis. DET(Di, Dom(D')),       

 where DET is the corresponding static determiner    

 and Di = {js: Dij}         

 and Dom(D') := {is: ∃js(Dij)}. 

8. detu(D, D') := det([u]; D, D') 

Moreover, the meanings for every and no that we can derive based on the definition 

schemes in (7) and (8) above are equivalent to the CDRT meanings for every and no that 

we have provided in chapter 3: the reader can easily check that the equalities in (11) and 

(12) below are true in Dynamic Ty2. 

9. everyu(D, D') = λis. EVERY(([u]; D)i, Dom(D')),      

 i.e. everyu(D, D') = λis. ([u]; D)i ⊆ Dom(D'). 

10. nou(D, D') = λis. no(([u]; D)i, Dom(D')),      

 i.e. nou(D, D') = λis. ([u]; D)i∩Dom(D')=Ø. 

11. u(D → D') = u(D) → D' = ([u]; D) → D' = everyu(D, D') 

12. ~ u(D; D') = u(D → ~D') = ~([u]; D; D') = nou(D, D') 
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2.1. Limitations of Unselectivity: Proportions 

Just like its DPL counterpart, the CDRT definition of unselective generalized 

quantification in (7-8) above enables us to derive meanings for most and few that capture 

the anaphoric connections in donkey sentences based on them, but are unable to provide 

intuitively correct truth-conditions – they too have a proportion problem.  

This is explicitly shown by the truth-conditions in (16) below, which are assigned to 

sentence (14) by the definition of unselective generalized quantification in (7-8). Note in 

particular that we end up quantifying over pairs of house-elves and witches; thus, the 

formula in (16) is true in the 'Dobby as Don Juan' scenario mentioned in chapter 2, in 

contrast to the English sentence in (14), which is intuitively false. 

13. mostu(D, D') = λis. MOST(([u]; D)i, Dom(D')),      

 i.e. mostu(D, D') = λis. |([u]; D)i∩Dom(D')| > |([u]; D)i\Dom(D')| 1,

 i.e. mostu(D, D') = λis. |([u]; D; [!D'])i| > |([u]; D; [~D'])i|. 

14. Most 1
u  house-elves who fall in love with a 2

u  witch buy her
2

u  an 3
u  alligator 

purse. 

15. [most
1

u ([u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}],    

    [u3 | alligator_purse{u3}, buy{u1, u2, u3}])] 

16. λis. |([u1, u2 | h.elf{u1}, witch{u2}, f.i.l{u1, u2}];       

         [!([u3 | a.p{u3}, buy{u1, u2, u3}])])i| >        

      |([u1, u2 | h.elf{u1}, witch{u2}, f.i.l{u1, u2}];       

         [~([u3 | a.p{u3}, buy{u1, u2, u3}])])i|,        

i.e., by Axioms 3 and 4 ("Identity of 'assignments'" and "Enough 'assignments'"),  

λis. |{<xe, ye>: h.elf(x) ∧ witch(y) ∧ f.i.l(x, y) ∧ ∃ze(a.p(z) ∧ buy(x, y, z))}| >   

       |{<xe, ye>: h.elf(x) ∧ witch(y) ∧ f.i.l(x, y) ∧ ¬∃ze(a.p(z) ∧ buy(x, y, z))}| 

                                                

1 '\' symbolizes set-theoretic difference. 
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2.2. Limitations of Unselectivity: Weak / Strong Ambiguities 

Moreover, the meaning of every, repeated in (17) below, is able to derive only the 

strong reading of donkey sentences, just like its DPL equivalent. To see this, consider 

again the example in (18) below (from Pelletier & Schubert 1989): this sentence is 

assigned intuitively incorrect truth-conditions because the formula in (20) below is true 

iff the dime-owners put all their dimes in the meter. 

17. everyu(D, D') = λis. EVERY(([u]; D)i, Dom(D')),      

 i.e. everyu(D, D') = λis. ([u]; D)i ⊆ Dom(D'),    

 i.e. everyu(D, D') = λis. ([u]; D)i ⊆ ([u]; D)i∩Dom(D'),   

 i.e. everyu(D, D') = λis. ([u]; D)i ⊆ ([u]; D; !D')i,

18. Every 1
u  person who has a 2

u  dime will put it
2

u  in the meter. 

19. [every
1

u ([u2 | person{u1}, dime{u2}, have{u1, u2}], [put_in_meter{u1, u2}])] 

20. λis. ([u1, u2 | person{u1}, dime{u2}, have{u1, u2}])i ⊆     

       ([u1, u2 | person{u1}, dime{u2}, have{u1, u2}]; [!([put_in_meter{u1, u2}])])i,   

i.e., by Axioms 3 and 4 ("Identity of 'assignments'" and "Enough 'assignments'"),  

λis. {<xe, ye>: person(x) ∧ dime(y) ∧ have(x, y)} ⊆       

      {<xe, ye>: person(x) ∧ dime(y) ∧ have(x, y) ∧ put_in_meter(x, y)}, i.e.   

λis. ∀xe∀ye(person(x) ∧ dime(y) ∧ have(x, y) → put_in_meter(x, y)) 

2.3. Conservativity and Unselective Quantification 

Finally, the observation we have made about DPL-style conservative unselective 

quantification extends to its CDRT translation 2: assuming that the static determiner DET

is conservative, we have that DET((D)i, Dom(D')) holds iff DET((D)i, (D)i∩Dom(D')) 

holds. Moreover, the latter formula is equivalent to DET((D)i, (D; !D')i), which 

perspicuously encodes the intuition that a dynamic generalized determiner relates two 

sets of info states, the first of which is the set of output states compatible with the 

                                                

2 The observation was in fact used in deriving the final form of the every definition in (17) above. 
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restrictor, i.e. (D)i, while the second one is the set of output states compatible with the 

restrictor that, in addition, can be further updated by the nuclear scope, i.e. (D; !D')i.

The conservative definitions of unselective generalized quantification based on the 

non-conservative ones in (7) and (8) above are provided in (21) and (22) below. 

21. Built-in 'unselective' dynamic conservativity:      

det(D, D') := λis. DET(Di, (D; [!D'])i) 

22. Unselective generalized quantification with built-in dynamic conservativity:

detu(D, D') := λis. DET(([u]; D)i, ([u]; D; [!D'])i) 

Given that the definition of conservative unselective quantification in (22) provides 

access to the dref u in both the restrictor and the nuclear scope of the quantification, this 

definition provides the basic format for the CDRT definition of selective generalized 

quantification, to which we now turn. 

3. Translating Selective Quantification into Dynamic Ty2 

The syntax for selective generalized quantification is the same as the one used in the 

previous section, i.e. I will continue to use abbreviations of the form detu(D, D'), where u

is the 'bound' dref 3, D is the restrictor and D' is the nuclear scope of the quantification. 

The selective determiner detu relates two sets of individuals (type e) and not two 

sets of 'assignments' (type s), as the unselective determiner det defined in the previous 

section does. The fact that detu relates sets of individuals will solve the proportion 

problem. As far as the weak / strong donkey ambiguity is concerned, I will analyze it just 

as in chapter 2, i.e. as an ambiguity in the generalized determiner, which can have a weak

basic meaning det
wk

u(D, D') or a strong one det
str

u(D, D'). Both basic meanings are 

defined in terms of the static determiner DET and both of them are conditions, i.e. terms 

of type st, as shown in (23) below. 

                                                

3 Recall that u is a constant of type e := se, so it cannot possibly be bound in the official type logical 
language (which is Dynamic Ty2) – hence the scare quotes on 'bound'. 
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23. det
wk

u(D, D') := λis. DET(u[Di],  u[(D; D')i])       

det
str

u(D, D') := λis. DET(u[Di],  u[([D → D'])i]),     

 where Di := {js: Dij}         

 and u[Di] := {usejs: ([u]; D)ij},      

  i.e. u[Di] is the image of the set of 'assignments' ([u]; D)i   

  under the function use.

As already indicated, the generalized quantification defined in (23) is selective 

because the static determiner DET relates sets of individuals, e.g. u[Di] := {xe: ∃js(([u]; 

D)ij ∧ x=uj)}, and not sets of info states (as it does in the unselective definitions in (21) 

and (22) above). 

The difference between the weak and the strong lexical entry for the selective 

generalized determiners is localized in the nuclear scope of the quantification:  

• the weak, 'existential' reading is obtained by simply sequencing (i.e. conjoining) the 

restrictor DRS D and the nuclear scope DRS D'; 

• the strong, 'universal' reading is obtained by means of the universal quantification 

built into the definition of dynamic implication that relates the restrictor DRS D

and the nuclear scope DRS D'.

Given Axiom 3 ("Identity of 'assignments'") and Axiom 4 ("Enough 'assignments'"), 

the weak and strong selective determiners in (23) above can be alternatively defined in 

terms of generalized quantification over info states – we just need to make judicious use 

of the anaphoric closure operator '!', as shown in (24) below 4.

24. det
wk

u(D, D') := λis. DET(([u | !D])i,  ([u | !(D; D')])i)      

det
str

u(D, D') := λis. DET(([u | !D])i,  ([u | !([D → D'])])i) 5,    

 where Di := {js: Dij}.

                                                

4 Note the formal similarities between the type-logical definition schemes in (24) and their DPL-style 
counterparts introduced in chapter 2. 

5 Given that !([D → D']) = D → D', the strong determiner can be more simply defined as det
str

u(D, D') := 

λis. DET(([u | !D])i,  ([u | D → D'])i). 
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3.1. Accounting for Weak / Strong Ambiguities 

It is obvious that the predictions made by the definition schemes in (23) and (24) 

above are identical to their DPL-style counterparts, so I will only briefly go through 

several examples. Consider the usual donkey example in (25) below. 

25. Every 1
u  farmer who owns a 2

u  donkey beats it
2

u .

The weak and strong meanings for the English determiner every are provided in (26) 

below and simplified in (27). 

26. every
wk

u(D, D') := λis. EVERY(u[Di],  u[(D; D')i])       

every
str

u(D, D') := λis. EVERY(u[Di],  u[([D → D'])i]) 

27. every
wk

u(D, D') := λis. u[Di] ⊆ u[(D; D')i]         

every
str

u(D, D') := λis. u[Di] ⊆ u[([D → D'])i] 

The weak reading of sentence (25) is represented in Dynamic Ty2 as shown in (28) 

below. The formula in (29) in the scope of the vacuous λ-abstraction over 'assignments' 

shows that the Dynamic Ty2 representation derives the intuitively correct weak truth-

conditions. 

28. [every
wk

1
u ([u2 | farmer{u1}, donkey{u2}, own{u1, u2}],  [beat{u1, u2}])] 

29. λis. u1[([u2 | farmer{u1}, donkey{u2}, own{u1, u2}])i] ⊆         

      u1[([u2 | farmer{u1}, donkey{u2}, own{u1, u2}, beat{u1, u2}])i], i.e.          

λis. {xe: farmer(x) ∧ ∃ye(donkey(y) ∧ own(x, y))} ⊆          

       {xe: farmer(x) ∧ ∃ze(donkey(z) ∧ own(x, z) ∧ beat(x, z))}, i.e.          

λis.∀xe(farmer(x) ∧ ∃ye(donkey(y) ∧ own(x, y))      

→ ∃ze(donkey(z) ∧ own(x, z) ∧ beat(x, z))) 

The strong reading of sentence (25) is represented in Dynamic Ty2 as shown in (30) 

below. The formula in (31) in the scope of the vacuous λ-abstraction over 'assignments' 

shows that the representation derives the intuitively correct strong truth-conditions. 

30. [every
str

1
u ([u2 | farmer{u1}, donkey{u2}, own{u1, u2}],  [beat{u1, u2}])] 
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31. λis. u1[([u2 | farmer{u1}, donkey{u2}, own{u1, u2}])i] ⊆         

      u1[([[u2 | farmer{u1}, donkey{u2}, own{u1, u2} → [beat{u1, u2}]])i], i.e.         

 λis. {xe: farmer(x) ∧ ∃ye(donkey(y) ∧ own(x, y))} ⊆       

         {xe: ∀ze(farmer(x) ∧ donkey(z) ∧ own(x, z) → beat(x, z))}, i.e.         

 λis.∀xe(farmer(x) ∧ ∃ye(donkey(y) ∧ own(x, y))      

→ ∀ze(farmer(x) ∧ donkey(z) ∧ own(x, z) → beat(x, z))), i.e.  

 λis.∀xe∀ze(farmer(x) ∧ donkey(z) ∧ own(x, z) → beat(x, z)) 

3.2. Solving Proportions 

The fact that the proportion problem is solved is shown by the intuitively correct 

truth-conditions in (35) and (38) below, which are assigned to the sentences in (33) and 

(36) respectively. 

32. most
wk

u(D, D') := λis. MOST(u[Di],  u[(D; D')i]),     

 i.e. most
wk

u(D, D') := λis. |u[Di]∩u[(D; D')i]| > |u[Di]\u[(D; D')i]|    

most
str

u(D, D') := λis. MOST(u[Di],  u[([D → D'])i]),    

 i.e. most
str

u(D, D') := λis. |u[Di]∩u[([D → D'])i]| > |u[Di]\u[([D → D'])i]| 

33. Most 1
u  house-elves who fall in love with a 2

u  witch buy her
2

u  an 3
u  alligator 

purse. 

34. [most
str

1
u ([u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}],    

       [u3 | alligator_purse{u3}, buy{u1, u2, u3}])] 

35. λis. |{xe: h.elf(x) ∧ ∃ye(witch(y) ∧ f.i.l(x, y)) ∧      

   ∀y'e(witch(y') ∧ f.i.l(x, y') → ∃ze(a.p(z) ∧ buy(x, y', z)))}| >          

       |{xe: h.elf(x) ∧ ∃y'e(witch(y') ∧ f.i.l(x, y') ∧ ¬∃ze(a.p(z) ∧ buy(x, y', z)))}| 

36. Most 1
u  drivers who have a 2

u  dime will put it
2

u  in the meter. 

37. [most
wk

1
u ([u2 | driver{u1}, dime{u2}, have{u1, u2}],  [put_in_meter{u1, u2}])] 

38. λis. |{xe: driver(x) ∧ ∃ye(dime(y) ∧ have(x, y) ∧ put_in_meter(x, y))}| >        

       |{xe: driver(x) ∧ ∃ye(dime(y) ∧ have(x, y)) ∧      

    ∀y'e(dime(y') ∧ have(x, y') → ¬put_in_meter(x, y'))}| 
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Everything is now in place to introduce CDRT+GQ, i.e. the extension of CDRT 

with the notions of unselective and selective dynamic generalized quantification we have 

just defined in Dynamic Ty2. 

4. Extending CDRT with Generalized Quantification (CDRT+GQ) 

The syntax of the English fragment is the same as the one defined for CDRT in the 

previous chapter. As far as the semantics CDRT+GQ is concerned, we only need: 

• to replace the CDRT meanings for generalized determiners with the newly defined 

selective generalized determiners; 

• to replace the CDRT meaning for dynamic implication (i.e. for bare conditional 

structures) with the newly defined unselective generalized determiners; thus, 

CDRT+GQ will introduce a generalized definition of dynamic implication that 

also subsumes adverbs of quantification 6.

The CDRT+GQ meanings have the same types as the corresponding CDRT 

meanings, i.e. (et)((et)t) for determiners and t(tt) for dynamic implication+adverbs of 

quantification. 

As expected, the meaning of the indefinite determiner a remains the same as in 

CDRT: redefining it in terms of selective generalized quantification would make it a test, 

which is empirically inadequate given that singular indefinites support cross-sentential 

anaphora, e.g. Au
 house-elf left the Three Broomsticks. Heu was drunk.

                                                

6 Of course, assigning an unselective meaning to conditionals fails to account for the fact that they also 
exhibit weak / strong donkey ambiguities; see section 6 below for more discussion. 
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39. TR 0 (only the revised entries are listed): Basic Meanings (TN). 

Lexical Item Translation 

         

Type         
e := se     
t := s(st) 

[detwk,u]
D
 / [detstr,u]

D
  

e.g. everystr,u, nowk,u, 

     moststr,u…              
(but not au) 

⇝ λP'et. λPet. [det
wk/str

u(P'(u), P(u))],     where: 

        det
wk

u(P'(u), P(u)) := λis. DET(u[P'(u)i],  u[(P'(u); P(u))i]) 

         det
str

u(P'(u), P(u)) := λis. DET(u[P'(u)i],  u[([P'(u) → P(u)])i]), 

 where P(u)i := {js: P(u)ij} and u[P(u)i] := {uj: ([u]; P(u))ij} 
 and DET is the corresponding static determiner. 

(et)((et)t) 

[if (+adv. of quant.)]
C
 ⇝ λD't. λDt. [det(D', D)],     where: 

         det(D, D') := λis. DET(Di, (D; [!D'])i), 

 where Di := {js: Dij} and    
DET is the corresponding static determiner. 

t(tt) 

[if ]
C
(i.e. bare if) ⇝ λD't. λDt. [every(D', D)]         t(tt) 

4.1. Proportions and Weak / Strong Ambiguities in CDRT+GQ 

It is easily seen that, based on these lexical entries, we can compositionally derive 

the correct interpretation for the proportion examples and for the examples ambiguous 

between a weak and a strong reading. I will therefore treat only one example in detail – 

the reader will have no difficulties constructing and translating the LF's for the others. 
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40. Most ,
1

ustr  house-elves who fall in love with a 2
u  witch buy her

2
u  an 3

u  alligator 

purse. 

VP 
[u2 | witch{u2}, fall_in_love{v'', u2}]

                        V' 
λve.[u2 | witch{u2}, fall_in_love{v, u2}] 

[fall in love]
trV

  

λQ(et)t.λve.Q(λv'e.[fall_in_lovee(et){v, v'}])

CP

[a 2
u  witch]

DP

λPet.[u2 | witch{u2}]; P(u2) 

Txt

                                                                          IP 

[most
str

1
u ([u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}],  [u3 | alligator_purse {u3}, buy{u1, u2, u3}])]

[-Ø]
I

λDt. D

VP 

[most
str

1
u ([u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}],  [u3 | a.p{u3}, buy{u1, u2, u3}])] 

                           V' 
λve.[u3 | a.p{u3}, buy{v, u2, u3}] 

buy her
2

u an 3
u  alligator purse  

                              DP 

λPet.[most
str

1
u ([u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}],  P(u1))] 

[most 1
u ]

D

λP'et.λPet.[most
str

1
u (P'(u1), P(u1))] 

NP 
λve.[u2 | house_elf{v}, witch{u2}, fall_in_love{v, u2}]

[house-elf]
N
 

λve.[house_elfet{v}]

CP 
λv''e.[u2 | witch{u2}, fall_in_love{v'', u2}] 

[who]
DP

v''

λPet.P

CP

                                IP 
[u2 | witch{u2}, fall_in_love{v'', u2}] 

[-Ø]
I

λDt. D

[tv''] DP

λPet.P(v''e) 
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5. Anaphora and Generalized Coordination in CDRT+GQ

This section prepares the ground for the analysis of all the conjunction-based 

donkey sentences in the chapters to come. Most of the material is based on Muskens 

(1996): 176 et seqq and Partee & Rooth (1983). There are two main novelties: 

• I provide direct dynamic counterparts of the definitions of conjoinable types and 

generalized conjunction and disjunction in Partee & Rooth (1983);  

• I show that CDRT (and its extension CDRT+GQ) can account for the DP-

conjunction donkey example in (41) below, from Chierchia (1995): 77, (38). 

41. Every 1
u  boy who has a 2

u  dog and every 3
u  girl who has a 2

u  cat must feed it
2

u .

This is one of the central examples used in Chierchia (1995) to argue for an 

approach to natural language that builds (part of) the dynamics into the semantic value of 

natural language expressions as opposed to syntactic operations on the LF of 

sentences/discourses. Therefore, mutatis mutandis, his argument that discourse dynamics 

should be captured semantically and not syntactically also supports the architecture of 

CDRT+GQ. 

5.1. Generalized Dynamic Conjunction and Disjunction

First, we need to define in Dynamic Ty2 a notion of generalized dynamic 

conjunction and disjunction. Following Partee & Rooth (1983), I define the set of 

dynamically conjoinable types as shown in (42) below. 

42. Dynamically Conjoinable Types (DCTyp).     

 The set of dynamically conjoinable types DCTyp is the smallest subset of 

Typ s.t. t∈DCTyp (where t := s(st)) and, if τ∈DCTyp, then (στ)∈DCTyp for 

any σ∈Typ.

We can now define generalized (pointwise) dynamic conjunction and disjunction as 

shown in (43) below. 
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43. Generalized Pointwise Dynamic Conjunction ⊓⊓⊓⊓ and Disjunction ⊔⊔⊔⊔.          

For any two terms α and β of type τ, for any τ∈DCTyp:    

α ⊓ β := (α; β) if τ=t   and  α ⊓ β := λvσ. α(v) ⊓ β(v) if τ=(σρ); 

α ⊔ β := [α ∨ β] if τ=t  and  α ⊔ β := λvσ. α(v) ⊔ β(v) if τ=(σρ).           

Abbreviation. α1 ⊓ α2 ⊓ … ⊓ αn := (…(α1 ⊓ α2) ⊓ … ⊓ αn);    

   α1 ⊔ α2 ⊔ … ⊔ αn := (…(α1 ⊔ α2) ⊔ … ⊔ αn).

Note that the translation rule GSeq (Generalized Sequencing) we have introduced in 

chapter 3 above is simply a restricted form of generalized dynamic conjunction ⊓.

We can now define the basic meanings for and and or by means of the schemata in 

Table (44) below. 

44. TR 0 (only the revised entries are listed): Basic Meanings (TN). 

Lexical Item Translation 
         Type         
e := se  t := s(st) 

[and]
Conj

 ⇝ λv1. … λvn. v1 ⊓ … ⊓ vn 
τ(…(ττ)…) 

[or]
Conj

 ⇝ λv1. … λvn. v1 ⊔ … ⊔ vn 
τ(…(ττ)…) 

5.2. Revising the Coordination Rule: Generalized Coordination 

We generalize our translation rule for coordinated constructions as shown in (45) 

below, i.e. the translation of a coordinated construction is obtained by applying the 

translation of the coordinating element to the translations of the coordinated expressions. 

45. TR 5 (revised) – Generalized Coordination (GCo).     

 If A1 ⇝ α1, …, An ⇝ αn, Conj ⇝ β, An+1 ⇝ αn+1 and A1, …, An, Conj 

 and An+1 are the only daughters of A in that order     

 (i.e. A → A1 … An Conj An+1),      

 then A ⇝ β(α1)…(αn)(αn+1),       

 provided this a well-formed term and has the same type as α1, …, αn, αn+1.
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5.3. Catching and Eating a Fish in CDRT+GQ 

We can now go through some examples. First, consider the sentences in (46) and 

(47) below, from Partee & Rooth (1983): 338, (12) and (13)7.

46. John caught and ate a 1
u  fish. 

47. John hugged and kissed three 1
u  women. 

As Partee & Rooth (1983): 338 observe, under the most salient reading of sentence 

(46), John catches and eats the same fish; similarly for (47), John hugs and kisses the 

same three women. Unfortunately, we can obtain this reading in CDRT+GQ (or CDRT) 

only by quantifying-in the direct object indefinite a 1
u  fish – that is, CDRT+GQ predicts 

that the default reading (the one without quantifying-in) should be one in which the fish 

that John catches and the fish that John eats are possibly different. 

This is a consequence of the fact that, following Montague (1974), transitive verbs 

are interpreted as taking a GQ as direct object (a term of type (et)t) and not an individual 

dref (a term of type e). However, this is not an empirically unmotivated feature of the 

system: it correctly predicts that the preferred relative scope of the subject and direct 

object is the one in which the subject scopes over the object 8.

In sum, given our current setup, there is no analysis that would make the correct 

predictions both with respect to the preferred quantifier scoping of transitive verbs and 

with respect to the preferred reading of transitive verb conjunctions. I will therefore leave 

the system as it is and leave this matter for future research9.

                                                

7 Page references are to Partee & Portner (2002). 

8 Moreover, this kind of representation receives independent empirical support from the interpretation of 
singular number morphology on donkey indefinites and pronouns as semantic distributivity – but this topic 
falls beyond the scope of the current investigation. 

9 As far as I can see, we can provide a novel solution to this problem if we leave the lexical entries for 
transitive verbs as they are now (i.e. as in Montague 1974) and employ cataphora (see e.g. Chierchia 1995: 
Chapter 3 for a discussion of what cataphora is) to obtain the desired reading for the transitive verb 
conjunction examples; structured cataphora (where 'structured' is to be understood in the sense of chapter 5
below) could also be used as the mechanism in terms of which reverse quantifier scope and Bach-Peters 
sentences are analyzed – but the exploration of these suggestions must be left for another occasion. 
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The two possible LF's of sentence (46) are schematically represented in (48) and 

(51) below, together with their respective translations. 

48. John 2
u  [Vtr caught and ate] a 1

u  fish. 

49. [u2 | u2=John]; [u1 | fish{u1}, catch{u2, u1}]; [u1 | fish{u1}, eat{u2, u1}] 

50. λis. ∃xe(fish(x) ∧ catch(john, x)) ∧ ∃ye(fish(y) ∧ eat(john, y)) 

51. [a 1
u  fish]v'' [ John 2

u  [Vtr caught and ate] tv'' ]. 

52. [u1 | fish{u1}]; [u2 | u2=John]; [catch{u2, u1}, eat{u2, u1}],    

  i.e. [u1, u2 | fish{u1}, u2=John, catch{u2, u1}, eat{u2, u1}] 

53. λis. ∃xe(fish(x) ∧ catch(john, x) ∧ eat(john, x)) 

As already indicated, the LF in (48) with the direct object in situ yields the 'possibly 

distinct fish' interpretation, while the LF in (51) with the QR-ed direct object yields the 

'same fish' interpretation.  

5.4. Coordination and Discourse Referent Reassignment 

The 'possibly distinct fish' representation in (49) above and its interpretation are 

unlike anything in classical DRT / FCS, where reintroducing a dref, e.g. dref u1 in (49), is 

either banned or, if it is allowed, it is not interpreted as reassigning a value to that dref – 

the output info state assigns the same value to the dref as the input info state. In contrast, 

CDRT+GQ allows dref reintroduction and interprets it as reassignment of value to the 

dref.  

Thus, it would seem that the classical DRT / FCS design choice is empirically better 

than the CDRT+GQ one: the representation in (49) yields the 'same fish' interpretation in 

a DRT / FCS-like system. However, in such a system, we cannot easily obtain a 

representation of the 'distinct fish' interpretation, which is an intuitively available reading 

of sentence (46) (although dispreferred)10: we would have to postulate a mechanism 

whereby the indefinite object a fish occurs twice in the LF of sentence (46) and 

                                                

10 Moreover, as Partee & Rooth (1983): 338 observe, the 'distinct fish' representation is the preferred one 
for conjunctions of intensional transitive verbs, e.g. John needed and bought a new coat.  
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contributes distinct dref's – i.e. we would have to syntactically simulate the semantic 

Montagovian analysis in (49) above11.

Moreover, the necessary syntactic operations on LF's become increasingly 

stipulative as soon as we turn to more complex examples like the coordination donkey 

sentence in (41) above (from Chierchia 1995), which, as we will presently see, receives a 

straightforward reassignment-based analysis in CDRT+GQ. 

I conclude that the reassignment-based architecture of CDRT+GQ is a desirable one 

and, in some form or other, it is a necessary component of any account of the interaction 

between anaphora and generalized coordination (exhibited by sentence (41) above, for 

example).  

That being said, we have to admit that the particular implementation of dref 

reassignment in CDRT+GQ is not the empirically optimal one: reassignment in 

CDRT+GQ (just as in DPL) is destructive – the previous value of the dref is completely 

lost and cannot be later accessed in discourse. 

And destructive reassignment has unwelcome empirical consequences. Consider for 

example the DP conjunction Mary and Helen in discourse (54-55) below. 

54. Mary 1
u  and Helen 2

u  (each) bought an 3
u  alligator purse. 

55. They
3

u  were (both) bright red. 

56. [u1, u3 | u1=Mary, alligator_purse{u3}, buy{u1, u3}];            

[u2, u3 | u2=Helen , alligator_purse{u3}, buy{u2, u3}];     

[bright_red{u3}] 

As indicated by the parenthesized floating quantifier, the most salient reading of 

sentence (54) is the one in which Mary and Helen buy a purse each. However, if we 

analyze this sentence as shown in (56) above, we will be able to retrieve in sentence (55) 

                                                

11 I leave for future research the dynamic reformulation of the analysis of intensional verbs in Zimmermann 
(1993) and its comparison with the Montagovian counterpart. 
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only the purse mentioned last, i.e. Helen's purse: the destructive CDRT+GQ reassignment 

renders Mary's purse inaccessible for subsequent anaphora.  

Thus, irrespective of how we decide to analyze the plural anaphor they in (55), we 

need to somehow preserve the values that are currently overwritten by dref 

reintroduction. 

Summarizing, we face the following problem. On the one hand, we need to provide 

an account of the interaction between anaphora and generalized coordination exhibited by 

sentence (41) and, for that, we need to allow for dref reintroduction – or, more exactly, 

index reusability – so that both donkey indefinites a 2
u  dog and a 2

u  cat can be 

anaphorically associated with the donkey pronoun it
2

u . On the other hand, the only way 

to capture index reusability in CDRT+GQ is as dref reintroduction, i.e. as destructive 

random (re)assignment.  

However, index reusability does not have to be interpreted as destructive 

reassignment: we could in principle associate a new value with a previously used index 

while, at the same time, saving the old value for later retrieval by associating it with 

another index. This idea can be implemented in various ways, e.g. by taking information 

states to be referent systems (see e.g. Vermeulen 1993 and Groenendijk, Stokhof & 

Veltman 1996) or stacks (see e.g. Dekker 1994, van Eijck 2001, Nouwen 2003 or Bittner 

2006) – and not DPL-style, total 'variable assignments'. 

Such information states, however, are formally more complex than our current ones 

and their empirical superiority and intuitive appeal are largely orthogonal to the matters 

with which the present dissertation is concerned – so I will continue to employ total 

'variable assignments' and the current notion of (destructive) random assignment for the 

remainder of this work. Extending CDRT+GQ and the novel dynamic system of chapters 

5, 6 and 7 below with referent systems or stacks is left for future research. 

5.5. Anaphora across VP- and DP-Conjunctions 

Let us turn now to sentences involving both anaphora and generalized conjunction, 

as it is this kind of examples that really bring out the benefits of having a dynamic type-
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logical system. Consider sentences (57), (60) and (63) below (from Muskens 1996: 177-

180, (52), (54) and (58)).  

As shown below, the V'-conjunction example in (57) and the DP-conjunction 

examples in (60) and (63) are compositionally interpreted in CDRT+GQ and they are 

assigned the intuitively correct truth-conditions. 

57. A 1
u  cat [V'[V'caught a 2

u  fish] and [V'ate it
2

u ]]. 

58. [u1, u2 | cat{u1}, fish{u2}, catch{u1, u2}, eat{u1, u2}] 

59. λis. ∃xe∃ye(cat(x) ∧ fish(y) ∧ catch(x, y) ∧ eat(x, y)) 

60. John 4
u  has [DP[DPa 1

u  cat which caught a 2
u  fish] and [DPa 3

u  cat which ate it
2

u ]]. 

61. [u4 | u4=John]; [u1, u2 | cat{u1}, have{u4, u1}, fish{u2}, catch{u1, u2}];   

   [u3 | cat{u3}, have{u4, u3} eat{u3, u2}] 

62. λis. ∃xe∃ye∃ze(cat(x) ∧ have(john, x) ∧ fish(y) ∧ catch(x, y) ∧    

  cat(z) ∧ have(john, z) ∧ eat(z, y)) 

63. John 3
u  admires [DP[DPa 1

u  girl] and [DPa 2
u  boy who loves her

1
u ]]. 

64. [u3 | u3=John]; [u1 | girl{u1}, admire{u3, u1}];     

   [u2 | boy{u2}, admire{u3, u2}, love{u2, u1}] 

65. λis. ∃xe∃ye(girl(x) ∧ admire(john, x) ∧ boy(y) ∧ admire(john, y) ∧  love(y, x)) 

Moreover, given that CDRT+GQ interprets all generalized quantifiers as conditions 

/ tests, the anaphoric connections in the structurally identical examples in (66), (67) and 

(68) below are correctly predicted to be infelicitous. 

66. #A 1
u  cat [V'[V'caught no 2

u  fish] and [V'ate it
2

u ]]. 

67. #John 4
u  has [DP[DPa 1

u  cat which caught no 2
u  fish] and [DPa 3

u  cat which ate 

it
2

u ]]. 

68. #John 3
u  admires [DP[DPno 1

u  girl] and [DPa 2
u  boy who loves her

1
u ]]. 

5.6. DP-Conjunction Donkey Sentences 

Finally, the donkey sentence with DP-conjunction from Chierchia (1995) is 

compositionally interpreted as shown in (70) below; the truth-conditions – provided in 
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(71) – that are derived on the basis of the translation assign strong readings to the donkey 

indefinites, which is intuitively correct12.

69. [[Every ,
1

ustr  boy who has a 2
u  dog] and [every ,str

3
u  girl who has a 2

u  cat]] must 

feed it
2

u .

70. every ,
1

ustr  boy who has a 2
u  dog ⇝        

λPet. [every
str

1
u ([u2 | boy{u1}, dog{u2}, have{u1, u2}],  P(u1))]   

  every ,str
3

u  girl who has a 2
u  cat ⇝        

λPet. [every
str

3
u ([u2 | girl{u3}, cat{u2}, have{u3, u2}],  P(u3))]  

  every ,
1

ustr  boy who has a 2
u  dog and every ,str

3
u  girl who has a 2

u  cat ⇝   

 λPet. [every
str

1
u ([u2 | boy{u1}, dog{u2}, have{u1, u2}],  P(u1)),  

           every
str

3
u ([u2 | girl{u3}, cat{u2}, have{u3, u2}],  P(u3))]    

  must feed it
2

u ⇝ λve. [must_feed{v, u2}]       

  every ,
1

ustr  boy who has a 2
u  dog and every ,str

3
u  girl who has a 2

u  cat must feed it
2

u  

 ⇝ [every
str

1
u ([u2 | boy{u1}, dog{u2}, have{u1, u2}],  [must_feed{u1, u2}]), 

        every
str

3
u ([u2 | girl{u3}, cat{u2}, have{u3, u2}],  [must_feed{u3, u2}])] 

71. λis. ∀xe∀ye(boy(x) ∧ dog(y) ∧ have(x, y) → must_feed(x, y)) ∧   

      ∀x'e∀y'e(girl(x') ∧ cat(y') ∧ have(x', y') → must_feed(x', y')) 

As Chierchia (1995): 96 observes, structurally similar sentences like (72) below are 

infelicitous. 

72. ??[[Every ,
1

ustr  boy who has a 2
u  dog] and [a 3

u  girl]] must feed it
2

u .

                                                

12 In contrast, the corresponding translation in Chierchia (1995): 96, (76b) delivers the weak truth-
conditions (i.e. the donkey indefinites are assigned the weak readings), which are arguably incorrect for the 
most salient reading of this type of example.  

In all fairness, it should be noted that Chierchia (1995): 96 aims to interpret the slightly different example: 
Every boy that has a dog and every girl that has a cat will beat it (see Chierchia (1995): 96, (76a)). 
Therefore, his implicit claim might be that this particular example is preferably interpreted by 
accommodating an 'anger management' kind of scenario wherein the children are advised to beat their pets 
rather than each other – which would favor the weak reading of the sentence. 
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73. [every
str

1
u ([u2 | boy{u1}, dog{u2}, have{u1, u2}],  [must_feed{u1, u2}])];    

[u3 | girl{u3}, must_feed{u3, u2}] 

I suggest (following Chierchia 1995: 96) that their infelicity should be explained 

just as the infelicity of examples (66), (67) and (68) above: given that CDRT+GQ 

interprets generalized quantifiers as conditions / tests, the anaphoric connection between 

the pronoun it
2

u  and the indefinite a 2
u  dog cannot be successfully established in the 

second conjunct of the translation in (73) above. That is, the occurrence of the dref u2 in 

the second condition must_feed{u3, u2} is 'unbound', i.e. deictically used, despite the fact 

that the pronoun it
2

u  is co-indexed with a preceding indefinite, which is meant to encode 

that all occurences of the dref u2 should be 'bound' (anaphorically used). 

Alternatively, the infelicity of sentences like (72) above can be attributed to the fact 

that they fail to establish a discourse-level parallelism between the two DP-conjuncts 

relative to the anaphor in the VP. Besides accounting for the infelicity of (72), this 

hypothesis also provides an explanation for the particular indexing exhibited by the 

felicitous example in (69) above: the indefinites a 2
u  dog and a 2

u  cat receive the same 

index as a consequence of the fact that the two DP-conjuncts (or the two DRS's we obtain 

by combining the DP semantic values with the semantic value of the VP) are related by a 

Parallel discourse relation13,14.

This completes our analysis of the interaction between anaphora and generalized 

conjunction in CDRT+GQ – and, at the same time, the exposition of the basic framework 

for the present investigation. 

                                                

13 For theories of parallelism in discourse, see Hobbs (1990) and Kehler (1995, 2002) among others. For 
similar observations with respect to disjunctive structures, see Stone (1992). 

14 Yet another way of thinking about examples like (69), suggested to me by Matthew Stone (p.c.), is to 
take the pronoun it in the VP to refer to the union of the referents contributed by the donkey indefinites in 
the two DP-conjuncts (see Stone 1992 for disjunction-based examples that seem to require this kind of 
analysis). This interpretation of the doubly-anteceded pronoun in the VP might emerge as a consequence of 
the parallelism between the two DP-conjuncts. Just like the parallelism-based explanation suggested in the 
main text, this hypothesis would also explain why the two indefinites receive the same index: co-indexation 
would be a necessary prerequisite for the union operation. The infelicity of examples like (72) above would 
presumably be explained just as suggested in the main text, i.e. as a failure to infer a discourse relation of 
parallelism – or any other discourse relation that would establish the (local) coherence of the discourse. 
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6. Limitations of CDRT+GQ: Mixed Weak & Strong Donkey 
Sentences 

This section shows that CDRT+GQ, just as DPL+GQ, cannot give a compositional 

account of mixed weak & strong donkey sentences, i.e. relative-clause donkey sentences 

with multiple indefinites in the restrictor of the donkey quantification that receive 

different readings. In particular, we will see that determining which indefinite receives a 

weak reading and which one receives a strong reading cannot be compositionally 

implemented if we account for the weak / strong donkey ambiguity in terms of an 

ambiguity in the dynamic generalized determiner. 

Consider again the examples with two donkey indefinites in (74) and (75) below. 

74. Every 1
u  person who buys a 2

u  book on amazon.com and has a 3
u  credit card uses 

it
3

u  to pay for it
2

u .

75. Every 1
u  man who wants to impress a 2

u  woman and who has an 3
u  Arabian horse 

teaches her
2

u  how to ride it
3

u .

The most salient reading of (74) is one that is strong with respect to a 2
u  book and 

weak with respect to a 3
u  credit card, i.e. every person uses some credit card or other to pay 

for any book bought on amazon.com. Similarly, in (75) every man teaches any woman he 

wants to impress to ride some Arabian horse of his. 

The problem with the weak and strong CDRT+GQ meanings for determiners is that 

they do not distinguish between the indefinites in the restrictor: all of them receive either 

a weak or a strong reading. The obvious fix is to make generalized determiners even 

more ambiguous, i.e. to redefine them as determiners binding a sequence of dref's and 

specifying for each dref that is different from the 'primary' one, i.e. the one that encodes 

the selective generalized quantification, whether it receives a weak or a strong reading.  

For example, a determiner of the form detu
wk:u',str:u''(D, D') quantifies over three 

drefs u, u' and u''; the 'primary' dref is u and the dref's u' and u'' are introduced by donkey 
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indefinites in the restrictor of the quantification and receive a weak and a strong reading 

respectively. 

Such determiners could be defined by combining the weak and strong determiner 

meanings that we have introduced in CDRT+GQ; the definition would have the form 

shown in (76) below, where the DRS's D3 and D4 are subparts of DRS D1. More 

precisely, D3 is the subpart of D1 relevant for the interpretation of dref u' associated with 

a strong donkey reading, while D4 is the subpart of D1 relevant for the interpretation of 

u'', which is associated with a weak donkey reading. 

76. detu
str:u',wk:u''(D1, D2) := λis. DET(u[D1i],  u[([D3 → (D4; D2)])i]) 

Sentence (74) above, for example, would be represented in CDRT+GQ as shown in 

(77) below. 

77. every
1

u
str:

2
u ,wk:

3
u ([u2, u3| pers{u1}, bk{u2}, buy{u1, u2}, c.card{u3}, hv{u1, u3}], 

          [use_to_pay{u1, u3, u2}]) :=       

λis. u1[([u2, u3| person{u1}, book{u2}, buy{u1, u2}, c.card{u3}, have{u1, u3}])i] ⊆  

       u1[([[u2 | person{u1}, book{u2}, buy{u1, u2}] →     

       [u3| c.card{u3}, have{u1, u3}, use_to_pay{u1, u3, u2}]])i]) 

There is another possible lexical entry for the determiner in (76) above, namely the 

entry where the two indefinites stand in the other possible relative scope, as shown in 

(78) below.  

78. detu
str:u',wk:u''(D1, D2) := λis. DET(u[D1i],  u[(D4; [D3 → D2])i]) 

For example, this meaning assigns sentence (74) a reading in which each person 

uses the same credit card to pay for all the books s/he buys, as shown in (79) below. 

79. every
1

u
str:

2
u ,wk:

3
u ([u2, u3| pers{u1}, bk{u2}, buy{u1, u2}, c.card{u3}, hv{u1, u3}], 

          [use_to_pay{u1, u3, u2}]), i.e.             

λis. u1[([u2, u3| person{u1}, book{u2}, buy{u1, u2}, c.card{u3}, have{u1, u3}])i] ⊆  

      u1[([u3| person{u1}, c.card{u3}, have{u1, u3}];      

             [[u2 | book{u2}, buy{u1, u2}] → [use_to_pay{u1, u3, u2}]])i]) 
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It is not clear that this kind of pseudo wide-scope reading for the weak indefinite is a 

separate reading for sentence (74) as opposed to merely being a special case of the (more 

general and weaker) reading in which the credit card can vary from book to book 15.

For concreteness, imagine that there are two kinds of Amazon credit cards, one for 

the Christmas shopping period and one for the Easter shopping period and whenever a 

person uses the appropriate Amazon credit card at the appropriate time to buy a book on 

amazon.com, the person gets a discount. In this context, the sentence in (80) below is 

intuitively interpreted as assigning pseudo wide-scope to the weak indefinite (i.e. pseudo 

wide-scope relative to the strong indefinite). 

80. Last Christmas, every 1
u  person who bought a 2

u  book on amazon.com and had 

an 3
u  Amazon credit card used it

3
u  to pay for it

2
u and got a discount. 

However, the fact that the credit card does not vary from book to book in the most 

salient reading of sentence (80) cannot be taken as an argument for a distinct, pseudo 

wide-scope reading for this sentence: the lack of co-variation is a direct consequence of 

the way we have set up the context relative to which sentence (80) is interpreted – and, in 

the given situation, the indefinite an 3
u  Amazon credit card is contextually restricted in such 

a way that it is a singleton indefinite16.

Thus, it seems that the English sentence in (74) does not have two distinct readings. 

But as far as CDRT+GQ is concerned, we can in fact assign a distinct, pseudo wide-

scope representation to sentence (74) (given the superscripted index notation that we have 

just introduced to capture the intuitively available reading of sentence) and we should

distinguish this representation encoding an intuitively unavailable reading from the other, 

pseudo narrow-scope representation (see (77) above),  which encodes the intuitively 

correct interpretation of sentence (74).  

                                                

15 I call such readings pseudo wide-scope or pseudo narrow-scope because, as we have already noticed in 
chapter 2, the donkey indefinites in sentences (74) and (75) are trapped in their respective VP-/CP-
conjuncts and cannot take (syntactic) scope one relative to the other. 

16 See Schwarzschild (2002) for more discussion of singleton indefinites. 
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Therefore, besides having to specify which indefinite receives which reading (weak 

or strong), the CDRT+GQ lexical entry for a generalized determiner has to further 

specify the relative scope of the donkey indefinites. Thus, if we abbreviate that α has 

scope over β as α>>β, the lexical entries in (76) and (78) above are in fact the ones in 

(81) below. 

81. detu
str:u'>>wk:u''(D1, D2) := λis. DET(u[D1i],  u[([D3 → (D4; D2)])i])              

detu
str:u'<<wk:u''(D1, D2) := λis. DET(u[D1i],  u[(D4; [D3 → D2])i]),    

 where D3 is the subpart of D1 constraining dref u'     

 and D4 is the subpart of D1 constraining dref u''.

To summarize, the CDRT+GQ strategy of analyzing mixed weak & strong 

'indefinites' by locating the weak / strong ambiguity at the level of generalized 

determiners is undesirable for at least three reasons: 

• first, it greatly increases the number of lexical entries for each determiner: we do not 

only have to specify for each indefinite in the restrictor of the determiner whether 

it receives a strong or a weak reading, but we also need to specify their relative 

scope; 

• second, the interpretation procedure is not compositional – and this happens 

precisely because we pack in the lexical entry of the determiner many features 

that should in fact be encoded in the LF of its restrictor, i.e. what indefinites it 

contains, what reading they receive and what their relative scope is; 

• third, the large number of lexical entries leads to (rampant) over-generation; for 

example, we have noticed that sentence (74) intuitively has a single reading17, 

while CDRT+GQ assigns it several other readings that are intuitively unavailable. 

Thus, if we want to give a precise definition of the CDRT+GQ interpretation 

procedure for sentence (74) for example, we have to either reject the Montagovian notion 

of compositionality or define fairly wild syntactic operations at the LF level, e.g. 

                                                

17 This is not to say that other readings, e.g. a 'strong:u2, strong:u3' reading, are not available for other 
examples. 
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identifying the substrees in the restrictor that correspond to the indefinites, duplicating 

them in the nuclear scope, moving them around to obtain various relative scopes, relating 

the subtrees via dynamic implication or dynamic conjunction depending on whether they 

have a strong or a weak reading etc. And, even if this daunting task were accomplished in 

a relatively plausible way, we would still face the ensuing over-generation problem. 

I take the above reasoning to establish that CDRT+GQ (and similar systems) cannot 

account for mixed weak & strong donkey sentences containing VP- or CP-conjunctions 

like the ones in (74) and (75) above. It is the goal of the following chapter (chapter 5) to 

offer a compositional account of the mixed weak & strong donkey sentences.  

In particular, I will show that modifying CDRT+GQ so that information states are 

modeled as sets of 'assignments' (type st) and not as single 'assignments' (type s)18, 

together with the hypothesis that any indefinite is ambiguous19 between a weak and a 

strong reading, enables us to assign a unique meaning to each generalized determiner and 

to provide a fully compositional and intuitively correct interpretation for a wide range of  

donkey sentences, including the mixed weak & strong examples in (74) and (75) above. 

CDRT+GQ faces the same basic kind of problems with respect to conditionals that 

exhibit asymmetric readings, i.e. weak / strong ambiguities. Recall Kadmon's 

generalization: a multi-case conditional with two indefinites in the antecedent generally 

allows for three interpretations, one where the QAdverb (which is a covert always or 

usually in the case of bare conditionals) quantifies over pairs, one where it quantifies over 

instances of the first indefinite and one where it quantifies over instances of the second. 

For example, consider sentences (82), (83) and (84) below. 

82. If au village is inhabited by au' painter, itu is usually pretty.     

(Kadmon 1987) 

                                                

18 The idea of extending DPL by using sets of variable assignments for info states is due to van den Berg 
(1994, 1996a), which proposes this to account for a different kind of phenomena, namely discourses 
involving plural cross-sentential anaphora of the form Every

u
 man saw a

u'
 woman. Theyu greeted themu'. 

19 Or, to put in (possibly) more appealing terms: each indefinite is underspecified with respect to its 
'strength' (it can be either weak or strong) and its 'strength' needs to be specified in each particular donkey 
sentence; for a discussion of the various factors that influence this 'strength' specification, see chapter 5. 
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83. If au drummer lives in anu' apartment complex, itu' is usually half empty.    

(Bäuerle & Egli 1985, apud Heim 1990: 151, (29)) 

84. If au woman owns au' cat, sheu usually talks to itu'.       

(Heim 1990: 175, (91)) 

The most salient reading of (82) is an asymmetric one in which we quantify over 

villages u inhabited by a painter; thus, that conditional is translated in CDRT+GQ by 

means of the selective determiner most
wk

u or most
str

u.

The most salient reading of (83) is an asymmetric one in which we quantify over 

apartment complexes u' inhabited by a drummer; hence, the conditional is translated in 

CDRT+GQ by means of the selective determiner most
wk

u' or most
str

u'.

Finally, the most salient reading of (84) is one where we quantify over woman-cat 

pairs; therefore, the conditional is translated in CDRT+GQ by means of the unselective 

determiner most.

Various factors influence what is the most salient reading of a donkey conditional: 

Bäuerle & Egli (1985) notice that it depends on which indefinites from the antecedent are 

anaphorically picked up in the consequent. Rooth (1985) and Kadmon (1987) (see also 

Heim 1990 and Chierchia 1995 among others) observe that the focus-background 

structure of the sentence also determines which indefinites receive which reading, the 

generalization being that the non-focused indefinite in the antecedent is the one that is 

bound by the if+QAdverb quantification. As Heim (1990): 152 observes, the sentence in 

(85) below receives precisely the most salient interpretation of (83) above, i.e. an 

'apartment complex' asymmetric reading, while sentence (86), with a different focus-

background, receives a 'drummer' asymmetric reading. 

85. Do you think there are vacancies in this apartment complex? – Well, I heard that 

Fulano lives there, and if a DRUMMER lives in an apartment complex, it is 

usually half empty. 

86. Drummers mostly live in crowded dormitories. But if a drummer lives in an 

APARTMENT COMPLEX, it is usually half empty. 
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Accounting for how these factors determine what reading is the most salient, i.e. 

which one of the determiners most
wk/str

u, most
wk/str

u'  and most should be selected in the 

translation, is clearly beyond the scope of CDRT+GQ. What I want to point out is simply 

that the translation of a conditional by means of a selective determiner like most
wk/str

u or 

most
wk/str

u' exhibits the same kind of non-compositionality as the translation of relative-

clause donkey sentences with mixed readings: one of the indefinites in the antecedent of 

the conditional is somehow supposed to 'fuse' with the QAdverb and be interpreted as a 

selective generalized determiner. 

There are even more complex examples with three indefinites – like the one in (87) 

below. Its most salient reading seems to be one in which we quantify over most woman-

man pairs that have some son or other (i.e. the indefinite au' son receives a weak reading). 

87. If au woman has au' son with au'' man, sheu usually keeps in touch with himu''.   

(I. Heim, apud Chierchia 1995: 67, (14b)) 

Because of their different, multi-sentential syntactic structure and because of their 

somewhat different behavior with respect to the weak / strong donkey ambiguity, I will 

generally avoid conditional structures (with or without QAdverbs) and use mainly mixed 

weak & strong relative-clause donkey sentences to motivate the novel dynamic system I 

will introduce in chapter 5 and the analysis of the weak / strong ambiguity I will propose 

there. 

Let's turn now to another welcome consequence of the fact that CDRT (and its 

extension CDRT+GQ) unifies Montague semantics and dynamic semantics, namely the 

account of the interaction between donkey anaphora and generalized conjunction 

(generalized to arbitrary types in the sense of Partee & Rooth 1983 among others).

7. Summary

The overarching goal of this chapter and of the previous two was to incrementally 

describe a compositional dynamic system formulated in many-sorted type logic with 

selective dynamic generalized quantification and generalized conjunction, which I have 

labeled CDRT+GQ. Three phenomena provide the primary motivation for CDRT+GQ: 
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• the proportion problem;  

• the weak / strong donkey ambiguity; 

• the interaction between donkey anaphora, dynamic quantification and generalized 

dynamic conjunction.  

Besides providing a streamlined notation integrating various DRT, DPL and CDRT 

notational conventions, CDRT+GQ contributes several new notions and analyses: 

• it shows how to define in Dynamic Ty2 the DPL-style conservative definition of 

unselective dynamic generalized quantification in chapter 2;  

• it integrates CDRT (Muskens 1996) and the DPL-style notion of selective 

generalized quantification (Bäuerle & Egli 1985, Root 1986, Rooth 1987, van Eijck 

& de Vries 1992, Chierchia 1992, 1995); 

• it provides the dynamic counterparts of the definitions of conjoinable types and 

generalized conjunction and disjunction in Partee & Rooth (1983);

• it accounts for the DP-conjunction donkey example Every 1
u

 boy who has a 2
u

 dog 

and every 3
u

 girl who has a 2
u

 cat must feed it
2

u  from Chierchia (1995). 

Finally, section 6 showed that CDRT+GQ has the same problems as DPL+GQ when 

confronted with relative-clause donkey sentences with mixed weak & strong readings, 

e.g. Every person who buys a book on amazon.com and has a credit card uses it / the 

card to pay for it. Such examples are difficult to analyze in CDRT+GQ and, if they can 

be analyzed at all, the account is stipulative, non-compositional and over-generates fairly 

wildly. 

The last three chapters in general and the introduction of CDRT+GQ in particular 

pave the way for chapter 5, which shows that a minimal modification of CDRT+GQ, i.e. 

the introduction of plural info states (type st) as opposed to 'singular' ones (type s), 

enables us to give a compositional analysis of a wide range of singular donkey sentences, 

including mixed weak & strong relative-clause donkey sentences. 
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Chapter 5. Structured Nominal Reference: Donkey Anaphora 

1. Introduction 

This chapter incrementally introduces a new dynamic system that extends 

CDRT+GQ and within which we can give a compositional account of the multiple 

donkey sentences in (1) and (2) below. This pair of sentences shows that the analysis of 

singular donkey anaphora requires a notion of plural discourse reference, i.e. reference to 

a quantificational dependency between sets of objects (atomic individuals, possible 

worlds etc.), which is established and subsequently referred to in discourse. 

1. Every 1
u  person who buys a 2

u  book on amazon.com and has a 3
u  credit card uses 

it
3

u  to pay for it
2

u
1.

2. Every 1
u  boy who bought a 2

u  Christmas gift for a 3
u  girl in his class asked her

3
u

deskmate to wrap it
2

u .

Both examples contain multiple instances of singular donkey anaphora that are 

semantically correlated: (1) shows that singular donkey anaphora can refer to (possibly 

non-singleton) sets, while (2) shows that singular donkey anaphora can refer to a 

dependency between such sets. 

Sentence (1) is a mixed weak & strong donkey sentence2:  it is interpreted as 

asserting that, for every book (strong) that any credit-card owner buys on amazon.com, 

                                                

1 Some speakers find the variants in (i) below intuitively more compelling: 

(i) Every person who buys a computer / TV and has a credit card uses it to pay for it. 

2 To my knowledge, the existence of mixed reading relative-clause donkey sentences was observed for the 
first time by van der Does (1993). His example is provided in (i) below – and it is accompanied by the 
observation that "clear intuitions are absent, but a combined reading in which a whip is used to lash all 
horses seems available" (van der Does 1993: 18). The intuitions seem much clearer with respect to example 
(1) above; moreover, it is crucial for our purposes that the weak reading of a credit card in (1) does not 
require the set of credit cards to be a singleton set (that is, some people might use different credit cards to 
buy different (kinds of) books).  

(i) Every farmer who has a horse and a whip in his barn uses it to lash him. (van der Does 1993: 18, (26)) 



127

there is some credit card (weak) that s/he uses to pay for the book. Note in particular that 

the credit card can vary from book to book, e.g. I can use my MasterCard to buy set 

theory books and my Visa to buy detective novels – which means that even the weak

indefinite a 3
u  credit card can introduce a (possibly) non-singleton set.

For each buyer, the two sets of objects, i.e. all the books purchased on amazon.com

and some of the credit cards that the buyer has, are correlated and the dependency

between these sets is specified in the nuclear scope of the quantification: each book is 

correlated with the credit card that was used to pay for it. The translation of sentence (1) 

in classical (static) first-order logic is provided in (3) below. 

3. ∀x(person(x) ∧ ∃y(book(y) ∧ buy_on_amazon(x, y)) ∧ ∃z(c.card(z) ∧ have(x, z))  

→ ∀y'(book(y') ∧ buy_on_amazon(x, y')      

         → ∃z'(c.card(z') ∧ have(x, z') ∧ use_to_pay(x, z', y')))) 

The challenge posed by this sentence is to compositionally derive its interpretation 

while allowing for: (i) the fact that the two donkey indefinites in the restrictor of the 

quantification receive two distinct readings (strong and weak respectively) and (ii) the 

fact that the value of the weak indefinite az credit card co-varies with / is dependent on the 

value of the strong indefinite ay book although the strong indefinite cannot syntactically 

scope over the weak one, since both DP's are trapped in their respective conjuncts. 

The dependency between the two sets of objects is the most transparent in sentence 

(2). Both instances of donkey anaphora are strong: we are considering every Christmas 

gift and every girl. The restrictor introduces a dependency between the set of gifts and the 

set of girls: each gift is correlated with the girl it was bought for. The nuclear scope of the 

donkey quantification retrieves not only the two sets of objects, but also the structure

associated with them, i.e. the dependency between them: each gift was wrapped by the 

                                                                                                                                                

The existence of mixed reading conditional donkey sentences has been observed at least since Dekker 
(1993); his example is provided in (ii) below. 

(ii) If a man has a dime in his pocket, he throws it in the parking meter. (Dekker 1993: 183, (25)). 
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deskmate of the girl that the gift was bought for. Thus, we have here donkey anaphora to 

structure in addition to donkey anaphora to values.

Importantly, the structure associated with the two sets, i.e. the dependency between 

gifts and girls, is semantically encoded and not pragmatically inferred: the correlation 

between the two sets is not left vague / underspecified and subsequently made precise 

based on various extra-linguistic factors. To see this, consider the following situation. 

John buys two gifts, one for Mary and the other for Helen. The two girls are deskmates 

(note that the deskmate relation is symmetric). Intuitively, sentence (2) is true if John 

asked Mary to wrap Helen's gift and Helen to wrap Mary's gift and it is false if John 

asked each girl to wrap her own gift (i.e. if John asked Mary to wrap the gift bought for 

her and, similarly, he asked Helen to wrap the gift bought for her). But if the relation 

between gifts and girls were vague / underspecified, we would predict that sentence (2) 

should be true even in the second (somewhat odd) situation3,4.

In sum, we need a semantic framework which can account for reference to non-

singleton structured sets, where the quantificational structure associated with the sets is 

introduced in a (syntactically) non-local manner – for example, in (1), across a 

coordination island – and subsequently accessed in a non-local manner – for example, in 

(2), from outside the relative clause that introduces the structured dependency. 

The chapter is structured as follows. Section 2 provides a brief outline of the 

proposed account. Section 3 introduces an extension of CDRT+GQ with plural info 

                                                

3 Note the similarity between example (2) (which crucially involves the symmetric relation deskmate) and 
the 'indistinguishable participants' examples involving symmetric relations due to Hans Kamp, Jan van 
Eijck and Irene Heim (see Heim 1990: 147, fn. 6):  

(i) If a man shares an apartment with another man, he shares the housework with him. (Heim 1990: 147, 
(22)) 

(ii) If a bishop meets a bishop, he blesses him. (Heim 1990: 148, (23)). 

4 The donkey sentence in (2) does not pose problems for CDRT+GQ (or indeed DRT / FCS / DPL) – at 
least to the extent to which CDRT+GQ can provide a suitable analysis of possessive definite descriptions 
like her deskmate. However, as the remainder of this section will show, the donkey sentence in (2) is an 
important companion to the mixed reading donkey sentence in (1); it is only together that these two 
sentences provide an argument for extending CDRT+GQ with plural information states (i.e. the main 
technical innovation of this chapter) as opposed to a more conservative extension of CDRT+GQ with dref's 
for sets. 
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states, which I dub Plural CDRT (PCDRT)5. Section 4 shows in detail how PCDRT can 

be used to compositionally interpret a variety of donkey sentences, including mixed weak 

& strong relative-clause donkey sentences.  

Section 6 compares PCDRT with alternative approaches to donkey anaphora and 

evaluates how they fare with respect to the proportion problem, the weak/strong donkey 

ambiguity and mixed reading relative-clause donkey sentences. The appendix contains a 

summary of the PCDRT system and some of the more technical results about its formal 

properties. 

2. Outline of the Proposed Account 

The first issue that we need to address is the weak / strong donkey ambiguity. I will 

attribute this ambiguity to the donkey indefinites – and not to any other element involved 

in the donkey anaphora structure, e.g. the generalized determiner, as CDRT+GQ 

(following Rooth 1987, Heim 1990, Kanazawa 1994a) would have it. 

The two basic meanings for the donkey indefinites have the format in (4) below, 

where the max operator taking scope over both the restrictor and the nuclear scope 

properties delivers the strong (maximal) donkey reading. The max operator ensures that, 

after we process a strong indefinite, the output plural info state stores with respect to the 

dref u the maximal set of individuals satisfying both the restrictor dynamic property P'

and the nuclear scope dynamic property P.

4. weak indefinites: awk:u ⇝ λP'et. λPet. [u]; P'(u); P(u)        

strong indefinites: astr:u ⇝ λP'et. λPet. max
u(P'(u); P(u)) 

Attributing the weak / strong ambiguity to the donkey indefinites enables us to give 

a compositional account of the mixed weak & strong donkey sentence in (1) above 

because we locally decide for each indefinite article whether it receives a weak or a 

                                                

5 One possible mnemonic for PCDRT is Politically Correct DRT. The author vigorously denies 
responsibility for any entailments, presuppositions, implicatures or implications of any other kind 
associated with the use of this mnemonic in any discourse and / or utterance context whatsoever. 
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strong reading. Moreover, selective generalized determiners like every, no etc. have the 

kind of dynamic meaning that we would expect them to have based on their static 

Montague-style meanings: they are associated with / 'bind' only one dref (their own) and 

do not need to encode which readings the donkey indefinites in their restrictor have and 

that is the relative (pseudo-)scope of these indefinites.  

 Furthermore, this analysis of the weak / strong donkey ambiguity is couched within 

a framework that enables us to account for the fact that donkey anaphora involves 

reference to (possibly non-singleton) structured sets of individuals. The main innovation 

(relative to CDRT+GQ) is to minimally complicate the notion of info state: instead of 

using singular info states consisting of a single 'assignment' i, j, … (type s), I follow the 

proposal in van den Berg (1994, 1996a) and use plural info states I, J, …, consisting of 

sets of 'assignments' (type st). I will call the resulting system Plural CDRT (PCDRT). 

In PCDRT, individual dref's have the same type as in CDRT+GQ, i.e. type se. A 

dref u (of type se) stores a set of individuals uI with respect to such a plural info state I: 

as shown in (5) below, the set of individuals uI is the image of the set of 'assignments' I

under the function u.

5. Abbreviation: uI := use[Ist] = {useis: is∈Ist} = {xe: ∃is∈I(ui=x)} 

Storing a set of individuals by means of a plural info state and not by means of  a 

dref for sets (its type would be s(et)) enables us to access in discourse not only the set of 

individuals, but also the structure associated with it by the plural info state: for example, 

two drefs u and u' store two sets of individuals relative to a plural info state I, i.e. uI = 

{ui: i∈I} and u'I={u'i: i∈I}; but the info state I also stores the dependency (i.e. the binary 

relation) between the two dref's, which is the set of pairs of individuals {<ui, u'i>: i∈I}6.

                                                

6 In DRT / FCS / DPL terminology, we can think of the sets of individuals as being contributed by sets of 
variable assignments (or sets of embedding functions) G, G' etc. A set of variable assignments introduces 

both sets of individuals, e.g. a variable x is associated with the set of individuals {g(x): g∈G}, and a 

relation between them, e.g. two variables x and y determine the binary relation {<g(x), g(y)>: g∈G} 

between the two sets of individuals associated with x and y, i.e. between {g(x): g∈G} and {g(y): g∈G}. 
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6. Info State I … u u' … 

i1 … x1 (i.e. ui1) y1  (i.e. u'i1) … 

i2 … x2  (i.e. ui2) y2  (i.e. u'i2) … 

i3 … x3  (i.e. ui3) y3  (i.e. u'i3) … 

… … … … … 

Values – sets: {x1, x2, x3, …}, {y1, y2, y3, …} Structure – relations: {<x1, y1>, <x2, y2>, <x3, y3>, …} 

As (6) above shows, plural info states encode discourse reference to both values and 

structure. The values are the sets of objects that are stored in the columns of the matrix, 

e.g. a dref u for individuals stores a set of individuals relative to a plural info state, since 

u is assigned an individual by each assignment (i.e. row). The structure is distributively

encoded in the rows of the matrix: for each assignment / row in the plural info state, the 

individual assigned to a dref u by that assignment is structurally correlated with the 

individual assigned to some other dref u' by the same assignment. 

Thus, plural info states enable us to capture the structured dependencies between the 

multiple donkey anaphoric connections in (1) and (2) above. Let us start with the PCDRT 

analysis of sentence (2): by the time we are done processing the restrictor of the donkey 

quantification, we will be in an info state I which can be represented as the matrix in (7) 

below. Note that the strong donkey indefinites introduce both values, i.e. the set of gifts 

u2I = {a1, a2, …} and the set of girls u3I = {b1, b2, …}, and structure, i.e. for each 

'assignment' i∈I, the gift u2i was bought for girl u3i.
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7. Every 1
u  boy who bought a str:

2
u  Christmas gift for a str:

3
u  girl in his class asked 

her
3

u  deskmate to wrap it
2

u .

Info state I … u2 (all gifts) u3 (all girls) … 

i1 … a1 (=u2i1) b1 (=u3i1) … 

  
                                                  

     
1 1

gift a was bought for girl b

1444442444443

i2 … a2 (=u2i2) b2 (=u3i2) … 

i3 … a3 (=u2i3) b3 (=u3i3) … 

… … … … … 

When we process the nuclear scope of the donkey quantification, we are anaphoric 

to both values and structure: we require each 'assignment' i∈I to be such that the 

deskmate of girl u3i was asked to wrap gift u2i. Thus, the nuclear scope of the donkey 

quantification elaborates on the structured dependency between the set of gifts u2I and the 

set of girls u3I introduced in the restrictor of the donkey quantification. 

The interpretation of sentence (1) is different in two important respects: (i) the 

indefinite a 3
u  credit card receives a weak reading and (ii) the structural dependency 

between books and credit cards remains implicit in the restrictor and is explicitly 

established only in the nuclear scope. That is, by the time we are done processing the 

restrictor of the donkey quantification in (1), we will be in an info state I like the one in 

(8) below. We introduce the maximal set of books for u2 (the strong indefinite), we non-

deterministically introduce some set of credit cards for u3 (the weak indefinite) and we 

non-deterministically introduce some structure correlating the values of u2 and u3.
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8. Every 1
u  person who buys a str:

2
u  book on amazon.com and has a wk:

3
u  credit card 

uses it
3

u  to pay for it
2

u .

Info state I … u2 (all books) u3 (some credit cards) … 

i1 … a1 (=u2i1) b1 (=u3i1) … 

  
                                                                         

  
1 1

book a is somehow correlated with card b

1444444442444444443

i2 … a2 (=u2i2) b2 (=u3i2) … 

i3 … a3 (=u2i3) b3 (=u3i3) … 

… … … … … 

The nuclear scope is again anaphoric to both values and structure; in particular, we 

test that the non-deterministically introduced value for u3 and the non-deterministically 

introduced structure associating u3 and u2 satisfy the nuclear scope condition, i.e., for 

each 'assignment' i∈I, the credit card u3i is used to pay for the book u2i. Yet again, the 

nuclear scope elaborates on the unspecified dependency between u3 and u2 introduced in 

the restrictor of the donkey quantification. Crucially, the credit cards co-vary with / are 

dependent on the books and introducing such a dependency does not require the strong 

indefinite a 2
u  book to scope over the weak indefinite a 3

u  credit card – which cannot 

happen because the two DP's are trapped in their respective conjuncts. 

As the semi-formal paraphrases above indicate, PCDRT follows CDRT+GQ and 

interprets a sentence as a DRS, i.e. as a relation between an input and an output info state. 

The only difference is that the PCDRT info states are plural, hence the type of a DRS is 

(st)((st)t), i.e. a relation between an input info state Ist and an output info state Jst. The 

example in (1) provides the empirical motivation for modeling DRS's as relations

between plural info states (of type (st)((st)t)), i.e. as non-deterministically updating a 

plural info state. We need the non-determinism to introduce both (i) the value of the weak 

indefinite a 3
u  credit card and (ii) the dependency between the weak indefinite a 3

u  credit 

card and the strong indefinite a 2
u  book: both the plural value of dref u3 and the 

dependency relative to the dref u2 are non-deterministically introduced in the restrictor 

and elaborated upon in the nuclear scope. 
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The structural non-determinism, i.e. the fact that the dynamics of structural 

dependencies is essentially the same as the dynamics of values, is a core design feature of 

PCDRT, which sets it apart from many previous dynamic systems with plural info states 

(including van den Berg 1996a, Krifka 1996b and Nouwen 2003). 

One final observation before turning to the formal development of the account 

sketched in this section. The hypothesis that singular indefinite articles are ambiguous is 

not entirely desirable: for one thing, the two readings of the indefinite are always 

morphologically identical in English; moreover, I do not know of any natural language 

that would systematically reflect the difference between these two readings in the surface 

form of the indefinites. Thus, an analysis that would avoid the ambiguity and would 

derive the two distinct readings solely on the basis of independently motivated semantic 

and pragmatic factors would be preferable. 

However, the proposed analysis of the weak / strong ambiguity gets fairly close to 

achieving this goal: the only difference between a weak and a strong indefinite article is 

the presence vs. absence of a maximization operator. We can therefore think of the 

singular indefinite article as underspecified with respect to the presence vs. absence of 

this maximization operator: the decision to introduce it or not is made online depending 

on the discourse and utterance context of a particular donkey sentence – much like 

aspectual coercion7 or the selection of a particular type for the denotation of an 

expression8 are context-driven online processes. 

3. CDRT+GQ with Plural Information States: Plural CDRT 
(PCDRT) 

This section incrementally develops Plural CDRT (PCDRT), i.e. the promised 

extension of CDRT+GQ with plural info states. Section 3.1 gives the new definition of 

atomic conditions, section 3.2 the definition of new dref introduction, section 3.3 defines 

                                                

7 For example, the iterative interpretation of John sent a letter to the company for years or of The light is 

flashing. 

8 For example, when proper names are conjoined with generalized quantifiers. 
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negation, section 3.4 introduces maximization and, finally, section 3.5 defines selective 

and unselective generalized quantification in PCDRT. I provide the empirical and 

theoretical motivation for the formal innovations as I introduce them. 

3.1. Atomic Conditions 

No changes need to be made to our underlying logic Dynamic Ty2, i.e. our 'low-

level programming language': we will be working with the same bivalent total logic with 

no non-atomic individuals. And the changes to our DRT-style abbreviation system, i.e. 

our 'high-level programming language', are minimal: we introduce plural info states I, J, 

K, … of type st and we consequently reset the type t of (saturated) sentences to (st)((st)t): 

t is still the type of a binary relation between info states, it's just that the info states 

themselves are plural9.

9. Plural info states (type st): Hst, Ist, Jst, Kst, H'st, I'st, J'st, K'st, …;      

'Saturated' expressions in PCDRT:       

 - sentences (DRSs) – relations between plural info states: t := (st)((st)t);  

 - names (individual dref's) – the same as in CDRT+GQ:  e := se.

Just as in CDRT+GQ, the atomic conditions are sets of info states. However, given 

that we are now working with plural info states, their type will be (st)t. Moreover, the 

atomic conditions will be unselectively distributive, where 'unselective' is used in the 

sense of Lewis (1975), i.e. the atomic conditions are distributive over the plural info 

states they accept: they accept a set of 'assignments' iff they accept, in a pointwise 

manner, every single 'assignment' in the set. 

This is implemented by means of universal quantification over the set of 

assignments in a plural info state Ist, as shown in (10) below. The requirement of non-

emptiness I≠Ø rules out the 'degenerate' case in which the universal quantification 

∀is∈I(…) is vacuously satisfied. 

                                                

9 Incidentally, note that t is the type of generalized determiners over entities of type s, parallel to static 
(extensional) determiners of type (et)((et)t). 
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10. Atomic conditions – type (st)t.        

R{u1, …, un} := λIst. I≠Ø ∧ ∀is∈I(R(u1i, …, uni)),     

  for any non-logical constant R of type en
t,     

  where en
t is defined as follows: e0

t := t and em+1
t := e(em

t).  

u1=u2 := λIst. I≠Ø ∧ ∀is∈I(u1i=u2i) 

As already suggested, the requirement enforced by an atomic condition can be 

intuitively depicted by means of a matrix, as shown in (11) below. 

11.Info state I … u1 … un … 

i … a1 (=u1i) … an (=uni) … 

( , ..., ), ( , ..., )

                                                        

 i.e. 1 n 1 nR u i   u i R a   a
144444424444443

i' … a1' (=u1i') … an' (=uni') … 

i'' … a1'' (=u1i'') … an'' (=uni'') … 

… … … … … … 

The unselectively distributive structure of the atomic conditions endows the set of 

plural information states characterized by them with a lattice-theoretic ideal structure. 

12. ℑ is an ideal with respect to the partial order induced by set inclusion ⊆ on the 

power set of the domain of 'assignments' ℘(Ds
M) (i.e. <℘(Ds

M), ⊆>) iff:   

a. ℑ⊆℘(Ds
M);           

b. for any Ist and Jst, if I∈ℑ and J⊆I, then J∈ℑ (closure under subsets);    

c. for any Ist and Jst, if I∈ℑ and J∈ℑ, then (I∪J)∈ℑ (closure under finite unions).            

ℑ is a complete ideal iff (a) and (b) are as above and, instead of (c), we require 

closure under arbitrary unions. 

A complete ideal ℑ has a supremum, namely ∪ℑ. Given the requirement of closure 

under subsets and closure under arbitrary unions, a complete ideal ℑ is a complete 

Boolean algebra, as stated in (13) below. 

13. ℑ = ℘(∪ℑ),   for any complete ideal ℑ (in the atomic lattice ℘(Ds
M)). 
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We introduced the notation in (14) below to handle the non-emptiness requirement 

in the definition of atomic conditions. 

14. Let ℘+(Ds
M) be the power set of the domain of 'assignments' without the empty 

set Ø. A (complete) ideal without a bottom element is defined just as in (12) 

above, except that, instead of (12a), we require inclusion in ℘+(Ds
M) and, instead 

of (12b), we require closure under non-empty subsets. 

Since we are concerned here only with complete ideals without a bottom element, I 

will henceforth use "c-ideal" instead of the longer "complete ideal without a bottom 

element". The most important fact is that, for any c-ideal ℑ, we have that ℑ=℘+(∪ℑ), i.e. 

c-ideals are complete Boolean algebras without a bottom element. 

The definition of atomic conditions in (10) above ensures that they always denote c-

ideals (in the atomic lattice ℘(Ds
M)). We can in fact characterize them in terms of the 

supremum of their denotation. 

15. Atomic Conditions as C-Ideals.        

For any non-logical constant R of type en
t and sequence of unspecific10 dref's <u1, 

…, un>, let (R, <u1, …, un>) := λis. R(u1i, …, uni), abbreviated R whenever the 

sequence of dref's can be recovered from context. Then, R{u1, …, un} = ℘+( R) 11.

The fact that atomic conditions denote c-ideals will be useful in showing that 

PCDRT has a range of desirable properties and it will guide several design choices we 

have to make on the way. 

3.2. New Discourse Referents 

We turn now to defining the introduction of new dref's in PCDRT. I will consider 

only two candidate definitions, both given in (16) below, and I will argue that the first 

                                                

10 For the notion of unspecific dref, see definition 4 in section 2.2 of chapter 3 above. 

11 Convention: ℘+(Øst) = Ø(st)t. 
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one, namely (16a), is the empirically and theoretically better choice. Both definitions 

relate two plural info states Ist and Jst in terms of the pointwise relation is[u]js.

16. Introducing new dref's in PCDRT – two candidate definitions:   

 a. [u] := λIst.λJst. ∀is∈I(∃js∈J(i[u]j)) ∧ ∀js∈J(∃is∈I(i[u]j))    

 b. {u} := λIst.λJst. ∃Xet≠Ø(J= { : [ ] }   
s

si I
j i u j uj X

∈
∧ ∈U ),    

      equivalently: {u} := λIst.λJst. ∃Xet≠Ø(J={js: ∃is∈I(i[u]j ∧ uj∈X)}). 

Definition (16a) is the more general and logically weaker one: it simply requires any 

'assignment' i in the input info state I to have a successor 'assignment' j in the output state 

J and, similarly, any 'assignment' j in the output info state J  should have an ancestor 

'assignment' i in the input state I. In this way, we will necessarily preserve all the 

discourse information12 in the input state I when we non-deterministically update it and 

obtain the output state J. 

Definition (16b) has an extra-requirement over and above definition (16a): we need 

to uniformly reassign the value of the dref u for all the 'assignments' is in the input info 

state Ist, i.e. there is some random set Xet of new values for u and each input 'assignment' i

is updated (relative to u) with each and every single value in X. The effect of definition 

(16b) is shown in (17) below: the input state Ist contains two 'assignments' i and i' and the 

set Xet of new values for u contains two individuals a and b. 

17. I{u}J, where Xet={a, b} 
I{u}J Output state Jst … u …

Input state Ist … ia … a (=u(ia)) …

i … ib … b (=u(ib)) …

i' … i'a … a (=u(i'a)) …

i'b … b (=u(i'b)) …

                                                

12 Recall that, in PCDRT, the preserved discourse information consists of: (i) the previously established 
values for all the dref's other than u and (ii) the previously established structured dependencies between the 
dref's other than u. 
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The choice between the two definitions in (16)13,14 boils down to how we want to 

handle the new component of our information states, i.e. the structure associated with the 

values of the dref's. The singular info states of CDRT+GQ encode only values – and we 

non-deterministically assign new values to a particular dref. Thus, for each particular info 

state, the value of the dref is determined, but throughout the entire discourse context, i.e. 

throughout the space of all possible output info states for the random assignment [u], the 

value of the dref is not determined: for every possible value that the dref u can take, there 

will be some output info state that assigns that value to u. 

The plural info states of PCDRT encode values and, in addition, structure, i.e. they 

encode dependencies between the values of the dref's in a pointwise manner ('assignment' 

by 'assignment'). Our first definition I[u]J treats the structural component in parallel to 

the value component of the info state: we non-deterministically introduce both new 

values for u and new structure, as the values for u in the output state can be stored in a 

particular configuration of pointwise associations with the other dref's.  

Thus, in each info state, the value and the structure of dref u are determined, but 

throughout the entire discourse context, i.e. throughout the space of all possible plural 

output states, the value and the structure of dref u are not determined: for every possible 

non-empty set of values, for every possible structure (i.e. pointwise distribution) of that 

set, there is some plural output state that assigns to u that particular value with that 

particular associated structure. 

The second definition I{u}J does not treat the two components of a plural info state, 

i.e. value and structure, in a parallel way: we are still non-deterministic with respect to 

the value, but we are deterministic with respect to the structure – for any set of 

                                                

13 Both definitions appear in van den Berg's work: an equivalent of (16a) is used in van den Berg (1994): 
15, fn 12 and in van den Berg (1996b): 18, (49), while van den Berg (1996a): 134-135, (2.7) & (2.8) uses a 
version of (16b). The two definitions I consider differ from van den Berg's definitions in several respects: 
first, (16a) and (16b) are formulated in type logic, unlike van den Berg's, which are formulated in DPL 
terms; second, the definitions of random assignment in van den Berg are more complex because he works 

with a three-valued logic and also countenances a dummy / 'undefined' individual ⋆. To my knowledge, 
there is no comparison of the two alternative definitions in van den Berg's work. 

14 Nouwen (2003) follows van den Berg (1996a) and assumes the definition of {u} in (16b); the alternative 
option is not mentioned. 
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individuals that is randomly assigned as a value, there is only one possible structure (i.e. 

pointwise distribution) of that set throughtout the output discourse context (i.e. 

throughout the space of output info states).  

This choice seems to be preferable if we want to make the system computationally 

more efficient because it would significantly cut down the number of possible output info 

states for any given instance of new dref introduction (a.k.a. plural random assignment). 

Moreover, a more constrained system (presumably) runs a lower risk of over-generation. 

Finally, the structure we choose for every random value is the least 'biased' one: we 

introduce the entire set assigned to u with respect to each input 'assignment' i, so there is 

no 'biased' correspondence / dependency between the values of some other dref u' and the 

values newly assigned to u. That is, although the update is structurally deterministic, it 

always associates the least possible amount of structural information with each new 

value. 

Despite the fact that the second definition {u} is more constrained (hence, ceteris 

paribus, more desirable), I will provide three reasons, one empirical and two theoretical, 

for preferring the first definition, namely [u]. The first, empirical reason is provided by 

our mixed weak & strong donkey sentences, repeated below for convenience. 

18. Every 1
u  person who buys a 2

u  book on amazon.com and has a 3
u  credit card uses 

it
3

u  to pay for it
2

u . 

19. Every 1
u  man who wants to impress a 2

u  woman and who has an 3
u  Arabian horse 

teaches her
2

u  how to ride it
3

u . 

Recall that, intuitively, we want to allow for credit cards that vary from book to 

book and also for Arabian horses that vary from woman to woman. Consider now the 

definition in (16a), i.e. [u], and its effect on the interpretation of the quantification in (19) 

(the same reasoning applies to (18)). By the time we process the second conjunct in the 

restrictor, i.e. who has an 3
u  Arabian horse, we have already processed the first one who 

wants to impress a 2
u  woman and, therefore, the dref u2 has already been introduced and 

was assigned appropriate womanly values. Now we introduce u3 by means of the update 
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[u3] and we non-deterministically assign it a set of equine values and non-

deterministically associate a structure with this set of values, i.e. we non-deterministically 

associate each u3-horse with some u2-woman.  

The nuclear scope subsequently filters the non-deterministically assigned values and 

structure: we require the u3-horses to stand in the 'u2 rides u3' relation to the u2-set of 

women and this requirement has to be satisfied in a pointwise manner, i.e. relative to each 

individual 'assignment' in the plural info state. 

In contrast, the definition of random assignment in (16b), i.e. {u3}, requires us to 

introduce the same set of horses with respect to each and every u2-woman.  This yields 

intuitively incorrect, overly strong truth-conditions since, for sentence (19) to be 

intuitively true, we do not have to require each and every woman to ride the same horse 

or the same set of horses as the other women. 

Thus, the structural non-determinism built into the definition of random assignment 

in (16a) allows us to introduce a value and a structure for u3 that can verify sentence (19) 

without imposing overly strong truth-conditions.  

The second, theoretical reason in favor of I[u]J and against I{u}J is that I[u]J

preserves the formally desirable properties of the pointwise relation i[u]j, while I{u}J

doesn't. More exactly, I[u]J is an equivalence relation15, just as i[u]j, while the relation 

I{u}J is neither reflexive nor symmetric (as the reader can easily check). 

The third and final reason in favor of I[u]J and against I{u}J is that the relation [u], 

but not the relation {u}, preserves the c-ideal structure that the atomic conditions have16

                                                

15 The reflexivity, symmetry and transitivity of the relation I[u]J follow from the reflexivity, symmetry and 
transitivity of i[u]j in a straightforward way. 

16 A relation  between plural info states (of type t := (st)((st)t)) preserves c-ideals under images iff if ℑ is a 

c-ideal, then ℑ'={Jst: ∃Ist( IJ ∧ I∈ℑ} is a c-ideal. A relation  between plural info states preserves c-ideals 

under pre-images iff if ℑ' is a c-ideal, then ℑ={Ist: ∃Jst( IJ ∧ J∈ℑ'} is a c-ideal. The relation [u] preserves 
c-ideals under both images and pre-images. 
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(again, the reader can easily verify this statement). I conclude that the relation I[u]J is the 

empirically most adequate and theoretically most natural generalization of i[u]j 17. 

20. Introducing new dref's in PCDRT:       

 [u] := λIst.λJst. ∀is∈I(∃js∈J(i[u]j)) ∧ ∀js∈J(∃is∈I(i[u]j))   

Introducing new dref's by means of [u] has an immediate benefit. We now have a 

clear understanding of the denotation of a DRS D containing only atomic conditions or of 

arbitrary dynamic conjunctions of such DRS's. The relevant definitions are provided in 

(21) below. 

21. Atomic DRS's (DRS's containing only one atomic condition) – type (st)((st)t).

[R{u1, …, un}] := λIst.λJst. I=J ∧ R{u1, …, un}J     

 [u1=u2] := λIst.λJst. I=J ∧ (u1=u2)J                

DRS-level connectives (dynamic conjunction):      

D1; D2 := λIst.λJst. ∃Hst(D1IH ∧ D2HJ),         

  where D1 and D2 are DRSs (type (st)((st)t))      

Tests (generalizing atomic DRS's):       

 [C1, …, Cm] := λIst.λJst. I=J ∧ C1J ∧ … ∧ CmJ 
18,     

  where C1, …, Cm are conditions (atomic or not) of type (st)t. 

We know that the domain and the range of any atomic DRS are c-ideals. We also 

know that the domain and the range of an arbitrary dynamic conjunction of atomic DRSs 

                                                

17 We can in fact define {u} in terms of [u] and the closure condition enough_assignments defined in (i) 
below. The name of the condition indicates the formal similarity between this PCDRT condition and 
Axiom 4 ("Enough 'assignments'") of Dynamic Ty2, repeated in (ii) below. The definition {u} in terms of 
[u] is provided in (iii). 

(i) enough_assignments{u} := λIst. ∀xe∈uI∀is∈I(∃i's∈I(i[u]i' ∧ ui'=x)) 

(ii) Axiom4: ∀is∀vsτ∀fτ(udref(v) → ∃js(i[v]j ∧ vj=f)), for any type τ∈ STyp. 

(iii) {u} := λIstJst. I[u]J ∧ enough_assignments{u}J,       
 i.e. [u | enough_assignments{u}] in DRT-style abbreviation. 

18 Alternatively, [C1, …, Cm] can be defined using dynamic conjunction as follows:  

[C1, …, Cm] := λIstJst. ([C1]; …; [Cm])IJ, where [C] := λIstJst. I=J ∧ CJ. 
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are c-ideals because the intersection of a set of c-ideals is a c-ideal (assuming that the 

intersection is non-empty). This is summarized in (22) below. 

22. Dom([C]) = Ran([C]) = C = ℘+(∪C), for any condition C that is a c-ideal.  

Dom([C1, …, Cm]) = Ran([C1, …, Cm]) = C1∩ … ∩Cm     

         = ℘+((∪C1)∩ … ∩(∪Cm)),     

 for any conditions C1, …, Cm that are c-ideals. 

These results are generalized to DRS's in which new dref's are introduced: they are 

defined in (23) below and the general form of their denotation is provided in (24). 

23. Multiple random assignment.        

 [u1, …, un] := [u1]; …; [un]         

DRS's with new dref's – type (st)((st)t).     

 [u1, …, un | C1, …, Cm] := λIst.λJst. ([u1, …, un]; [C1, …, Cm])IJ,   

  where C1, …, Cm are conditions,     

 i.e. [u1, …, un | C1, …, Cm] := λIst.λJst. I[u1, …, un]J ∧ C1J ∧ … ∧ CmJ. 

24. DRS's in terms of C-Ideals over Relations.      

Given a DRS D of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, 

Cm are c-ideals, we have that:         

Ran(D) = C1∩ … ∩Cm = ℘+((∪C1)∩ … ∩(∪Cm));    

Dom(D) = ℘+({is: ∃js(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm))}).       

Note that, since i[u1, …, un]j is reflexive, Ran(D)⊆Dom(D).    

Let D := {<is, js>: i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}. Then:   

D = {<Ist, Jst>: ∃ s(st)(I=Dom( ) ∧ J=Ran( ) ∧ ∈℘+( D))},  

 i.e. D = {<Ist, Jst>: ∃ s(st)≠Ø(I=Dom( ) ∧ J=Ran( ) ∧ ⊆ D)}.   

That is:          

D := λis.λjs. i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)    

D := λIst.λJst. ∃ s(st)∈℘+( D)(I=Dom( ) ∧ J=Ran( )). 

The properties of DRS denotations identified in (22) and (24) above will prove 

useful when we decide how to define negation in PCDRT. Two final observations before 

we address negation. First, just as in CDRT+GQ, the existential force of the random 
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assignment [u] (see (20) above) is an automatic consequence of the way it is defined 

when coupled with the PCDRT definition of truth for DRS's, provided in (25) below. 

25. Truth: A DRS D (type (st)((st)t)) is true with respect to an input info state Ist iff 

∃Jst(DIJ), i.e. iff I∈Dom(D), where Dom(D) := {Ist: ∃Jst(DIJ)}. 

Second, note that we can already translate discourse (7-8) below in PCDRT 

(assuming that all the indefinites are weak). Given the definition of truth for DRS's in 

(25) above, the translation in (10) below derives the intuitively correct truth-conditions, 

as shown in (29). 

26. A wk:
1

u  house-elf fell in love with a wk:
2

u  witch. 

27. He
1

u  bought her
2

u  an wk:
3

u  alligator purse. 

28. [u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];              

[u3 | alligator_purse{u3}, buy{u1, u2, u3}] 

29. λIst. ∃Jst(([u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];    

     [u3 | alligator_purse{u3}, buy{u1, u2, u3}])IJ), i.e.                 

λIst. I≠Ø ∧ ∃xe∃ye∃ze(house_elf(x) ∧ witch(y) ∧ fall_in_love(x, y) ∧    

   alligator_purse(z) ∧ buy(x, y, z)) 

3.3. Negation 

Let us turn now to the definition of negation in PCDRT. The fact that plural info 

states encode both values and structure makes the issue non-trivial. A first attempt would 

be to simply import the CDRT+GQ definition, which is basically the DRT / FCS / DPL 

one, as shown in (30) below 19. 

30. Negation – first attempt:        

 ~D := λIst. I≠Ø ∧ ¬∃Kst(DIK),     where D is a DRS (type (st)((st)t)), 

 i.e. ~D := λIst. I≠Ø ∧ I∉Dom(D),     where Dom(D) := {Ist: ∃Jst(DIJ)} . 

                                                

19 Factoring out various complications, i.e. the fact that van den Berg's Dynamic Plural Logic is intended to 
handle anaphora to dref's introduced within the scope of negation and the fact that it is a partial logic, the 
DPL-style definition in (30) is the one used in van den Berg's Dynamic Plural Logic – see van den Berg 
(1994): 10, (27), van den Berg (1996a): 136, (6), van den Berg (1996b): 18, Definition D, (e). 
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However, given the PCDRT definition of atomic conditions, the definition in (30) 

yields incorrect truth-conditions for the negation example in (31) below. 

31. Every 1
u  farmer who owns a str:

2
u  donkey doesn't feed it

2
u  properly. 20

Consider example (31) more closely: intuitively, the indefinite a str:
2

u  donkey is 

strong (hence the notation a str:
2

u ) and the interpretation of (31) is that no donkey-owning 

farmer feeds any of his donkeys properly. Thus, by the time we process the restrictor of 

the quantification in (31), we have a plural information state I of the form shown in (32) 

below in which, for a given donkey-owning farmer a, every 'assignment' i∈I stores some 

donkey d1, d2 etc. that a owns. 

32.Info state I … u1 (one farmer)  u2 (all donkeys) … 

i1 … a (=ui1) 1a owns d
→ d1 (=u'i1) … 

i2 … a (=ui2) 2a owns d
→ d2 (=u'i2) … 

i3 … a (=ui3) 3a owns d
→ d3 (=u'i3) … 

… … …  … … 

Now, we reach the nuclear scope condition in (33) below, interpreted according to 

the definition of negation in (30) above. 

33. (~[feed_proper{u1, u2}])I   =   I≠Ø ∧ ∃is∈I(¬feed_proper(u1i, u2i)) 

The truth-conditions derived by (33) are too weak: they only require farmer a to 

feed some donkey he owns poorly and they allow for cases in which he feeds properly all 

his other donkeys – while intuitively we should require him to feed all his donkeys 

poorly. We see that the DPL-style definition of negation in conjunction with the PCDRT 

definition of atomic conditions, which is unselectively distributive, yields overly weak 

                                                

20 See also the example in (i) below from van der Does (1993): 18, (27c). 

(i) Awk/str:u boy who had anstr:u' apple in his rucksack didn't give itu' to his sister. 
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truth-conditions. I will therefore give a stronger definition for negation, provided in (34) 

below. 

34. Negation in PCDRT.        

 ~D := λIst. I≠Ø ∧ ∀Hst(H≠Ø ∧ H⊆I → ¬∃Kst(DHK)),    

  where D is a DRS (type (st)((st)t)),      

 i.e. ~D := λIst. I≠Ø ∧ ∀Hst≠Ø(H⊆I → H∉Dom(D)). 

The PCDRT definition of negation in (34) requires that: 

I is not in Dom(D) – just as the DPL-style definition (30); 

no singleton subset of I is in Dom(D) – which enables us to account for the donkey 

sentence in (31) above, since the nuclear scope condition (~[feed_proper{u1, 

u2}])I is 'unpacked' as I≠Ø ∧ ∀is∈I(¬feed_proper(u1i, u2i)), which yields the 

intuitively correct, strong truth-conditions; 

all the other non-empty subsets of I are not in Dom(D).  

The third and final requirement ensures that the denotation of a negative condition 

preserves the c-ideal structure of the negated DRS. For example, if the negated DRS D is 

of the form given in (23) above, its domain Dom(D) is a c-ideal and, if Dom(D) is a c-

ideal, ~D is the maximal c-ideal disjoint from Dom(D). This is stated in (35) below. 

35. If Dom(D) is a c-ideal, ~D is the unique maximal c-ideal disjoint from Dom(D)21.   

That is, ~D = ℘+(Ds
M\∪Dom(D)) if Dom(D) = ℘+(∪Dom(D)). 

                                                

21
~D is a c-ideal if Dom(D) is a c-ideal.  

Proof: (i) ~D⊆℘+(Ds
M); (ii) for any Ist and Jst, if I∈~D and J⊆I and J≠Ø, then J∈~D (this follows directly 

from definition (34)); (iii) if ϒ⊆~D, then ∪ϒ∈~D. (Proof: suppose (iii) doesn't hold, i.e. ϒ⊆~D and 

∪ϒ∉~D. Then, there is an H s.t. H≠Ø and H⊆∪ϒ and H∈Dom(D). Since H⊆∪ϒ and H≠Ø, there must be 

at least one I∈ϒ s.t. H∩I≠Ø. Let I'=H∩I. Since I'⊆H and H∈Dom(D) and Dom(D) is a c-ideal, we have 

that I'∈Dom(D). But I'⊆I and I∈ϒ⊆~D, so, by definition (34), I'∉Dom(D). Contradiction. �). �

~D is maximal.  

Proof: Suppose ~D is not maximal. Then, there is a c-ideal ℑ s.t. ℑ∩Dom(D)=Ø and ~D⊂ℑ. Then, there is 

some I∈ℑ s.t. I∉~D; hence, there is an H s.t. H≠Ø and H⊆I and H∈Dom(D). Since ℑ is a c-ideal, I∈ℑ and 

H⊆I, we have that H∈ℑ. Hence, ℑ∩Dom(D)≠Ø. Contradiction. �. 

~D is unique.  
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In sum, given the properties of the denotations of DRS's in PCDRT, the dynamic 

negation defined in (34) above is as well-behaved as possible22. 

We can now represent the discourse in (36-37) below. The representation, provided 

in (38), derives the intuitively correct truth-conditions, given in (39): there is a house-elf 

that fell in love with some witch and that bought her no alligator purse. 

36. A wk:
1

u  house-elf fell in love with a wk:
2

u  witch. 

37. (Surprisingly) He
1

u  didn't buy her
2

u  an wk:
3

u  alligator purse. 

38. [u1, u2 | house_elf{u1}, witch{u2}, fall_in_love{u1, u2}];              

[~[u3 | alligator_purse{u3}, buy{u1, u2, u3}]] 

39. λIst. I≠Ø ∧ ∃xe∃ye(house_elf(x)  ∧ witch(y) ∧ fall_in_love(x, y) ∧    

        ¬∃ze(alligator_purse(z) ∧ buy(x, y, z))) 

3.4. Maximization 

Now that the core part of PCDRT is in place, we can turn to the maximization 

operator, which is the essential ingredient in the analysis of the weak / strong donkey 

ambiguity. The definition of the max operator is provided in (40) below; max is an 

operator over DRS's: its argument is a DRS, i.e. a term of type t := (st)((st)t), and its 

value is another DRS, i.e. another term of type t. Note that we actually define a family of 

maximization operators, each one specified for the dref u over which we maximize. 

                                                                                                                                                

Proof: Suppose ~D is not unique. Then, there is a maximal c-ideal ℑ s.t. ℑ∩Dom(D)=Ø and ~D≠ℑ. Since 

both ~D and ℑ are maximal, there is some I∈ℑ s.t. I∉~D and some J∈~D s.t. I∉ℑ. The reasoning is now 

similar to the maximality proof: since I∉~D, there must be an H s.t. H≠Ø and H⊆I and H∈Dom(D). Since 

ℑ is a c-ideal, I∈ℑ and H⊆I, we have that H∈ℑ. Hence, ℑ∩Dom(D)≠Ø. Contradiction. �. 

22 For completeness, I provide the definitions of anaphoric closure, disjunction and implication in PCDRT. 

(i) Anaphoric closure: !D := λIst. ∃Kst(DIK),     i.e. !D := Dom(D) 

(ii) Disjunction: D1 ∨ D2 := λIst. ∃Kst(D1IK ∨ D2IK),     i.e. D1 ∨ D2 := Dom(D1)∪Dom(D2) 

(iii) Implication: D1 → D2 := λIst. ∀Hst(D1IH → ∃Kst(D2HK)),      

 i.e. D1 → D2 := λIst. D1I ⊆ Dom(D2),     where DI := {Jst: DIJ},    

 i.e. D1 → D2 := (℘+(Ds
M)\Dom(D1)) ∪ {I∈Dom(D1): D1I ⊆ Dom(D2)}. 
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40. max
u(D) := λIstJst. ∃Hst(I[u]H ∧ DHJ) ∧ ∀Kst(∃H'st(I[u]H' ∧ DH'K) → uK⊆uJ),  

 where D is a DRS, i.e. a term of type t := (st)((st)t),     

 i.e. max
u(D) := λIstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ). 

The first conjunct in (40) introduces u as a new dref (i.e. I[u]H) and makes sure (by 

DHJ) that each individual in uJ 'satisfies' D, i.e. we store only individuals that 'satisfy' D. 

The second conjunct enforces the maximality requirement: any other set uK obtained by a 

similar procedure (i.e. any other set of individuals that 'satisfies' D) is included in uJ, i.e. 

we store all the individuals that satisfy D.  

Note that, because of its maximality requirement, the max operator does not 

preserve the c-ideal structure of the range of the DRS over which it scopes. To see this, 

consider the second, shorter formulation of the definition in (40). This formulation 

explicitly shows that the relation between info states denoted by the maximized DRS 

max
u(D) is always a subset of the relation denoted by [u]; D, i.e. we 'strengthen' the DRS 

[u]; D by ruling out the output info states J that assign to u strict subsets of maximal set 

that is assigned to u throughout Ran([u]; D) 23. 

The DRS max
u(D) can be thought of as dynamic λ-abstraction over individuals: the 

'abstracted variable' is the individual dref u, the 'scope' is the DRS D and the result of the 

'abstraction' is a set of individuals uJ (where J is the output info state) containing all and 

only the individuals that 'satisfy' D. Thus, maximization together with plural info states

and the unselective distributivity built into the definition of atomic conditions enables us 

to 'dynamize' λ-abstraction: (i) the maximization operator stores the λ-abstracted set in a 

dref, so that we can access it in discourse; (ii) unselective distributivity enables us to λ-

abstract one value at a time; (iii) finally, plural info states enable us to store the 

dependency structure associated with each λ-abstracted value. 

The empirical motivation for the selectivity of the max
u operator (as definition (40) 

shows, max
u

selectively maximizes over the dref u) is provided by the mixed weak & 

                                                

23 The update max
u(D) fails if such a supremum set does not exist, i.e. max

u(D) fails for an input info state 
I if the family of sets {uJ: ([u]; D)IJ} does not have a supremum. 
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strong donkey sentences: we do not want to indiscriminately maximize over all donkey 

indefinites, but only over those that receive a strong reading. So, the selective max
u

operator enables us to define the strong meaning for donkey indefinites in such a way that 

it is minimally different from the weak meaning. Both basic meanings are provided in 

(41) below24. 

41. weak indefinites: awk:u ⇝ λP'et. λPet. [u]; P'(u); P(u)        

strong indefinites: astr:u ⇝ λP'et. λPet. max
u(P'(u); P(u)),     

 where e := se and t := (st)((st)t). 

Note that it is the compositional system that makes sure we have the correct 

'configuration' within the scope of max
u, i.e. that the DRS P'(u) over which we maximize 

has the dref u in the appropriate (argument) places. This is very much like the technique 

employed in static semantics: it is the compositional system that ensures that the λ-

abstraction over the variable x takes scope over a formula that has x in the appropriate 

'slots'. 

The definition of max
u and the way it is used in the analysis of strong donkey 

anaphora will become clearer if we look at an example. Consider (42) below and assume 

that it is uttered in a context in which there is some unique salient boy with apples in his 

rucksack. For example, twenty children (ten brother-sister pairs) travel by bus and the bus 

passes an apple orchard; as the story goes, the girls are overwhelmed with desire for the 

fruit, but none of them gets it because no one on the bus has any apples – except for one 

boy, but he doesn't care about anyone's plea, not even his sister's. In this context, we can 

felicitously utter that the other boys would have given an apple to their sisters if they had 

one, but: 

                                                

24 Note the similarity between the PCDRT representation of weak indefinites and the representation of 
indefinites in CDRT+GQ. 
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42. The
1

u  (one) boy who had an str:
2

u  apple in his rucksack didn't give it
2

u  to his 

sister 25. 

In this context, (42) is interpreted as: the boy who had (some) apples in his rucksack 

didn't give any to his sister. I will assume that the definite article the
1

u  functions as an 

anaphor, i.e. it simply tests that some contextually salient dref u1 satisfies both its 

restrictor and its nuclear scope, as shown in (43) below. For simplicity, the restrictor 

P'(u) in (43) is not represented as a presupposition, but as part of the assertion26. 

43. Definite articles as anaphors:        

theu ⇝ λP'et. λPet. [unique{u}]; P'(u); P(u),      

  where e := se and t := (st)((st)t).

44. unique{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui'),      

 i.e. unique{u} := λIst. |uI| = 1,       

  where |uI| is the cardinality of the set uI.

I take the definite article to contribute an atomic condition unique{u}, defined in 

(44), which encodes a weak form of uniqueness: it requires that the dref anaphorically 

retrieved by the definite article has a unique value with respect to the current plural info 

state, i.e. it requires the set uI stored by the dref to be a singleton. This kind of uniqueness 

is weak because it is relativized to the current info state (i.e. it is salience-dependent 

uniqueness); I take strong uniqueness to be uniqueness relative to the entire model. As 

we will see in (51) below, strong uniqueness can be obtained by combining weak 

uniqueness, i.e. the condition unique{u}, and the max
u operator. 

Sentence (42) is represented as shown in (45) below. 

                                                

25 I ignore throughout most of this chapter the uniqueness implications sometimes associated with donkey 
anaphora, e.g., in example (42), the intuition that the apple is unique. For more discussion about the 
uniqueness effects associated with singular anaphora in quantificational subordination and donkey 
anaphora, see sections 6.1 and 6.2 of chapter 6 below. 

I am indebted to Roger Schwarzschild (p.c.) for suggesting the sentence in (i) below as an alternative 
example that does not exhibit uniqueness effects. 

(i) A / The boy who had au pen in his backpack didn't give itu to his sister. 

26 See Muskens (1995b): 165 for a similar lexical entry in a CDRT kind of system. 
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45. [unique{u1}, boy{u1}]; max 2
u ([apple{u2}, have_in_rucksack{u1, u2}]);  

[~[give_to_sister{u1, u2}]] 

By the end of the max 2
u  update, we are in a plural information state I like the one 

in (46) below. The dref u1 stores the same boy b throughout the info state I (due to 

unique{u}) and the dref u2 stores all the apples a1, a2, a3 etc. that boy b has in his 

rucksack (due to max 2
u ). 

46. Info state I … u1 (the boy)  u2 (all apples) … 

i1 … b (=u1i1) 1b has a
→ a1 (=u2i1) … 

i2 … b (=u1i2) 2b has a
→ a2 (=u2i2) … 

i3 … b (=u1i3) 3b has a
→ a3 (=u2i3) … 

… … …  … … 

Given the PCDRT definition of negation, the translation in (45) derives the 

intuitively correct truth-conditions: the formula in (47) below is true iff there is exactly 

one contextually salient boy that has some apples and gives none of them to his sister. 

47. λI. ∃J([unique{u1}, boy{u1}]; max 2
u ([apple{u2}, have_in_rucksack{u1, u2}]); 

 [~[give_to_sister{u1, u2}]])IJ) =               

λI. ∃xe(u1I={x} ∧ boy(x) ∧ ∃Yet≠Ø(∀ye(apple(y) ∧ h.i.r(x, y) ↔ y∈Y) ∧  

            ∀ye∈Y(¬g.t.s(x, y)))) 

This example makes clear that the max
u operator defined in (40) is selective in 

exactly the sense in which the dynamic quantification in CDRT+GQ is selective: the set 

of output states that are in the range of a max
u DRS is determined based on the set of 

individuals that such an output state stores with respect to the dref u. However, in view of 

the fact that donkey conditionals seem to exhibit unselectively strong readings, e.g. the 

conditional in (48) below, I will define an unselective form of maximization – as shown 

in (49). 
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48. If a str:
1

u  house-elf borrows a str:
2

u  broom from a str:
3

u  witch, he
1

u  (always) gives 

it
2

u  back to her
3

u  the next day. 

49. unselective maximization:           

max(D) := λIstJst. DIJ & ∀Kst(DIK → K⊆J) 27

The unselective max operator in (49) retrieves the supremum in an inclusion partial 

order over sets of info states and not over sets of individuals (i.e. it is unselective in the 

sense of Lewis 1975). This operator will be used to defined unselective generalized 

quantification in PCDRT. 

I conclude the section with two observations about selective maximization, one 

empirical and the other theoretical. First, note that selective maximization seems to be 

independently motivated by the Russellian uses of definite descriptions in natural 

language, i.e. the definite descriptions that intuitively require strong uniqueness 

(uniqueness relative to the entire model). The definite DP in (50) below exemplifies the 

Russellian kind of definite descriptions, i.e. definite descriptions that are non-anaphoric 

and that require existence and strong uniqueness. 

50. Hagrid fell in love with theu tallest witch in the world. 

In PCDRT, we can analyze Russellian definite descriptions by suitably combining 

weak uniqueness, i.e. the condition unique{u}, and the max
u operator. In fact, PCDRT 

can analyze definite articles in any of the four ways listed in (51) below; deciding which 

one (if any) is the right meaning falls outside the scope of the current investigation. 

51. The definite article – possible meanings in PCDRT.              

a. anaphoric and weakly unique:       

theu ⇝ λP'et. λPet. [unique{u}]; P'(u); P(u),     

  where e := se and t := (st)((st)t)      

  and unique{u} := λIst. ∀is∈I∀i's∈I(ui=ui').     

b. anaphoric, no uniqueness:        

                                                

27 Note that, for any Ist, the set {Jst: max(D)IJ} is either empty or a singleton set. 
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theu ⇝ λP'et. λPet. P'(u); P(u)                 

c. existence and strong uniqueness, non-anaphoric (the Russellian analysis): 

theu ⇝ λP'et. λPet. max
u(P'(u)); [unique{u}]; P(u)             

d. existence and maximality (no uniqueness), non-anaphoric:   

theu ⇝ λP'et. λPet. max
u(P'(u)); P(u) 28

I conclude this section with the examination of DRS's in which one max
u operator is 

embedded within the scope of another, as schematically shown in (52) below. 

52. max
u(D; max

u'(D')) 

Such structures occur fairly frequently in the PCDRT translations of natural 

language discourses and they are difficult to grasp at an intuitive level. To simplify 

derivations and make translations more transparent, I show that the values assigned to 

multiply embedded max
u operators are often reducible to non-embedded ones. 

The main result is stated in the corollary in (53) below – see section 0 of the 

Appendix to this chapter for its proof. 

53. Simplifying 'max-under-max' representations (corollary):    

max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),              

if the following three conditions obtain:       

 a. u is not reintroduced in D';        

 b. Dom([u']; D') = Dom(max
u'(D'));       

 c. D' is of the form [u1, …, un | C1, …, Cm].      

If C1, …, Cm are c-ideals, condition (53b) follows from (53c) 29. 

                                                

28 Note that this meaning is different from the strong meaning of the indefinite article with respect to the 
scope of the max

u operator: in the case of the definite, this operator has scope only over the restrictor DRS, 
i.e. max

u(P'(u)), while in the case of the indefinite, it has scope over both the restrictor and nuclear scope 
DRS's, i.e. max

u(P'(u); P(u)). 

29
If C1, …, Cm are c-ideals, condition (53b) follows from (53c). 

Proof: In general, we have that Dom(max
u'(D'))⊆Dom([u']; D'), so we only have to prove that Dom([u']; 

D')⊆Dom(max
u'(D')). But an info state I∈Dom([u']; D') fails to be in Dom(max

u'(D')) iff the family of sets 
{u'J: ([u']; D')IJ} does not have a supremum. And the existence of the supremum follows by an application 
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Let us reanalyze the example in (42) above, repeated in (54), in terms of the 

Russellian analysis of definite descriptions, i.e. letting the definite article the 1
u  contribute 

existence and uniqueness as in (51c) above: theu ⇝ λP'et. λPet. max
u(P'(u)); 

[unique{u}]; P(u). The example is translated as shown in (55). 

54. The 1
u  (one) boy who had an str:

2
u  apple in his rucksack didn't give it

2
u  to his 

sister. 

55. max 1
u ([boy{u1}]; max 2

u ([apple{u2}, have_in_rucksack{u1, u2}])); 

[unique{u1}]; [~[give_to_sister{u1, u2}]] 

The representation in (55) gives us the opportunity to apply the corollary in (53) 

above. Conditions (53a) and (53c) are clearly satisfied; checking that condition (53b) 

holds is also straightforward: given that both conditions apple{u2} and 

have_in_rucksack{u1, u2} are c-ideals, (53b) follows from (53c). 

Thus, the translation in (55) is equivalent to the one in (56) below. The truth-

conditions, provided in (57), are the intuitively correct ones (assuming that the definite 

article should indeed receive the Russellian analysis): sentence (54) is true iff there is a 

unique boy with some apples in his rucksack such that he didn't give any of his apples to 

his sister. 

56. max 1
u ([boy{u1}]; [u2 | apple{u2}, have_in_rucksack{u1, u2}]);  

max 2
u ([apple{u2}, have_in_rucksack{u1, u2}]);     

[unique{u1}]; [~[give_to_sister{u1, u2}]] 

57. λIst. I≠Ø ∧ ∃xe(∀ze(boy(z) ∧ ∃ye(apple(y) ∧ have_in_rucksack(z, y)) ↔ z=x) ∧  

  ∃Yet≠Ø(∀ye(apple(y) ∧ have_in_rucksack(x, y) ↔ y∈Y) ∧   

  ∀ye∈Y(¬give_to_sister(x, y))))  

                                                                                                                                                

of the result stated in (24) above: just take the image of the info state I under the relation [u']; D'={<i, j>: 

i[u', u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}, i.e. ={j: ∃i∈I( [u']; D'
ij)} and note that u'  is the supremum of 

{u'J: ([u']; D')IJ}. �
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To see more clearly that the truth-conditions enforced by PCDRT formulas are of 

the form "there are some values and there is some structure associated with those values 

such that…", I will rewrite the formula in (57) as shown in (58) below, i.e. by using of a 

relation Re(et) between individuals which encodes the structure associated with the values 

in question (i.e. with the unique boy and his apples). Dom(R) and Ran(R) are defined as 

usual, i.e. Dom(R) := {xe: ∃ye(Rxy)} and Ran(R) := {ye: ∃xe(Rxy)} 

58. λIst. I≠Ø ∧ ∃Re(et)(Dom(R)≠Ø ∧ Ran(R)≠Ø ∧ |Dom(R)|=1 ∧    

  Dom(R) = {xe: boy(x) ∧ ∃ye(apple(y) ∧ have_in_rucksack(x, y))} ∧

  Ran(R) = {ye: apple(y) ∧ ∃xe∈Dom(R)(have_in_rucksack(x, y))} ∧

   ∀xe∀ye(Rxy → have_in_rucksack(x, y)) ∧     

   ∀xe∀ye(Rxy → ¬give_to_sister(x, y))) 

3.5. Generalized Quantification 

The only thing left to define in PCDRT is generalized quantification. We start with 

selective generalized quantification. 

Selective generalized determiners are relations between two dynamic properties P'et

(the restrictor) and Pet (the nuclear scope), i.e. their denotations are of the expected type 

(et)((et)t). The PCDRT definition of selective generalized determiners has to be 

formulated in such a way that:  

• on the one hand, we capture the fact that anaphors in the nuclear scope can have 

antecedents in the restrictor;  

• on the other hand, we avoid the proportion problem and, at the same time, allow for 

the weak / strong donkey ambiguity. 

To avoid the proportion problem, a selective generalized determiner has to relate 

sets of individuals and not sets of 'assignments'. Thus, the main problem in a dynamic 

system is to find an appropriate way to extract the two sets of individuals, i.e. the 

restrictor set and the nuclear scope set, based on the restrictor and the nuclear scope 

dynamic properties. 



156

The proposed ways to solve this problem fall into two broad categories. The first 

category of solutions is the one exemplified by CDRT+GQ (following DRT / FCS / 

DPL): we employ a dynamic framework based on singular info states and we analyze 

generalized quantification as internally dynamic and externally static. The main idea is 

that the restrictor set of individuals is extracted based on the restrictor dynamic property, 

while the nuclear scope set of individuals is extracted based on both the restrictor and the 

nuclear scope dynamic property, so that the anaphoric connections between them are 

captured. 

The second category of solutions employs a dynamic framework based on plural 

information states and it analyzes generalized quantification as both internally and 

externally dynamic. The main reference for this kind of solution is van den Berg (1994, 

1996a) (but see also Krifka (1996b) and Nouwen (2003) among others). The main idea is 

that the restrictor set of individuals is extracted based on the restrictor dynamic property 

and, then, the nuclear scope set of individuals is the maximal subset of the restrictor set of 

individuals that satisfies the nuclear scope dynamic property. The restrictor and the 

nuclear scope sets are stored in the output plural info state and are available for anaphoric 

retrieval, e.g. Every
u
 man saw a

u'
 woman / two

u'
 women. Theyu greeted themu'.  

Given that the notion of a dref being a subset of another required for van den Berg's 

definition of quantification involves non-trivial complexities30 that are largely orthogonal 

to the donkey issues we are interested in, I will analyze selective generalized 

quantification following the format of the CDRT+GQ definition31. 

However, since PCDRT is a system based on plural info states, the definition of 

selective generalized determiners I will provide is novel. This definition is intermediate 

between the above two strategies of defining selective dynamic quantification and, as 

                                                

30 E.g., it requires the introduction of a dummy / 'undefined' / exception individual # – see chapter 6. For 
the corresponding notion of dummy / 'undefined' / exception possible world, see the analysis of structured 
discourse reference to propositions in chapter 7. 

31 But see chapter 6 for a van den Berg-style definition of generalized quantification in PCDRT which is 
used in the analysis of quantificational subordination. 
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such, it is useful in exhibiting the commonalities and differences between them in a 

formally explicit way. 

The generalized quantifiers we will be considering throughout the present 

investigation are domain-level and discourse-level distributive in the sense that they 

relate two sets of atomic individuals (i.e. domain-level distributivity) and these sets of 

atomic individuals are required to satisfy the restrictor and nuclear scope dynamic 

properties one individual at a time (i.e. discourse-level distributivity). We enforce the 

first kind of distributivity (i.e. domain-level) by restricting our domain of individuals De

to atomic individuals (there are no non-atomic individuals in the sense of Link 1983). We 

enforce the second kind of distributivity by making use of the dynamic condition 

unique{u}, which was introduced in the previous chapter for the analysis of definite 

descriptions. The definition of selective quantification is provided in (59) below. 

59. Selective Generalized Determiners (e := se and t := (st)((st)t)).   

detu ⇝ λP'et. λPet. [detu(P'(u), P(u))],       

  where detu(D, D') := λIst. I≠Ø ∧ DET(u[DI],  u[(D; D')I])   

  and u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ}    

  and unique{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui')    

  and DET is the corresponding static determiner. 

Intuitively, the definition u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ} above instructs us 

to do the following 'operations' to an input matrix I: add a column u to matrix I, fill it up 

with only one individual x and then check that the resulting matrix satisfies D (the 

resulting matrix satisfies D iff it can be updated with D, i.e. iff it has at least one output 

state J relative to D). If this matrix satisfies D, then x is in the set u[DI], otherwise not. 

The definition of generalized quantification in (59) is selective because the static 

determiner DET relates sets of individuals. The individuals in these sets are obtained in 

basically the same way as they are obtained in the case of the CDRT+GQ weak 

generalized determiners. The restrictor set contains all the individuals which 'satisfy' the 

restrictor DRS D when plugged in one atomic individual at a time, i.e. [u | unique{u}]. 

The nuclear scope contains all the individuals which satisfy both the restrictor DRS D
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and the nuclear scope DRS D' when plugged in one atomic individual at a time. Clearly, 

this definition of selective quantification enables us to avoid the proportion problem just 

as the corresponding CDRT+GQ definition does. 

The definition of unselective generalized quantification is provided in (60) below. 

60. Unselective generalized determiners (in terms of unselective maximization):

det ⇝ λD't. λDt. [det(D', D)],       

  where det(D, D') := λIst. I≠Ø ∧ DET(max[DI],  max[(D; [!D'])I])  

  and max[DI] := ∪{Jst: max(D)IJ} and !D' := Dom(D')   

  and DET is the corresponding static determiner. 

This definition is unselective because the static determiner DET relates sets of 

'assignments', i.e. sets of cases in the terminology of Lewis (1975). The info states in 

these sets are obtained much as they are obtained in the case of CDRT+GQ unselective 

determiners: the restrictor is the set of all the 'assignments' / cases that 'satisfy' the 

restrictor DRS D relative to input info state I and the nuclear scope is the set of all the 

'assignments' / cases that 'satisfy' both the restrictor DRS D and the nuclear scope DRS 

D'.  

The unselective max operator functions as a dynamic λ-abstraction over 

'assignments', i.e. over the cases of Lewis (1975) – much like the condition unique{u} 

together with the union of sets of individuals in the definition of selective generalized 

quantification in (59) above functions as dynamic λ-abstraction over individuals32. 

4. Solutions to Donkey Problems 

In this section, we see in detail how the PCDRT system introduced in the preceding 

section can be used to compositionally interpret a variety of donkey sentences, including 

mixed weak & strong relative-clause donkey sentences. 

                                                

32 Recall that, since max(D) := λIstJst. DIJ & ∀Kst(DIK → K⊆J), the set {Jst: max(D)IJ} is either empty or a 
singleton set, so the union over unselectively maximized info states is basically vacuous and needed here 
only for technical reasons: we want to access the maximal plural info state and not the singleton set whose 
only member is the maximal plural info state. 
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As we have already observed in chapter 3, the compositional aspect of the 

interpretation in an extensional Fregean / Montagovian framework is largely determined 

by the types for the (extensions of the) 'saturated' expressions, i.e. names and sentences, 

which we abbreviate as e and t. An extensional static logic without pluralities (i.e. the 

static component of our Dynamic Ty2) identifies e and e (atomic entities) and also t and t

(truth-values). CDRT+GQ complicates this setup by interpreting a sentence as a relation 

between an input and an output 'assignment', hence t := (s(st)), and a name as an 

individual dref, i.e. as a function from 'assignments' to individuals, hence e := (se).  

In PCDRT, names are interpreted just as in CDRT+GQ, but sentences are 

interpreted as relations between plural info states, i.e. as relations between an input set of 

'assignments' and an output set of 'assignments', hence t := (st)((st)t). Everything else in 

our definition of type-driven translation remains the same. In particular, the only 

translation rule we need to change is TR0, i.e. the translation rule for the basic meanings 

– and even here, the modifications are minimal, as the table in (45) below shows. 

61. TR 0: PCDRT Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 

Type             
e := se           

t := (st)((st)t) 

[sleep]
inV
 ⇝ λve. [sleepet{v}] et

[own]
trV
 ⇝ λQ(et)t. λve. Q(λv'e. [owne(et){v, v'}]) ((et)t)(et)

[buy]
diV
 ⇝ λQ'(et)t. λQ(et)t. λve. Q'(λv'e. Q(λv''e. [buye(e(et)){v, v', v''}])) (ett)((ett)(et)) 

[house-elf]
N
 ⇝ λve. [house_elfet{v}] et

[heu] DP
 ⇝ λPet. P(ue) 

(et)t 

[theu] D
 ⇝ λP'et. λPet. [unique{u}]; P'(u); P(u),   

 where unique{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui'),  
 i.e. anaphoric and 'weakly' unique. 

⇝ λP'et. λPet. P'(u); P(u),      
 i.e. anaphoric. 

(et)((et)t) 

[tv] DP
 ⇝ λPet. P(ve) 

(et)t 

[heDobby] DP
 ⇝ λPet. P(Dobbye) 

(et)t 
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61. TR 0: PCDRT Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 

Type             
e := se           

t := (st)((st)t) 

[Dobbyu]
DP

 ⇝ λPet. [u | u=Dobby]; P(u) (et)t 

[who]
DP

 ⇝ λPet. P
(et)(et)

[Ø]
I
 / [-ed]

I
 / [-s]

I
 ⇝ λDt. D 

tt 

[doesn't]
I
 / [didn't]

I
 ⇝ λDt. [~D] tt 

[awk:u]
D
 ⇝ λP'et. λPet. [u]; P'(u); P(u),      

            i.e. λP'et. λPet. u(P'(u); P(u)),    

 where u(D) := [u]; D 

(et)((et)t) 

[astr:u]
D
 ⇝ λP'et. λPet. max

u(P'(u); P(u)),     where    

            max
u(D) := λIstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ),  

            i.e. λP'et. λPet. 
m

u(P'(u); P(u)),    

 where m
u(D) := max

u(D) 

(et)((et)t) 

[theu]
D
 ⇝ λP'et. λPet. max

u(P'(u)); [unique{u}]; P(u),   

            where unique{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui') and  

            max
u(D) := λIstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ), 

            i.e. λP'et. λPet. 
m

u(P'(u)); [unique{u}]; P(u),       
            i.e. existence and uniqueness – the Russellian analysis 

⇝ λP'et. λPet. max
u(P'(u)); P(u),     where    

            max
u(D) := λIstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ), 

            i.e. λP'et. λPet. 
m

u(P'(u)); P(u),     

            i.e. existence and maximality 

(et)((et)t) 

[detu]
D
 

e.g. everyu, nou, 

      mostu…             
(but not awk:u, astr:u, 
theu  or theu) 

⇝ λP'et. λPet. [detu(P'(u), P(u))],   where: 

         detu(D1, D2) := λIst. I≠Ø ∧ DET(u[D1I],  u[(D1; D2)I]), 

 where u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ}  

 and unique{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui')  
 and DET is the corresponding static determiner 

(et)((et)t) 

[if (+adv. of quant.)]
C
 ⇝ λD't. λDt. [det(D', D)],     where: 

      det(D1, D2) := λIst. I≠Ø ∧ DET(max[D1I],  max[(D1; [!D2])I]), 

 where max[DI] := ∪{Jst: max(D)IJ}  

 and max(D) := λIstJst. DIJ & ∀Kst(DIK → K⊆J)  
 and !D := Dom(D)     
 and DET is the corresponding static determiner 

t(tt) 

[if ]
C
(i.e. bare if) ⇝ λD't. λDt. [every(D', D)]         t(tt) 
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61. TR 0: PCDRT Basic Meanings (TN – Terminal Nodes). 

Lexical Item Translation 

Type             
e := se           

t := (st)((st)t) 

[and]
Conj

 ⇝ λv1. … λvn. v1 ⊓ … ⊓ vn 
τ(…(ττ)…) 

[or]
Conj

 ⇝ λv1. … λvn. v1 ⊔ … ⊔ vn 
τ(…(ττ)…) 

The definition of dynamically conjoinable types (DCTyp) is the same as in 

CDRT+GQ modulo the fact that we reset t to (st)((st)t), as shown in (62) below. 

62. PCDRT Dynamically Conjoinable Types (DCTyp).     

The set of PCDRT dynamically conjoinable types DCTyp is the smallest subset 

of Typ s.t. t∈DCTyp (t := (st)((st)t)) and, if τ∈DCTyp, then (στ)∈DCTyp for 

any σ∈Typ. 

We define generalized (pointwise) dynamic conjunction and disjunction as shown in 

(43) below (the same as the CDRT+GQ definition) – and thereby complete the definition 

of and and or in table (45) above. 

63. Generalized Pointwise Dynamic Conjunction ⊓⊓⊓⊓ and Disjunction ⊔⊔⊔⊔.          

  For any two terms α and β of type τ, for any τ∈DCTyp:    

α ⊓ β := (α; β) if τ=t   and   α ⊓ β := λvσ. α(v) ⊓ β(v) if τ=(σρ);  

α ⊔ β := [α ∨ β] if τ=t   and   α ⊔ β := λvσ. α(v) ⊔ β(v) if τ=(σρ).           

Abbreviation. α1 ⊓ α2 ⊓ … ⊓ αn := (…(α1 ⊓ α2) ⊓ … ⊓ αn)    

   α1 ⊔ α2 ⊔ … ⊔ αn := (…(α1 ⊔ α2) ⊔ … ⊔ αn).

 We are now ready to analyze the donkey examples we have introduced in the 

preceding sections and chapters.  

4.1. Bound Variable Anaphora 

First, we show that PCDRT preserves the compositional CDRT+GQ account of the 

basic kinds of examples. Let's start with the bound anaphora example in (51) below. 
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64. Every 1
u  house-elf hates himself

1
u . 

Just as CDRT+GQ, PCDRT can compositionally account for bound anaphora 

without Quantifier Raising and Quantifying-In: co-indexation is enough for binding 

because the meaning of the determiner every dynamically conjoins the restrictor and the 

nuclear scope DRS's to determine the set of individuals in its nuclear scope – thus, every

quantifies over 'assignments' in a selective way. 

Sentence (55) is compositionally translated as shown in (65) below. The PCDRT 

representation derives the intuitively correct truth-conditions, provided in (66). 

65. Every 1
u  house-elf hates himself

1
u . 

66. λIst. I≠Ø ∧ ∀xe(house_elf(x) → hate(x, x)) 

4.2. Quantifier Scope Ambiguities 

Let us turn now to the example in (67) below exhibiting quantifier scope 

ambiguities over and above the lexical ambiguity of the indefinite. We start with the 

[every 1
u ]

D

λP'et.λPet.[every
1

u (P'(u1), P(u1))] 

[house-elf]
N
 

λve.[house_elfet{v}]

NP 
λve.[house_elfet{v}]

DP 

λPet.[every
1

u ([house_elf{u1}], P(u1))] 

VP 

[every
1

u ([house_elf{u1}], [hate{u1, u1}])] 

V' 
λve.[hate{v, u1}] 

[hate]
trV

  

λQ(et)t.λve.Q(λv'e.[hatee(et){v, v'}])

[himself
1

u ]
DP

λPet.P(u1)

[-s]
I

λDt. D

                                IP 

[every
1

u ([house_elf{u1}], [hate{u1, u1}])] 

CP

Txt



163

weak reading of the indefinite – and we assign intuitively correct truth-conditions to both 

LFs, as shown in (69) and (71) below. 

67. Every 1
u  house-elf adores a wk:

2
u  witch. 

68. every 1
u >>awk:

2
u : [every

1
u ([house_elf{u1}],  [u2 | witch{u2}, adore{u1, u2}])] 

69. every 1
u >>awk:

2
u : λIst. I≠Ø ∧         

         ∀xe(house_elf(x) → ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ adore(x, y)))) 33

70. awk:
2

u >>every 1
u : [u2 | witch{u2},  every

1
u ([house_elf{u1}],  [adore{u1, u2}])] 

71. awk:
2

u >>every 1
u : λIst. I≠Ø ∧         

         ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y)))) 34

Take the update in (70), for instance. Intuitively, this update instructs us to do the 

following 'operations' on an input matrix I: fill column u2 only with witches; then, check 

that each way of filling column u1 with a single elf x is a way of filling column u1 with 

the elf x such that x adores every (corresponding) u2-witch. 

The LF's for the two readings are provided in (72) and (73) below. 

                                                

33 I use quantification over sets ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ adore(x, y))) in (69) only to make more explicit 
the relation between truth-conditions and plural info states in PCDRT (which plural info states store 
possibly non-singleton sets of individuals). In this particular case, quantification over sets is clearly not 

essential since ∃Yet≠Ø(∀ye∈Y(witch(y) ∧ adore(x, y))) is equivalent to the first order formula ∃ye(witch(y) ∧
adore(x, y)). 

34 Just as before (see fn. 33 above), note that quantification over sets is not essential: the formula 

∃Yet≠Ø(∀ye∈Y(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y)))) is equivalent to the first-order formula 

∃ye(witch(y) ∧ ∀xe(house_elf(x) → adore(x, y))). 
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72. every 1
u >>awk:

2
u : Every 1

u  house-elf adores a wk:
2

u  witch. 

every 1
u  house-elf

                         DP 

λPet.[every
1

u ([house_elf{u1}],  P(u1))] 

                                      VP 

[every
1

u ([house_elf{u1}],  [u2 | witch{u2}, adore{u1, u2}])] 

V' 
λve.[u2 | witch{u2}, adore{v, u2}] 

[adore]
trV

  

λQ(et)t.λve.Q(λv'e.[adoree(et){v, v'}])

[-s]
I

λDt. D

CP

Txt

DP 
λPet.[u2 | witch{u2}]; P(u2) 

a 2
u  witch

                                              IP 

[every
1

u ([house_elf{u1}],  [u2 | witch{u2}, adore{u1, u2}])] 
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73. awk:
2

u >>every 1
u : Every 1

u  house-elf adores a wk:
2

u  witch. 

If the indefinite is strong – as shown in (74) below –, we have two more LF's with 

the same structure as (72) and (73) above. Yet again, we assign intuitively correct truth-

conditions to both LF's, as shown in (76) and (78) below. 

74. Every 1
u  house-elf adores a str:

2
u  witch. 

75. every 1
u >>a str:

2
u : [every

1
u ([h.elf{u1}],  max 2

u ([witch{u2}, adore{u1, u2}]))] 

76. every 1
u >>a str:

2
u : λIst. I≠Ø ∧         

         ∀xe(h.elf(x) → ∃Yet≠Ø(∀ye(witch(y) ∧ adore(x, y) ↔ y∈Y))) 35

77. a str:
2

u >>every 1
u : max 2

u ([witch{u2},  every
1

u ([h.elf{u1}],  [adore{u1, u2}])]) 

                                                

35 Yet again, we can do away with quantification over sets since, for our purposes (i.e. the interpretation of 

(74)), we can substitute ∃ye(Fy) for ∃Yet≠Ø(∀ye(Fy ↔ y∈Y)) in both (76) and (78) – where F stands for the 
predicate that is appropriate in each of the two cases. 

every 1
u  house-elf

                          DP 

λPet.[every
1

u ([house_elf{u1}],  P(u1))] 

VP 

[every
1

u ([house_elf{u1}],  [adore{u1, v''}])] 

V' 
λve.[adore{v, v''}] 

[adore]
trV

  

λQ(et)t.λve.Q(λv'e.[adoree(et){v, v'}])

[-s]
I

λDt. D

CP

Txt

DPv''

λPet.[u2 | witch{u2}]; P(u2) 

a 2
u  witch

                                          IP 

[u2 | witch{u2},  every
1

u ([house_elf{u1}],  [adore{u1, u2}])] 

[tv''] DP

λPet.P(v''e) 

                             IP 

[every
1

u ([house_elf{u1}],  [adore{u1, v''}])] 
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78. a str:
2

u >>every 1
u : λIst. I≠Ø ∧         

             ∃Yet≠Ø(∀ye(witch(y) ∧ ∀xe(h.elf(x) → adore(x, y)) ↔ y∈Y)) 

4.3. Weak / Strong Ambiguities 

Consider first the strong donkey example in (79) below, which is most readily 

understood as a generalization about the habits of house-elves that are in love – this being 

the reason for the fact that the donkey indefinite receives a strong reading. The LF of the 

sentence and the main steps of its compositional translation are provided in (79). 

Intuitively, the translation in (79), i.e. the update associated with the Txt / CP / IP 

node, instructs us to check that, for any given matrix I, each way of pairing up a witch-

loving elf with each of the witches he loves is a way of pairing up a witch-loving elf with 

each of the witches he loves and with some purse he bought her. 

The translation derives the intuitively correct truth-conditions, given in (80).  
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79. Every 1
u  house-elf who falls in love with a str:

2
u  witch buys her

2
u  an wk:

3
u

alligator purse. 36

                                                

36 For more discussion of the particular interpretation of who in (79), see section 5 of chapter 3.

VP 

max 2
u ([witch{u2}, fall_in_love{v'', u2}])

                                V' 

λve.max 2
u ([witch{u2}, fall_in_love{v, u2}]) 

[fall in love]
trV

  

λQ(et)t.λve.Q(λv'e.[fall_in_lovee(et){v, v'}])

CP

[a str:
2

u  witch]
DP

λPet.max 2
u ([witch{u2}]; P(u2)) 

Txt

                                                                           IP 

[every
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, fall_in_love{u1, u2}]),  [u3 | a.purse{u3}, buy{u1, u2, u3}])]

[-s]
I

λDt. D

VP 

[every
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  [u3 | a.p{u3}, buy{u1, u2, u3}])] 

                           V' 
λve.[u3 | a.p{u3}, buy{v, u2, u3}] 

buy her
2

u an wk:
3

u  alligator purse  

                              DP 

λPet.[every
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  P(u1))] 

[every 1
u ]

D

λP'et.λPet.[every
1

u (P'(u1), P(u1))] 

NP 

λve.[house_elf{v}]; max 2
u ([witch{u2}, fall_in_love{v, u2}])

[house-elf]
N
 

λve.[house_elfet{v}]

CP 

λv''e.max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

[who]
DP

v''

λPet.P

CP

                                IP 

max 2
u ([witch{u2}, fall_in_love{v'', u2}])

[-s]
I

λDt. D

[tv''] DP

λPet.P(v''e) 
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80. λIst. I≠Ø ∧ ∀xe∀ye(house_elf(x) ∧ witch(y) ∧ adore(x, y)     

       → ∃ze(alligator_purse(z) ∧ buy(x, y, z))) 

The analysis of the classical weak donkey sentence in (81) below proceeds as 

expected – see the PCDRT translation in (82) and the truth-conditions in (83). 

Intuitively, the update in (82) instructs us to check the following, for any given 

matrix I: for each person x, if you can form a matrix based on I which stores x in column 

u1 and which stores some non-empty set of dimes that x has in column u2, then you 

should be able to form a (possibly different) matrix based on I which stores x in column 

u1 and some non-empty set of dimes that x has and puts in the meter in column u2. 

81. Every 1
u  person who has a wk:

2
u  dime will put it

2
u  in the meter. 

82. [every
1

u ([u2 | person{u1}, dime{u2}, have{u1, u2}],  [put_in_meter{u1, u2}])] 

83. λIst. I≠Ø ∧ ∀xe(person(x) ∧ ∃ye(dime(y) ∧ have(x, y))     

  → ∃ze(dime(z) ∧ have(x, z) ∧ put_in_meter(x, z))) 

4.4. Proportions 

The proportion problem is solved because we work with a selective form of 

generalized quantification – as exemplified by the analysis of sentence (84) below. This 

sentence is most readily understood as a generalization about the behavior of most house-

elves that are in love with a witch: every such witch ends up getting an alligator purse 

from the house-elf that is in love with her. Thus, the donkey indefinite a witch receives a 

strong reading. The PCDRT translation derives the intuitively correct truth-conditions 

(identical to the CDRT+GQ truth-conditions), provided in (85) below; note in particular 

that the PCDRT representation is false in the "Dobby as Don Juan" scenario, as desired. 
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84. Most 1
u  house-elves who fall in love with a str:

2
u  witch buy her

2
u  an wk:

3
u

alligator purse. 

85. λIst. I≠Ø ∧ |{xe: h.elf(x) ∧ ∃ye(witch(y) ∧ f.i.l(x, y)) ∧     

   ∀ye(witch(y) ∧ f.i.l(x, y) → ∃ze(a.p(z) ∧ buy(x, y, z)))}| >       

VP 

max 2
u ([witch{u2}, fall_in_love{v'', u2}])

                        V' 

λve.max 2
u ([witch{u2}, fall_in_love{v, u2}]) 

[fall in love]
trV

  

λQ(et)t.λve.Q(λv'e.[fall_in_lovee(et){v, v'}])

CP

[a str:
2

u  witch]
DP

λPet.max 2
u ([witch{u2}]; P(u2)) 

Txt

                                                                          IP 

[most
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, fall_in_love{u1, u2}]),  [u3 | a.purse{u3}, buy{u1, u2, u3}])]

[-Ø]
I

λDt. D

VP 

[most
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  [u3 | a.p{u3}, buy{u1, u2, u3}])] 

                           V' 
λve.[u3 | a.p{u3}, buy{v, u2, u3}] 

buy her
2

u an 3
u  alligator purse  

                              DP 

λPet.[most
1

u ([house_elf{u1}]; max 2
u ([witch{u2}, f.i.l{u1, u2}]),  P(u1))] 

[most 1
u ]

D

λP'et.λPet.[most
1

u (P'(u1), P(u1))] 

NP 

λve.[house_elf{v}]; max 2
u ([witch{u2}, fall_in_love{v, u2}])

[house-elf]
N
 

λve.[house_elfet{v}]

CP 

λv''e.max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

[who]
DP

v''

λPet.P

CP

                                IP 

max 2
u ([witch{u2}, fall_in_love{v'', u2}]) 

[-Ø]
I

λDt. D

[tv''] DP

λPet.P(v''e) 
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       |{xe: house_elf(x) ∧ ∃ye(witch(y) ∧ fall_in_lovel(x, y) ∧    

    ¬∃ze(a.purse(z) ∧ buy(x, y, z)))}| 

4.5. Mixed Weak & Strong Sentences 

The PCDRT definition of selective generalized quantification enables us to assign 

intuitively correct interpretations to our mixed weak & strong donkey sentences, repeated 

in (86) and (87) below. 

86. Every 1
u  person who buys a str:

2
u  book on amazon.com and has a wk:

3
u  credit card 

uses it
3

u  to pay for it
2

u . 

87. Every 1
u  man who wants to impress a str:

2
u  woman and who has an wk:

3
u  Arabian 

horse teaches her
2

u  how to ride it
3

u . 

Given that their PCDRT analyses are basically identical, I will analyze only 

sentence (86). Its PCDRT translation – obtained compositionally in much the same way 

as the translations for the donkey sentences we have just examined – is provided in (88).  

88. [every
1

u ([pers{u1}]; max 2
u ([bk{u2}, buy{u1, u2}]); [u3 | c.card{u3}, hv{u1, u3}],         

     [use_to_pay{u1, u2, u3}])] 

The PCDRT translation in (88) derives the intuitively correct truth-conditions, 

provided in (89) below. 

89. λIst. I≠Ø ∧ ∀xe(person(x) ∧ ∃Re(et)≠Ø(∀ye(book(y) ∧ buy(x, y) ↔ y∈Dom(R)) ∧  

      ∀ze∈Ran(R)(c.card(z) ∧ have(x, z)))  

  → ∃Re(et)≠Ø(∀ye(book(y) ∧ buy(x, y) ↔ y∈Dom(R)) ∧   

            ∀ze∈Ran(R)(c.card(z) ∧ have(x, z))   

            ∀ye∀ze(Ryz → use_to_pay(x, y, z)))), i.e.        

λIst. I≠Ø ∧ ∀xe(person(x) ∧ ∃ye(bk(y) ∧ buy(x, y)) ∧ ∃ze(c.card(z) ∧ hv(x, z)) 

            → ∀ye(bk(y) ∧ buy(x, y) → ∃ze(c.card(z) ∧ hv(x, z) ∧ u.t.p(x, y, z)))) 
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4.6. Donkey Anaphora to Structure 

Let us turn to an example that involves structured donkey anaphora, i.e. the nuclear 

scope anaphorically retrieves not only the values of the donkey indefinites, but also the 

relational structure associated with those values. 

Consider (90) below: as we have already noticed, both indefinites, i.e. a str:
2

u  

Christmas gift and a str:
3

u  girl in his class, receive a strong reading, i.e. for each u1-boy, we 

consider the set of all gifts that he bought for some girl in his class and the set of all girls 

that said u1-boy bought a gift for. However, we need to store not only the sets, but also 

the correspondences between them established by the buying events, so that we can 

retrieve this correspondence in the nuclear scope, where we assert that, for each u3-girl, 

her deskmate was asked to wrap the u2-gift that was bought for said u3-girl. 

90. Every 1
u  boy who bought a str:

2
u  Christmas gift for a str:

3
u  girl in his class asked 

her
3

u  deskmate to wrap it
2

u . 

I will analyze her
3

u  deskmate as the 4
u  deskmate of her

3
u  and give a Russellian 

translation for the definite description, i.e. I assume it contributes existence and 

uniqueness. Since the uniqueness of the u4-deskmate needs to be relativized to the u3-girl, 

I will use an anaphoric uniqueness condition of the form uniqueu'{u}, as shown in (91) 

below. 

91. her
3

u 4
u  deskmate (i.e. the

3
u 4

u  deskmate of her
3

u )      

⇝ λPet. max 4
u ([deskmate{u4}, of{u4, u3}]); [unique

3
u {u4}]; P(u),  

where unique
3

u {u4} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(u3i=u3i' → u4i=u4i') 

The PCDRT translation of sentence (90) is provided in (92) below. The translation 

derives the intuitively correct truth-conditions, given in (93). 
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92. [every
1

u ([boy{u1}]; max 2
u ([gift{u2}]; max 3

u ([girl{u3}, buy{u1, u2, u3}])),  

max 4
u ([deskmate{u4}, of{u4, u3}]); [unique

3
u {u4}]; [a.t.w{u1, u4, u2}])]37

93. λIst. I≠Ø ∧ ∀xe(boy(x) ∧         

            ∃Re(et)≠Ø(Dom(R) = {ye: gift(y) ∧ ∃ze(girl(z) ∧ buy(x, y, z))} ∧  

   Ran(R) = {ze: girl(z) ∧ ∃ye∈Dom(R)(buy(x, y, z))} ∧  

   ∀ye∀ze(Ryz → buy(x, y, z)))     

         → ∃Re(et)≠Ø(Dom(R) = {ye: gift(y) ∧ ∃ze(girl(z) ∧ buy(x, y, z))} ∧  

   Ran(R) = {ze: girl(z) ∧ ∃ye∈Dom(R)(buy(x, y, z))} ∧  

   ∀ye∀ze(Ryz → buy(x, y, z)) ∧      

   ∀ye∀ze(Ryz →       

   ∃z'e(∀z''e(d.m(z'') ∧ of(z'', z) ↔ z''=z') ∧ a.t.w(x, z', y))))),   

i.e. given the natural assumption that no boy bought the same gift for two distinct 

girls, so that there is only one relation R with the required properties,       

λIst. I≠Ø ∧ ∀xe∀Re(et)≠Ø(boy(x) ∧        

   Dom(R) = {ye: gift(y) ∧ ∃ze(girl(z) ∧ buy(x, y, z))} ∧  

   Ran(R) = {ze: girl(z) ∧ ∃ye∈Dom(R)(buy(x, y, z))} ∧  

   ∀ye∀ze(Ryz → buy(x, y, z))     

            → ∀ye∀ze(Ryz →        

          ∃z'e(∀z''e(d.m(z'') ∧ of(z'', z) ↔ z''=z') ∧ a.t.w(x, z', y)))) 

5. Summary 

The main goal of this chapter was to give a compositional account of weak / strong 

ambiguities that generalizes to mixed reading relative-clause donkey sentences like the 

one in (1) above. The main proposal is that the weak / strong donkey ambiguity is located 

at the level of the indefinite article, which is ambiguous (or underspecified) between a 

weak and a strong / maximal reading.  

                                                

37 Intuitively, uniqueness needs to be relativized to u3 in unique
3

u {u4} because, otherwise, we would 

require every u4-individual to be the same, i.e. there would have to be just one deskmate over all. 
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The two crucial ingredients of the analysis are: (i) plural information states 

(modeled as sets of 'variable assignments', which can be represented as matrices with 

'assignments' as rows) and (ii) a maximization operator use to specify the meaning of 

strong indefinite articles. The resulting system is dubbed Plural Compositional DRT 

(PCDRT). Given the underlying type logic, compositionality at sub-clausal level follows 

automatically and standard techniques from Montague semantics (e.g. type shifting) 

become available. 

In PCDRT, sentences denote relations between an input and an output plural info 

state, i.e. sentences non-deterministically update a plural info state. Indefinites non-

deterministically introduce both values and structure, i.e. they introduce structured sets of 

individuals, and pronouns are anaphoric to such structured sets. Quantification over 

individuals is defined in terms of matrices (i.e. plural info states) instead of single 

'assignments' and the semantics of the non-quantificational part becomes rules for how to 

fill out a matrix. 

PCDRT enables us to give a compositional account of a variety of phenomena, 

including mixed reading relative-clause donkey sentences, while keeping the dynamic 

meanings of generalized determiners, pronouns and indefinite articles very close to their 

static, Montagovian counterparts. 

6. Comparison with Alternative Approaches 

To my knowledge, the existence of mixed reading donkey sentences was observed 

for the first time by van der Does (1993) for relative-clause donkey sentences and by 

Dekker (1993) for conditional donkey sentences. Their examples are provided in (94) and 

(95) below. 

94. Every farmer who has a horse and a whip in his barn uses it to lash him.   

(van der Does 1993: 18, (26)) 

95. If a man has a dime in his pocket, he throws it in the parking meter.    

(Dekker 1993: 183, (25)). 
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The example in (1) above (Every 1
u

 person who buys a 2
u

 book on amazon.com and 

has a 3
u

 credit card uses it
3

u  to pay for it
2

u ) makes one additional point that is obscured 

by the examples in (94) and (95), namely that the weak reading of the indefinite a credit 

card in (1) is compatible with the set of credit cards being a non-singleton set – since I 

could use different credit cards to buy different (kinds of) books. 

As already remarked in the previous chapters, weak / strong donkey ambiguities in 

general and mixed weak & strong relative-clause donkey sentences in particular pose 

problems for many influential dynamic theories of donkey sentences, including Heim 

(1982/1988), Kamp & Reyle (1993), Dekker (1993), Kanazawa (1994a) and Chierchia 

(1995). The main reason is that, in these dynamic theories, donkey indefinites do not 

have any quantificational force whatsoever, so all the truth-conditional effects associated 

with donkey anaphora have to be built into whatever element in the environment gives 

the quantificational force of the indefinite.  

In the case of the mixed reading example in (1), this requires us to pack an entire 

logical form into the meaning of the generalized determiner every. As shown explicitly by 

the classical first-order translation of example (1), repeated in (96) below, the generalized 

determiner every needs to specify three things: (i) the fact that the indefinite a book is 

strong; (ii) the fact that the indefinite a credit card is weak and (iii) the fact that the strong 

indefinite a book can take scope over the weak indefinite a credit card, since I can use 

different cards to buy different (kinds of) books. 

96. ∀x(person(x) ∧ ∃y(book(y) ∧ buy_on_amazon(x, y)) ∧ ∃z(c.card(z) ∧ have(x, z))  

→ ∀y'(book(y') ∧ buy_on_amazon(x, y')      

         → ∃z'(c.card(z') ∧ have(x, z') ∧ use_to_pay(x, z', y')))) 

Thus, dynamic approaches of this kind are forced to give increasingly complex and 

stipulative meanings for selective generalized determiners. In contrast, the proposal I 

have pursued in this chapter is that indefinites should be endowed with a minimal 

quantificational force of their own: (i) just as in DPL, I let them contribute an existential 

quantification; (ii) what is new is that I also let them specifiy whether the existential 
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quantification they introduce is maximal or not, i.e. whether they introduce in discourse 

some witness set or the maximal witness set that satisfies the nuclear scope update38. 

The pseudo-scopal relation between the strong indefinite a book and the weak 

indefinite a credit card in (1) above ("pseudo" because, by the Coordinate Structure 

Constraint, the strong indefinite cannot syntactically take scope over the weak indefinite) 

arises as a consequence of the fact that PCDRT uses plural information states, which 

store and pass on information about both the sets of objects and the dependencies 

between these objects that are introduced and elaborated upon in discourse. 

Before examining alternative approaches in more detail, I want to indicate three 

respects in which PCDRT differs from most previous dynamic approaches (irrespective 

of whether or how they analyze weak / strong ambiguities). 

The first difference is conceptual: PCDRT explicitly embodies the idea that 

reference to structure is as important as reference to value and that the two should be 

treated in parallel (see the definition of dref introduction and its justification in section 

3.2 above).  

Capturing reference to structure as discourse reference to structure, i.e. by means of 

plural information states rather than by means of choice and / or Skolem functions (or 

dref's for such functions), is preferable for the following reason: such functions can in 

principle be used to capture donkey anaphora to structure, but they have to have variable 

arity depending on how many simultaneous donkey anaphoric connections there are, i.e. 

the arity of the functions is determined by the discourse context. It is therefore more 

desirable to encode this context dependency in the database that stores discourse 

information, i.e. the info state, and not in the representation of a lexical item (the donkey 

pronoun and / or the donkey indefinite); for a related argument, see also section 7.2 in 

chapter 7 below. 

                                                

38 A witness set for a static quantifier DET(A) (where DET is a static determiner and A is a set of 

individuals) is any set of individuals B such that B⊆A and DET(A)(B). See Barwise & Cooper 1981: 103 
(page references to Portner & Partee 2002). 
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The second difference is empirical: the motivation for plural information states is 

provided by singular and intra-sentential donkey anaphora, in contrast to the previous 

literature which relies on plural and cross-sentential anaphora (see van den Berg 1994, 

1996a, b, Krifka 1996b, and Nouwen 2003 among others). 

Importantly, donkey anaphora to structure provides a much stronger argument for 

the idea that plural info states are semantically necessary. To see this, consider anaphora 

to value first: a pragmatic account is plausible for cases of cross-sentential anaphora (e.g. 

in A man came in. He sat down, the pronoun he can be taken to refer to whatever man is 

pragmatically brought to salience by the use of an indefinite in the first sentence), but less 

plausible for cases of intra-sentential donkey anaphora (no single donkey is brought to 

salience in Every farmer who owns a donkey beats it). 

Similarly, a pragmatic account of anaphora to structure is plausible for cases of 

cross-sentential anaphora like Every man saw a woman. They greeted them. This 

discourse asserts that every man greeted the woman / women that he saw, i.e. the greeting 

structure is the same as the seeing structure – but the identity of structure might be a 

pragmatic addition to semantic values that are unspecified for structure (e.g. the second 

sentence They greeted them could be interpreted cumulatively in the sense of Scha 1981). 

However, a pragmatic approach is much less plausible for cases of intra-sentential 

donkey anaphora to structure instantiated by sentence (2) above. 

Third, PCDRT takes the research program in Muskens (1996) of unifying different 

semantic frameworks, i.e. Montague semantics and dynamic semantics, one step further: 

PCDRT unifies in classical type logic the static, compositional analysis of generalized 

quantification in Montague semantics and van den Berg's Dynamic Plural Logic. The 

unification is not a trivial task, given certain peculiarities of Dynamic Plural Logic, e.g. 

the fact that its underlying logic is partial and the fact that discourse-level plurality (i.e. 

the use of plural information states) and domain-level plurality (i.e. non-atomic 

individuals) are conflated39.  

                                                

39 For more on the distinction between discourse-level and domain-level plurality, see chapter 8 below and 
Brasoveanu (2006c). 
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One of the advantages of the resulting type-logical framework is that it can be 

extended in the usual way with additional sorts for eventualities, times and possible 

worlds, which enables PCDRT to account for temporal and modal anaphora and 

quantification in a way that is parallel to the account of individual-level anaphora and 

quantification. The modal extension is worked out in chapter 7 below. 

The previous accounts of weak / strong donkey sentences fall (roughly) into three 

categories: 

• accounts that locate the ambiguity at the level of the generalized determiner (e.g. the 

determiner every in the classic example Every farmer who owns a donkey beats it); 

most dynamic accounts fall into this category, including Rooth (1987), Van Eijck & 

de Vries (1992), Dekker (1993), Kanazawa (1994a, b), but also the D-/E-type 

approach in Heim (1990); these approaches will be discussed in section 6.1;  

• accounts that locate the ambiguity at the level of the donkey pronoun, e.g. the D-/E-

type approaches in van der Does (1993) and Lappin & Francez (1994); these 

approaches will be discussed in section 6.2; 

• accounts that locate the ambiguity at the level of the indefinite article; this is the 

approach pursued in this chapter and in van den Berg (1994, 1996a); van den Berg's 

approach will be discussed in section 6.3. 

In addition, there is also the hybrid dynamic/E-type approach pursued in Chierchia 

(1995). This approach will be discussed in section 6.2. 

6.1. Weak / Strong Determiners 

I can see two reasons for locating the weak / strong ambiguity in the donkey 

indefinites and not in the dynamic meaning of generalized determiners.  

The first one – already presented above – has to do with the syntax/semantics aspect 

of the interpretation of donkey sentences, in particular, with the requirement of (strict) 

compositionality. If we attribute the weak / strong ambiguity to the determiner and we 

want to derive the intuitively correct truth-conditions for the mixed reading donkey 

sentence in (1), we basically need to pack an entire logical form into the meaning of the 
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generalized determiner every, which needs to non-locally / non-compositionally 

determine both the readings associated with different donkey indefinites and their relative 

(pseudo-)scope.  

The other reason for locating the weak / strong ambiguity in the indefinites is 

concerned with the semantics/pragmatics side of the interpretation of donkey sentences, 

namely the variety of factors that influence which reading is selected in any given 

instance of donkey anaphora and the defeasible character of the generalizations 

correlating these factors and the resulting readings. 

Some of these factors are:  

• the logical properties of the determiners – see Kanazawa (1994a, b); 

• world-knowledge – see the 'dime' example in Pelletier & Schubert (1989) and, 

also, the examples and discussion in Geurts (2002);  

• the information (focus-topic-background) structure of the sentence – see Kadmon 

(1987), Heim (1990); 

• the kind of predicates that are used, i.e. total vs. partial predicates – see Krifka 

(1996a) and references therein;  

• whether the donkey indefinite is referred back to by a donkey pronoun – see 

Bäuerle & Egli (1985)40.  

Given the variety of factors that influence which reading is selected in any given 

instance of donkey anaphora and also the defeasible character of the generalizations 

correlating these factors and the resulting readings, I think that the most conservative 

hypothesis is to locate the weak / strong ambiguity at the level of the donkey indefinites 

themselves, i.e. to make the donkey items ambiguous  between a weak and a strong 

meaning41, and let more general and defeasible pragmatic mechanisms decide which 

meaning is selected in any particular case. 

                                                

40 Apud Heim (1990). 

41 Ambiguous between a weak and a strong reading or, alternatively, underspecified for weak / strong 
readings (like quantifier scope, for example, is underspecified) or vague (like adjectives). 
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One of the most theoretically appealing accounts of the weak / strong donkey 

ambiguity is due to Kanazawa (1994a, b), which locates the ambiguity in the meaning of 

the generalized determiners. I will therefore dedicate the remainder of this section to 

making two more points that seem to favor the PCDRT indefinite-based theory – or, at 

least, to give it sufficient initial plausibility. 

First, Kanazawa's account is ultimately pragmatic, just like the account I am 

suggesting. In fact, except for the fact that he chooses to make the dynamic generalized 

determiner – and not the indefinite – underspecified, I think that all the observations 

below also apply to the PCDRT account. 

"The primary assumption I make is the following: […] The grammar rules in 
general underspecify the interpretation of a donkey sentence. 
Thus, I assume that, for any donkey sentence, the grammar only partially 
characterizes its meaning, with which a range of specific interpretations are 
compatible. So the truth value of donkey sentences in particular situations may be 
left undecided by the grammar. This may not be such an outrageous idea; it may 
explain the lack of robust intuitions about donkey sentences. 
For the sake of concreteness, I assume that the underspecified interpretation of a 
donkey sentence Det N' VP assigned to by the grammar can be represented using 
an indeterminate dynamic generalized determiner Q which is related to the static 
generalized determiner Q denoted by Det and which satisfies certain natural 
properties. […] 
Even if its interpretation is underspecified, a sentence may be assigned a definite 
truth-value in special circumstances. […] It is not unreasonable to suppose that 
people are capable of assessing the truth value of a donkey sentence without 
resolving the 'vagueness' of the meaning given by the grammar when there is no 
need to do so. […] underspecification causes no problems for people in assigning 
a truth value to a donkey sentence in situations where the uniqueness condition 
for the donkey pronoun is met." 
(Kanazawa 1994a: 151-152) 

Note in particular the situations in which the "uniqueness condition" is met are 

precisely the situations in which the PCDRT weak and strong meanings for the indefinite 

article are conflated; for more discussion about uniqueness effects in donkey sentences, 

see section 6.2 of chapter 6 below. 

 Thus, both accounts of the weak / strong donkey ambiguity defer the task of 

disambiguation to pragmatics – which brings me to the second, empirical point. The 

hypothesis that the weak / strong ambiguity (or underspecification) should be located in 
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the generalized determiner has more plausibility than the PCDRT hypothesis only if we 

observe that the logical properties of the determiners are, consistently, the main deciding 

disambiguation factor. This is clearly not true for the determiner every: its monotonicity-

based bias for strong readings is easily trumped by world knowledge (as shown by the 

'dime' example; see also the discussion in Kanazawa 1994a: 122-124 and Geurts 2002). 

I will now point out that the monotonicity-based bias can be systematically 

overridden for most other determiners in a particular kind of construction that involves 

nuclear scope negation. This observation – together with the above list of five unrelated 

factors that influence the choice between weak and strong readings – provides support for 

the conservative hypothesis that the source of the weak / strong donkey ambiguity should 

be located in the donkey indefinites and not in some other element in their environment. 

Donkey Readings and Nuclear Scope Negation
42

I use "nuclear scope negation" as a cover term for negative items, e.g. sentential 

negation or negative verbs like fail, forget and refuse, that occur within the nuclear scope 

of a quantification and that semantically take scope over the other elements in the nuclear 

scope. To my knowledge, the only examples of nuclear scope negation discussed in the 

previous literature are the ones provided in (97), (98), (99) and (100) below43. 

97. A boy who had anu apple in his rucksack didn't give itu to his sister.        

(van der Does 1993: 18, (27c)) 

98. No man who had au credit card failed to use itu.           

(Kanazawa 1994a: 117, fn. 16) 

99. Every person who had au dime in his pocket did not put itu into the meter.   

(Lappin & Francez 1994: 401, (22a)) 

100. Every person who had au dime in his pocket refused to put itu into the meter. 

 (Lappin & Francez 1994: 401, (22a)) 

                                                

42 I am grateful to Hans Kamp (p.c.) for pointing out to me that there seems to be a systematic correlation 
between sentential negation and donkey readings. Most of the empirical observations in this sub-section 
emerged during or as a result of our conversations. 

43 Geurts (2002) also mentions the examples due to van der Does (1993) and Kanazawa (1994a), but he 
believes that "such examples are hard to find" (Geurts (2002): 131). 
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The generalization that emerges based in these examples and which trumps the 

monotonicity-based bias observed in Kanazawa 1994a is that nuclear scope negation 

generally requires the strong reading for donkey sentences; see also Lappin & Francez 

(1994) for observations that point towards the same generalization (p. 408 in particular) 

and for a critique of Kanazawa (1994a) based on sentences (99) and (100) (pp. 410-411). 

Sentence (97) is interpreted as asserting that there is some boy such that, for every apple 

in his rucksack, he didn't give that apple to his sister. Sentence (98) is interpreted as 

asserting that no man is such that, for every credit card of his, he failed to use that card, 

i.e. no man failed to use every credit card of his – or, equivalently, every man used some 

credit card or other. 

The examples in (97) and (98) form minimal pairs with sentences (101) and (102) 

below, where there is no nuclear scope negation and where the most salient donkey 

reading is the weak one (just as Kanazawa 1994a predicts they should). 

101. A boy who had anu apple in his rucksack gave itu to his sister. 

102. No man who had au credit card used itu (to pay the bill). 

We can observe a similar contrast for non-monotone intersective determiners of the 

form exactly n, also predicted by Kanazawa (1994a) to favor the weak reading (just as the 

intersective but monotone determiners a and no do). The most salient reading of (103) 

below is the strong donkey reading: exactly two men are such that, for every credit card 

they had, they failed to use that card. The most salient reading of (104) is the weak one: 

exactly two men used some credit card they had. 

103. Exactly two men who had au credit card failed to use itu / didn't use itu / forgot to 

use itu. 

104. Exactly two men who had au credit card used itu. 

The same applies to the only-based donkey examples in (105) and (106) below. 

105. Only two men who had au credit card failed to use itu / didn't use itu / forgot to 

use itu. 

106. Only two men who had au credit card used itu. 
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As the examples (99) and (100) above show, even the classical weak reading 

example in (107) below becomes strong under the influence of nuclear scope negation: 

the example in (108) below is interpreted as asserting that every man who had a quarter 

was such that, for every quarter of his, he refused to put that quarter in the meter. The 

pairs of at least n-, at most n- and most-sentences in (109)-(110), (111)-(112) and (113)-

(114) below instantiate the same kind of contrast. 

107. Every man who had au quarter put itu in the meter. 

108. Every man who had au quarter refused to put itu in the meter / forgot to put itu in 

the meter. 

109. At least two men who had au quarter put itu in the meter. 

110. At least two men who had au quarter refused to put itu in the meter / forgot to 

put itu in the meter. 

111. At most two men who had au quarter put itu in the meter. 

112. At most two men who had au quarter refused to put itu in the meter / forgot to 

put itu in the meter. 

113. Most men who had au nice suit wore itu at the town meeting.   

 (based on Kanazawa 2001: 386, (17)) 

114. Most men who had au nice suit refused to wear itu at the town meeting / forgot 

to wear itu at the town meeting / didn't wear itu at the town meeting. 

In contrast, note that negation with scope over the entire donkey quantification does 

not have a similar 'strengthening' effect, as the examples in (115), (116) and (117) below 

show. Consider (116) for example: its strong reading is that not every man who had a 

credit card is such that, for every credit card he had, he used that card to pay the bill – an 

assertion that borders on triviality. Intuitively, sentence (116) asserts that not every man 

who had a credit card used some credit card of his to pay the bill – or, equivalently, that 

there is a man who had a credit card and who didn't use any of his cards to pay, i.e. the 

weak donkey reading. 

115. Not every man who had au quarter put itu in the meter. 

116. Not every man who had au credit card used itu to pay the bill. 



183

117. Not every person who buys au book on amazon.com and who has au' credit card 

uses itu' to pay for itu. 

However, just like the other generalizations about the distribution of weak vs. strong 

donkey readings, the correlation between nuclear scope negation and the strong donkey 

reading is not without exception. A top-level negation cancels the 'strengthening' effect of 

the nuclear scope negation, as the examples in (118) and (119) below show.  

Incidentally, note that the weak donkey sentences in (118) and (119) and the ones in 

(115), (116) and (117) above show that ↑MON↓ determiners like not every and not all

reliably tolerate weak readings, contra Kanazawa (1994a): 118 et seqq. 

118. Not every man who had au credit card failed to use itu. 

119. Not every man who had a nice suit refused to wear itu at the town meeting / 

forgot to wear itu at the town meeting. 

Sentences (118) and (119) indicate that, if there is any correlation between negation, 

the monotonicity properties of the generalized determiners and the choice between weak 

and strong donkey readings, this correlation cannot be locally and deterministically 

established by taking into account only some particular item in the context of the donkey 

indefinites, be it the generalized determiner or the nuclear scope negation – we need to 

take into account the whole quantification and, on top of that, factors of a different 

nature, e.g. world knowledge about how credit card owners normally behave (they don't 

pay with all their credit cards) or about how people normally wear their suits (not all of 

them at the same time, even if they are very nice).

I conclude with the example in (120) below, which provides one more exception to 

the correlation between nuclear scope negation and strong donkey readings. The most 

salient reading of (120) is that every man who placed a suitcase on the belt took back 

every suitcase after it was X-rayed, i.e. no man who placed a suitcase on the belt failed, 

for some such suitcase, to take it back, i.e. the weak donkey reading. 

120. (At the airport "self check-in", where customers place their suitcase / suitcases 

on the belt to have them X-rayed:)       
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 No man who placed au suitcase on the belt forgot to take itu back after itu was X-

rayed / failed to take itu back after itu was X-rayed. 

I leave the analysis of the above generalizations for future research – but I hope to 

have established that the volatile nature of the weak / strong donkey ambiguity makes the 

PCDRT account at least as plausible as the alternative dynamic strategy of locating the 

source of the ambiguity in the selective generalized determiners. 

6.2. Weak / Strong Pronouns 

D-/E-type accounts of donkey anaphora fall into two categories with respect to the 

problem posed by weak / strong ambiguities. If they address the problem (e.g. Neale 

1990 and Elbourne 2005 do not), they either locate the weak / strong ambiguity in the 

meaning of the generalized determiner, e.g. Heim (1990), or in the meaning of the 

donkey pronoun, e.g. van der Does (1993) and Lappin & Francez (1994). 

Given that the strategy in Heim (1990) is basically the same as the one pursued by 

the dynamic accounts discussed in the previous section, the resulting analysis faces the 

same kind of problems (mutatis mutandis). 

In this section, I will focus on accounts that take the donkey pronoun to be the 

source of the weak / strong ambiguity; in particular, I will focus on the account in Lappin 

& Francez (1994), but the general argument also applies to van der Does (1993). 

Lappin & Francez (1994) assume the ontology in Link (1983), which countenances 

both (atomic) individuals and individual sums thereof – or i-sums. Lappin & Francez 

(1994): 403 propose to analyze donkey pronouns as functions from individuals to i-sums, 

e.g., in the classical donkey example Every farmer who owns a donkey beats it, the 

pronoun it denotes a function f that, for every donkey-owning farmer x, returns some i-

sum f(x) of donkeys that x owns, i.e. the sum of some subset of the donkeys that x owns. 

Strong donkey readings are obtained by placing a maximality constraint on the 

function f, which requires f to select, for each x in its domain, the supremum of its 

possible values, i.e., in the case at hand, the maximal i-sum of donkeys that x owns. Weak 
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donkey readings are obtained by suspending the maximality constraint, i.e. f is a choice 

function from x to one of the i-sums of donkeys that x owns. 

I will use DP-conjunction donkey sentences of the kind analyzed in section 5.6 of 

chapter 4 above to distinguish between the D-/E-type strategy of locating the weak / 

strong ambiguity in the meaning of the donkey pronoun and the PCDRT strategy of 

locating it in the meaning of the donkey indefinite. 

DP-Conjunction Donkey Sentences with Mixed Readings

Consider the mixed weak & strong donkey sentences in (121) below, whose 

subjects is a conjunction of two DP's. 

121. (Today's newspaper claims that, based on the most recent statistics:)   

Every 1
u  company who hired a 2

u  Moldavian man, but no 3
u  company who hired 

a 2
u  Transylvanian man promoted him

2
u  within two weeks of hiring. 

Intuitively, the sentence asserts that every company who hired a Moldavian 

promoted every Moldavian it hired within two weeks, while there is no company who 

hired some Transylvanian and promoted some Transylvanian it hired within two weeks – 

that is, the donkey anaphora to a Moldavian man is strong and the donkey anaphora to a 

Transylvanian man is weak.  

Crucially, the very same pronon it is intuitively anaphoric to both indefinites. 

Example (121) poses a problem for approaches like Lappin & Francez (1994) and van der 

Does (1993), which locate the weak / strong ambiguity in the donkey pronouns, because 

there is only one pronoun in (121), but two distinct donkey readings.  

Note that there is no immediately obvious was in which covert syntactic operations 

could 'reconstruct' two pronouns in the case of (121) – or in the case of the similar 

example in (122) below. Examples (121) and (122) do not seem to be instances of ellipsis 

or Right Node Raising, in which case we could have assumed that the pronoun is covertly 

duplicated at the level of LF. Also, covertly duplicating at LF the pronoun in (121) (or 

(122)) by rightward Across-the-Board (ATB) movement of the VP does not seem to be 

an independently motivated syntactic operation in English. And, even if rightward ATB 
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movement of the VP is possible, one still needs to reconstruct the VP in both places to get 

two pronouns and, presumably, assign the reconstructed pronouns two different indices. 

Sentence (122) below makes the same point as (121) – the only difference is that, in 

(122), we conjoin two DP's headed by the same generalized determiner44,45. The sentence 

in (122) can be felicitously uttered in the following context: there is this Sunday fair 

where, among other things, people come to sell their young puppies – and they do want to 

get rid of all of them before they are too old. Also, the fair entrance fee is one dollar. 

Now, the fair rules are strict: all the puppies need to be checked for fleas at the gate and, 

at the same time, the one dollar bills also need to be checked for authenticity because of 

the many faux-monnayeurs in the area. So: 

122. Everyone 1
u  who has a 2

u  puppy (to sell) and everyone 3
u  who has a 2

u  dollar (to 

pay the fee) brings it
2

u  to the gate to be checked. 

The most salient interpretation of sentence (122) is that every potential seller brings 

all her or his puppies to the gate to be checked, while every potential buyer needs to bring 

only one of her or his dollars, i.e. anaphora to a 2
u  puppy is strong, while anaphora to a 2

u  

dollar is weak. 

Thus, I assume that, in the case of both (121) and (122) above, what one sees is 

what one gets: two donkey indefinites, one donkey pronoun and two donkey readings. 

These mixed weak & strong donkey sentences pose problems for the approach in Lappin 

                                                

44 Note also that the intonational tune in example (122) is the same as the one associated with declarative 
sentences like Every student and every professor was invited to the party, the LF of which is not derived by 
ellipsis and / or Right Node Raising. 

45 Variants of the mixed reading example in (122) are given in (i) and (ii) below; note that, in all cases, the 
context needs to be tweaked in a way that prevents the default parallel interpretation of the two conjuncts 
(i.e. both donkey indefinites are strong or both are weak).  

The example in example (122) is the refinement of (ii), due to Sam Cumming, following Klaus von 
Heusinger's and Hans Kamp's suggestions (p.c.).  

(i) (There aren't that many ambulant theater troupes anymore in Romania. This is because of the following 
custom:) At the end of a play, every person that liked the play and has au dime and every person that didn't 
like the play and has au rotten tomato throws itu at the actors. 

(ii) (It's market day. So:) Every farmer who owns au donkey and every spectator who has au dollar – for 
entry – brings itu to the saleyard. 
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& Francez (1994) because either the donkey pronouns him
2

u  in (121) and it
2

u  in (122) are 

subject to the maximality constraint and therefore can deliver only strong donkey 

readings or the maximality constraint is suspended and the donkey pronouns can deliver 

only the weak reading. 

These sentences pose an even more severe problem for the hybrid approach to weak 

/ strong ambiguities proposed in Chierchia (1995), where the weak reading is derived 

within a dynamic framework and the strong reading is attributed to a D-/E-type reading 

of the donkey pronoun. Given that Chierchia (1995) agrees with the observation that 

examples like (121) and (122) above involve a single pronoun (he actually uses examples 

of the same form to argue for a semantic as opposed to a syntactic approach to donkey 

anaphora), his approach is faced with the problem of deriving, by means of a single 

pronoun, two different donkey readings which are furthermore claimed to involve two 

different kinds of semantic representations for the pronoun. 

One more move seems to still be open possible for the D-/E-type approach in 

Lappin & Francez (1994); following a suggestion from Chierchia (1995): 116-117, the 

donkey pronouns him
2

u  in (121) and it
2

u  in (122) could be interpreted as denoting the 

union of two different functions, a maximal one that is contributed by the first DP in their 

respective sentences and a non-maximal, choice-based one that is contributed by the 

second DP. Note, however, that this strategy does not work in general because the union 

of two functions is not necessarily a function. In particular, suppose that, in (121), the 

very same company x hired both a Moldavian man and a Transylvanian man; the first 

function will return the Moldavian man as value for the argument x, while the second 

function will return the Transylvanian man, so the result of their union is not function 

and, therefore, not a suitable kind of meaning for a donkey pronoun. 

Finally, suppose that we take the function union approach one step further and 

assume that, when we take the union of two functions f and f', we require the resulting 

function to return, for any x that is in the domain of both f and f', the sum of the 

individuals f(x) and f'(x). This "union & sum" strategy could yield the correct truth-

conditions for example (122) where, for a person x, x brings to the gate to be checked 
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every individual in the i-sum formed out of x's puppies and one of x's dollar bills – but it 

will not yield the intuitively correct truth-conditions for (121). 

Moreover, the "union & sum" strategy (and D-/E-type approaches in general) 

predict that the sum should be available for subsequent singular cross-sentential anaphora 

– if the function that provides the meaning of the pronoun is salient enough the first time 

around, it should still be salient enough immediately afterwards. However, subsequent 

singular anaphora to puppy-dollar sums is unacceptable, as shown in (123) below46. 

123. a. Everyone who has au puppy and everyone who has au dollar brings itu to the 

gate to be checked.          

b. #They do so because the rules of the fair require that itu (should) be checked. 

PCDRT, on the other hand, can account for this kind of examples without any 

additional stipulations: their analysis is parallel to the CDRT+GQ analysis of the example 

Every 1
u

 boy who has a 2
u

 dog and every 3
u

 girl who has a 2
u

 cat must feed it
2

u  from 

Chierchia (1995) (see section 5.6 of chapter 4 above). Sentences (121) and (122) receive 

the readings in (124) and (125) below. 

124. Every 1
u  company who hired a str:

2
u  Moldavian man, but no 3

u  company who 

hired a wk:
2

u  Transylvanian man promoted him
2

u  within two weeks of hiring. 

125. Everyone 1
u  who has a str:

2
u  puppy and everyone 3

u  who has a wk:
2

u  dollar 

brings it
2

u  to the gate to be checked. 

I will only analyze (124), since the analysis of (125) is parallel. The PCDRT 

translation is given in (126) below the derived truth-conditions, which are intuitively 

correct, are provided in (127). 

                                                

46 Plural anaphora is, however, possible, as shown by (i) below. But D-/E-type approaches cannot offer any 
explanation for this asymmetry. I believe that PCDRT can and that the explanation would be similar to the 
account of the infelicitous telescoping cases in section 6.3 of chapter 6 below. 

(i) a. Everyone who has au puppy and everyone who has au dollar brings itu to the gate to be checked. b.

They do so because the rules of the fair require that theyu (should) be checked. 
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126. every 1
u  company who hired a str:

2
u  Moldavian man      

⇝ λPet. [every
1

u ([company{u1}]; max 2
u ([mold{u2}, hire{u1, u2}]),  P(u1))]   

no 3
u  company who hired awk:

2
u  Transylvanian man       

⇝ λPet. [no
3

u ([company{u3}]; [u2 | trans{u2}, hire{u3, u2}],  P(u3))]   

every 1
u  company who hired a str:

2
u  M.man, but no 3

u  company who hired awk:
2

u  T.man

⇝ λPet. [every
1

u ([company{u1}]; max 2
u ([mold{u2}, hire{u1, u2}]),  P(u1)),  

     no
3

u ([company{u3}]; [u2 | trans{u2}, hire{u3, u2}],  P(u3))]     

promoted him
2

u  within two weeks of hiring ⇝ λve. [promote{v, u2}]    

every 1
u  company who hired a str:

2
u  Moldavian man, but no 3

u  company who hired awk:
2

u  

Transylvanian man promoted him
2

u  within two weeks of hiring      

⇝ [every
1

u ([company{u1}]; max 2
u ([mold{u2}, hire{u1, u2}]),  [prom{u1, u2}]),  

        no
3

u ([company{u3}]; [u2 | trans{u2}, hire{u3, u2}],  [prom{u3, u2}])] 

127. λIst. I≠Ø ∧ ∀xe∀ye(company(x) ∧ mold(y) ∧ hire(x, y) → promote(x, y)) ∧

        ∀x'e∀y'e(company(x') ∧ trans(y') ∧ hire(x', y') → ¬promote(x', y')) 

To conclude, note that the PCDRT account of mixed reading donkey sentences 

(including the DP-conjunction examples above) predicts that the same indefinite cannot 

be interpreted as strong with respect to one pronoun (or any other kind of anaphor, e.g. a 

definite) and weak with respect to another pronoun. This prediction seems to be borne 

out47. By the same token, the D-/E-type analysis in Lappin & Francez (1994) (the points 

also applies to the hybrid approach in Chierchia 1995), which locates the weak / strong 

ambiguity at the level of the pronoun (or anaphor, in the general case), predicts the exact 

opposite – and, it seems, incorrectly so. That is, according to the D-/E-type analysis, the 

same indefinite should be able to be interpreted as strong with respect to one pronoun and 

as weak with respect to another. I am not aware of any example of this form. 

                                                

47 I am indebted to Roger Schwarzschild (p.c.) for emphasizing this point. 
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Unifying Dynamic Semantics and Situation Semantics 

In this sub-section, I want to suggest that PCDRT effectively unifies dynamic and 

situation-based D-/E-type approaches of the kind proposed in Heim (1990) (among 

others) in a way that remains faithful to many of their respective goals and underlying 

intuitions.  

In particular, the type s in PCDRT can be taken to be the type of partial situations as 

they are used in Heim (1990) – with the added advantage that PCDRT does not have the 

problem of indistinguishable participants (a.k.a. Kamp's 'bishop' problem) and does not 

need to address the issues raised by the 'formal link' condition.  

Moreover, two major differences between dynamic and D-/E-type approaches to 

anaphora mentioned in Heim (1990): 137 are effectively invalidated by PCDRT. These 

differences (see the contrasting items (ii)-(iii) and (ii')-(iii') in (Heim 1990: 137) concern: 

• the treatment of anaphoric pronouns: they are "plain bound variables" in dynamic 

approaches, while D-/E-type approaches analyze them as "semantically equivalent 

to (possibly complex) definite descriptions" (Heim 1990: 137); 

• the treatment of quantificational determiners: they are "capable of binding 

multiple variables" in dynamic approaches, while they "bind just one variable 

each" (Heim 1990: 137) in D-/E-type approaches. 

In PCDRT, anaphoric pronouns are basically analyzed as individual-level dref's, i.e. 

as functions from entities of type s to individuals (type e). Depending on how we prefer 

to intuitively think about the entities of type s, i.e. as 'variable assignments' or 'partial 

situations', the anaphoric pronouns are bound variables, i.e. they are the equivalent of 

projection functions on variable assignments (type s), or definite descriptions 

characterizing a unique individual in a given partial situation (again, type s). 

Similarly, quantificational structures contributed by determiners or the generic 

operator in conditionals are analyzed as having the general form in (59) above (see 

section 3.5 of the present chapter), i.e. detu(D, D'). Insofar as these quantificational 

structures operate over the DRS's D and D', hence over relations between info states, they 
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are capable of binding multiple variables, but insofar as they contribute a particular dref u

that is crucial in relating the two updates D and D', they bind one variable each. 

Finally, it seems to me that, if situation-based D-/E-type approaches are to be 

extended to account for mixed weak & strong donkey sentences like (1) above, they will 

have to introduce mechanisms that involve quantification over sets of partial situations 

and, also, updates of such sets that will be very similar to the notions of plural info state, 

quantification and info state update in PCDRT. I leave a more thorough investigation and 

comparison between PCDRT and situation-based D-/E-type approaches for future 

research. 

6.3. Weak / Strong Indefinites 

I will conclude with a brief examination of the approach in van den Berg (1994, 

1996a), which, just as PCDRT, locates the weak / strong donkey ambiguity in the 

meaning of the donkey indefinites.  

The first thing we need to do is to introduce van den Berg's notion of dynamic 

maximization. Abstracting away from the fact that it is formulated in a three-valued 

logic, the definition in van den Berg (1994): 15, (45) is different from the PCDRT 

definition in only one respect: it is is a weaker version of the max
u operator insofar as it 

does not require the existence of a supremum – it simply requires an output state to non-

deterministically store a (locally) maximal set48. A PCDRT definition that is as close as 

possible to the maximization operator in van den Berg (1994) is given in (128) below, 

where '⊂' stands for strict inclusion. This operator and the corresponding one in PCDRT 

stand in the relation shown in (129) below. 

128. max-wk
u(D) := λIst.λJst. ([u]; D)IJ ∧ ¬∃Kst(([u]; D)IK ∧ uJ⊂uK) 

129. max
u(D) ⊆ max-wk

u(D) 

                                                

48 For example, assume that if we update a given input info state I with a DRS of the form [u]; D, we get 
three possible output states J1, J2 and J3 such that uJ1={a}, uJ2={a, b} and uJ3={a, c}. The PCDRT 
supremum-based form of maximization will simply discard the input info state I altogether because there is 
no supremum in the set {uJ1, uJ2, uJ3}. The weak, maxima-based form of maximization will retain the 
input info state I and the corresponding output states J2 and J3, but not J1. 
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Van den Berg (1994, 1996a) crucially needs the weaker form of maximization max-

wk
u (as opposed to the PCDRT one) to be able to account for weak / strong ambiguities. 

The reason for this is that he takes indefinites to be generalized quantifiers and, in his 

framework, generalized quantifiers are defined in terms of maximization49.  He, 

therefore, uses a maximization operator to give the meaning of both weak and strong 

donkey indefinites50.  

In the case of the weak indefinites, however, van den Berg needs to neutralize the 

maximization effect (since people usually do not put all their dimes in the meter), so he 

adds an additional singular condition (basically the same as the unique{u} condition 

defined in (44) above), which requires the weak indefinite dref to store a singleton set 

relative to a plural info state. Obviously, this can work only in tandem with weak 

maximization: as we saw in section 3.4 above (see definition (51) in particular), strong 

maximization plus a singular condition unique{u} requires model-level uniqueness and 

yields the Russellian analysis of definite description – and not the desired weak donkey 

indefinites. Van den Berg's meanings for weak and strong indefinites are provided in 

(130) below, rendered in a compositional PCDRT format for ease of comparison. 

130. Van den Berg's weak indefinites in PCDRT format:    

  awk:u ⇝ λPet.λP'et. max-wk
u([unique{u}]; P(u); P'(u)),    

   where e := se and t := (st)((st)t)      

   and unique{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui').         

Van den Berg's strong indefinites in PCDRT format:     

  astr:u ⇝ λPet.λP'et. max-wk
u(P(u); P'(u))

Van den Berg's analysis can account for simple instances of weak / strong donkey 

ambiguities, but it does not generalize to the mixed weak & strong donkey sentences 

analyzed in this chapter – and repeated in (131) and (132) below for convenience. The 

                                                

49 For a similar definition of generalized quantification in PCDRT – which, crucially, does not include 
indefinites – see chapter 6 below. 

50 Analyzed in terms of his "collective" and "distributive" existential quantification respectively: see van 
den Berg (1994): 18-19 and van den Berg (1996a): 163-164. 
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reason is that van den Berg's weak donkey indefinites always introduce singleton sets, 

while the sentences in (131) and (132) are compatible with situations in which the value 

of the weak indefinites (awk:
3

u  credit card and anwk:
3

u  Arabian horse respectively) is 

different for different values of the strong indefinites (a str:
2

u  book and a str:
2

u  woman

respectively), i.e. in situations in which the credit cards vary from book to book and the 

horses from woman to woman. In the case of (131), for example, Van den Berg's analysis 

incorrectly pairs all the u2-books with the same u3-credit card, as shown in (133) below. 

131. Every 1
u  person who buys a str:

2
u  book on amazon.com and has a wk:

3
u  credit 

card uses it
3

u  to pay for it
2

u . 

132. Every 1
u  man who wants to impress a str:

2
u  woman and who has an wk:

3
u

Arabian horse teaches her
2

u  how to ride it
3

u . 

133. [person{u1}]; max-wk 2
u ([book{u2}, buy_on_amazon{u1, u2}]);    

     max-wk 3
u ([unique{u3}, credit_card{u3}, have{u1, u3}]) 

Moreover, extracting the strong indefinite out of its VP-conjunct and scoping it over 

the weak one is not possible because the resulting syntactic structure violates the 

Coordinate Structure Constraint51. As far as the analysis of the weak / strong donkey 

ambiguity is concerned, the definition of maximization in van den Berg (1996a): 139, 

(3.1)52 is the same as the definition in van den Berg (1994)53, so the above observations 

apply to it too. 

                                                

51 That the Coordinate Structure Constraint does indeed apply to this kind of examples is shown by the two 
sentences in (i) and (ii) below, where the every-quantifiers cannot scope out of their own conjuncts to bind 
pronouns. 

(i) #Every person who buys everyu
Harry Potter book on amazon.com and gives itu to a friend must be a 

Harry Potter addict. 

(ii) #Every boy who wanted to impress everyu girl in his class and who planned to buy heru a fancy 
Christmas gift asked his best friend for advice. 

52 See also the alternative formulation in van den Berg (1996a): 141, (3.2) and Lemma (3.3) for the relation 
between the two. 

53 Although it is not relevant for the weak / strong ambiguity problem, it is interesting to compare the two 
definitions. The definition of maximization in van den Berg (1996a): 139, (3.1) is different from the 
definition in van den Berg (1994) in two respect. First, the way in which new dref's are introduced is 
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In closing, note that van den Berg's system could in principle provide an alternative 

analysis of mixed weak & strong donkey sentences if it is extended with a form of 

anaphoric / relativized uniqueness of the kind defined in (134) below. If the uniqueness 

condition contributed by the weak indefinite is anaphoric / relativized to the strong 

indefinite, the value of the weak indefinite will be able to vary with the value of the 

strong indefinite; we will, therefore, be able to adequately translate the quantifier 

restrictor of sentence (131), as shown in (135) below. 

134. uniqueu'{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(u'i=u'i' → ui=ui') 

135. [person{u1}]; max-wk 2
u ([book{u2}, buy_on_amazon{u1, u2}]);    

     max-wk 3
u ([unique

2
u {u3}, credit_card{u3}, have{u1, u3}]) 

Such an analysis, however, is more complex than the PCDRT one: the meaning of 

the weak indefinites involves a maximization operator, just like the meaning of the strong 

indefinites, and, in addition, the weak indefinites involve a relativized uniqueness 

condition that effectively neutralizes their maximization operator. Moreover, the max-

                                                                                                                                                

different from the one we have chosen in PCDRT: it is the relation I{u}J defined in (16b) above. As argued 
in section 3.2, introducing new dref's by means of {u} makes incorrect (overly strong) predictions with 
respect to mixed reading donkey sentences, so this does not amend the incorrect predictions made by the 
notion of maximization in van den Berg (1994).  

The second difference, however, provides us with an interesting notion of pseudo-selective maximization. 
As the definition in van den Berg (1996a): 133, (2.6) shows, he requires maximality not only with respect 
to output sets of individuals, but also with respect to the output sets of info states, which results in a notion 
of maximization that is intermediate between selective and unselective maximization.  The definition of 
max-unsel

u in (i) below is the PCDRT correspondent of this notion – compare it with the PCDRT 
definitions of selective (strong) maximization in (ii) below and unselective (strong) maximization in (iii). 

(i) max-unsel
u(D) := λIst.λJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ ∧ K⊆J) 

(ii) max
u(D) := λIst.λJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ) 

(iii) max(D) := λIst.λJst. DIJ & ∀Kst(DIK → K⊆J) 

However, the max-unsel
u operator does not add to the expressive power of the PCDRT system: as the 

identity in (iv) below shows, it can be defined in terms of unselective maximization, much as we were able 
to define the DRT/FCS/DPL version of pseudo-selective generalized quantification (repeated in (vi) below) 
in terms of unselective generalized quantification (repeated in (v)) (see section 2 of chapter 4). 

(iv) max-unsel
u(D) = max([u]; D) 

(v) det(D, D') := λis. DET(Di, Dom(D')),         

 where DET is the corresponding static determiner, Di = {js: Dij} and Dom(D') := {is: ∃js(Dij)} 

(vi) detu(D, D') := det([u]; D, D') 
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wk
u operator is more complex than the PCDRT max

u operator and its added complexity 

(i.e. the fact that it is maxima-based and not supremum-based) obscures the 

correspondence between dynamic maximization and static λ-abstraction. Therefore, I 

believe that the PCDRT account is theoretically preferable.  

Moreover, empirically, it is not clear how to independently motivate the fact that the 

run-of-the-mill indefinite a
wk:

3
u

 credit card in sentence (131) above contributes an 

anaphoric condition unique
2

u {u3}, since it is not anaphorically dependent in any obvious 

way on the strong indefine a str:
2

u
 book. 

Appendix 

A1. Plural CDRT (PCDRT): The Formal System 

136. PCDRT (subscripts on terms represent their types).              

a. Atomic conditions – type (st)t:        

R{u1, …, un} := λIst. I≠Ø ∧ ∀is∈I(R(u1i, …, uni)),     

  for any non-logical constant R of type en
t,     

   where en
t is defined as follows: e0

t := t and em+1
t := e(em

t). 

u1=u2 := λIst. I≠Ø ∧ ∀is∈I(u1i=u2i)                

All atomic conditions are c-ideals.                             

b. Atomic DRS's (DRS's containing exactly one atomic condition) – type 

(st)((st)t)          

 [R{u1, …, un}] := λIst.λJst. I=J ∧ R{u1, …, un}J     

 [u1=u2] := λIst.λJst. I=J ∧ (u1=u2)J             

The domain Dom(D) and range Ran(D) of an atomic DRS D are c-ideals, where 

Dom(D) := {Ist: ∃Jst(DIJ)} and Ran(D) := {Jst: ∃Ist(DIJ)}.                        

c. Condition-level connectives (negation, closure, disjunction, implication), 

i.e. non-atomic conditions:        

 ~D := λIst. I≠Ø ∧ ∀Hst(H≠Ø ∧ H⊆I → ¬∃Kst(DHK)),    

  where D is a DRS (type (st)((st)t)),      

 i.e. ~D := λIst. I≠Ø ∧ ∀Hst≠Ø(H⊆I → H∉Dom(D)).             
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If Dom(D) is a c-ideal (hence Dom(D) = ℘+(∪Dom(D))), ~D is the unique 

maximal c-ideal disjoint from Dom(D): ~D = ℘+(Ds
M\∪Dom(D)).   

 !D := λIst. ∃Kst(DIK),            

 i.e. !D := Dom(D).                 

If Dom(D) is a c-ideal, ~[~D] = !D.         

D1 ∨ D2 := λIst. ∃Kst(D1IK ∨ D2IK),       

 i.e. D1 ∨ D2 := Dom(D1)∪Dom(D2).                

D1 → D2 := λIst. ∀Hst(D1IH → ∃Kst(D2HK)),     

 i.e. D1 → D2 := λIst. D1I ⊆ Dom(D2),     where DI := {Jst: DIJ},   

 i.e. D1 → D2 := (℘+(Ds
M)\Dom(D1)) ∪ {Ist∈Dom(D1): D1I ⊆ Dom(D2)}.  

d. Tests (generalizing 'atomic' DRS's):       

 [C1, …, Cm] := λIst.λJst. I=J ∧ C1J ∧ … ∧ CmJ 
54,     

  where C1, …, Cm are conditions (atomic or not) of type (st)t.  

The domain Dom(D) and range Ran(D) of any test D is a c-ideal if all the 

conditions are c-ideals.                    

e. DRS-level connectives (dynamic conjunction):      

D1; D2 := λIst.λJst. ∃Hst(D1IH ∧ D2HJ),         

  where D1 and D2 are DRSs (type (st)((st)t))              

f. Quantifiers (random assignment of value to a dref):     

 [u] := λIst.λJst. ∀is∈I(∃js∈J(i[u]j)) ∧ ∀js∈J(∃is∈I(i[u]j))             

If a DRS D has the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm

are c-ideals, we have that:        

 i. Ran(D) = C1∩ … ∩Cm = ℘+((∪C1)∩ … ∩(∪Cm));    

 ii. Dom(D) = ℘+({is: ∃js(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm))}).       

Since i[u1, …, un]j is reflexive, Ran(D)⊆Dom(D).                

g. Selective maximization:          

max
u(D) := λIst.λJst. ∃Hst(I[u]H ∧ DHJ) ∧ ∀Kst(∃Hst(I[u]H ∧ DHK) → uK⊆uJ),  

                                                

54 Alternatively, [C1, …, Cm] can be defined using dynamic conjunction as follows:  

[C1, …, Cm] := λIstJst. ([C1]; …; [Cm])IJ, where [C] := λIstJst. I=J ∧ CJ. 
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 where D is a DRS of type (st)((st)t),        

i.e. max
u(D) := λIst.λJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ)        

The max
u operator does not preserve the c-ideal structure of the domain or range 

of the embedded DRS.                 

Multiply embedded max
u operators can be reduced as follows:    

max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),     

  if: i. u is not reintroduced in D';     

      ii. Dom([u']; D') = Dom(max
u'(D'));    

      iii. D' is of the form [u1, …, un | C1, …, Cm].    

h. Unselective maximization:        

max(D) := λIst.λJst. DIJ & ∀Kst(DIK → K⊆J)              

i. Selective Generalized Determiners (non-atomic conditions):   

detu(D1, D2) := λIst. I≠Ø ∧ DET(u[D1I],  u[(D1; D2)I]),    

  where u[DI] := ∪{uJ: ([u | unique{u}]; D)IJ}    

  and unique{u} := λIst. I≠Ø ∧ ∀is∈I∀i's∈I(ui=ui')    

  and DET is the corresponding static determiner.         

The lexical entries for selective generalized determiners are:   

detu ⇝ λP'et. λPet. [detu(P'(u), P(u))],     where e := se and t := (st)((st)t)           

j. Unselective Generalized Determiners (non-atomic conditions):  

det(D1, D2) := λIst. I≠Ø ∧ DET(max[D1I],  max[(D1; [!D2])I]),   

  where max[DI] := ∪{Jst: max(D)IJ}     

  and DET is the corresponding static determiner.         

The lexical entries for unselective generalized determiners are:   

  det ⇝ λD't. λDt. [det(D', D)],     where t := (st)((st)t).          

k. Truth: A DRS D (type (st)((st)t)) is true with respect to an input info state Ist

iff ∃Jst(DIJ), i.e. iff I∈Dom(D) (or, equivalently, I∈!D). 

We supplement the definition of basic PCDRT in (5) with the list of abbreviations in 

(137) below. 
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137. a. Additional abbreviations – DRS-level quantifiers (multiple random 

assignment, existential quantification, maximal existential quantification):  

 [u1, …, un] := [u1]; …; [un]        

u(D) := [u]; D         

m
u(D) := max

u(D)                   

b. Additional abbreviations – condition-level quantifiers (universal 

quantification):          

u(D) := ~([u]; ~D),         

 i.e. u(D) := ~ u(~D).                

c. Additional abbreviations – DRS's (a.k.a. linearized 'boxes'):    

 [u1, …, un | C1, …, Cm] := λIst.λJst. ([u1, …, un]; [C1, …, Cm])IJ,   

  where C1, …, Cm are conditions (atomic or not),    

 i.e. [u1, …, un | C1, …, Cm] := λIst.λJst. I[u1, …, un]J ∧ C1J ∧ … ∧ CmJ.  

d. Additional abbreviations – negation based condition-level connectives (N- 

closure, N-disjunction, N-implication):     

N-Closure: D := ~[~D]       

N-Disjunction: D1 D2 := ~[~D1, ~D2]      

If Dom(D1) and Dom(D2) are c-ideals, then D1 D2 = 

℘+(∪(Dom(D1)∪Dom(D2))). Therefore, if Dom(D1) and Dom(D2) are c-ideals, 

we have that D1 ∨ D2 ⊆ D1 D2.        

N-Implication: D1 D2 := ~(D1; [~D2])      

Note that u(D) = [u] D.         

If D1 = [u1, …, un | C1, …, Cm] and C1, …, Cm, Dom(D2) are c-ideals, then D1

D2 = ℘+({is: ∀js(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm) → j∈(∪Dom(D2))}). 

Therefore, if D1 = [u1, …, un | C1, …, Cm] and C1, …, Cm, Dom(D2) are c-ideals, 

we have that D1 D2 ⊆ D1 → D2.         

If, in addition, we can establish that ∀isjs(i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm) →

j∈(∪Dom(D2)), then D1 → D2 = D1 D2 = ℘+(Ds
M). 
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The definitions of the dynamic universal and existential quantifiers in (137b-c) 

above preserve their DPL / CDRT+GQ partial duality if we quantify over DRS's whose 

domains are c-ideals. 

138. ~ u(D) = u(~D),          

 if Dom(D) is a c-ideal (hence Dom(D) = Dom([~[~D]])). 

Just as in CDRT+GQ, the partial duality in (138) can be generalized by means of N-

implication as shown in (139) below. 

139. ~ u(D; D') = u(D  [~D']),        

 if: a. Dom(D') is a c-ideal (hence Dom(D) = Dom([~[~D]]));   

     b. D preserves c-ideals under pre-images 55,56. 

A2. Simplifying 'Max-under-Max' Representations

The general version of the theorem is stated in (140) below. 

140. Simplifying 'max-under-max' representations:     

max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),              

if the following three conditions obtain:       

 a. u is not reintroduced in D';        

 b. ∀Ist∀Xet ( ∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(max
u'(D')IJ ∧ X=uJ) );  

 c. max
u'(D') = [u']; D'; max

u'(D')57. 

                                                

55
D preserves c-ideals under pre-images iff if ℑ' is a c-ideal, then ℑ={Ist: ∃Jst(DIJ ∧ J∈ℑ'} is a c-ideal. 

56 Proof: The reader can easily check that the following identities hold: u([D  [~D']) = u([~(D; 

[~[~D']]) = u([~(D; D')]) = ~([u]; [~[~(D; D')]]) = ~([u]; D; D') = ~ u(D; D'). �

57 Proof: 

max
u(D; max

u'(D'))IJ = ∃H(([u]; D)IH ∧ max
u'(D')HJ) ∧ ∀K(∃H(([u]; D)IH ∧ max

u'(D')HK) → uK⊆uJ) 

We have that ∀Ist∀Xet(∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(max
u'(D')IJ ∧ X=uJ)) (condition (140b)). Hence: 

max
u(D; max

u'(D'))IJ = ∃H(([u]; D)IH ∧ max
u'(D')HJ) ∧ ∀K(∃H(([u]; D)IH ∧ ([u']; D')HK) → uK⊆uJ)  

= ∃H(([u]; D)IH ∧ max
u'(D')HJ)    ∧    ∀K(([u]; D; [u']; D')IK → uK⊆uJ). 

We have that max
u'(D') = [u']; D'; max

u'(D') (condition (140c)). Hence:       
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Given that, by condition (140a), u is not reintroduced in D', the second condition 

(140b) can be further reduced to the condition in (141) below. 

141. Given (140a), condition (140b) is equivalent to:      

Dom([u']; D') = Dom(max
u'(D')).  

Moreover, based on the two facts in (142) below, we can further simplify condition 

(140c). 

142. a. If D' is of the form [u1, …, un | C1, …, Cm],      

 then ∀Ist∀Jst(([u']; D')IJ → ([u']; D')I=([u']; D')J)58.             

b. If ∀Ist∀Jst(([u']; D')IJ → ([u']; D')I=([u']; D')J),      

 then max
u'(D') = [u']; D'; max

u'(D')59. 

                                                                                                                                                

max
u(D; max

u'(D'))IJ = ∃H(([u]; D)IH ∧ ([u']; D'; max
u'(D'))HJ)    ∧    ∀K(([u]; D; [u']; D')IK → uK⊆uJ)  

= ∃H(([u]; D; [u']; D')IH ∧ max
u'(D')HJ)    ∧    ∀K(([u]; D; [u']; D')IK → uK⊆uJ)  

= ∃H(([u]; D; [u']; D')IH ∧ ∀K(([u]; D; [u']; D')IK → uK⊆uJ) ∧ max
u'(D')HJ) 

Since u is not reintroduced in D' (condition (140a)), we have that uJ=uH. Hence: 

max
u(D; max

u'(D'))IJ = ∃H(([u]; D; [u']; D')IH ∧ ∀K(([u]; D; [u']; D')IK → uK⊆uH) ∧ max
u'(D')HJ)  

= ∃H(max
u(D; [u']; D')IH ∧ max

u'(D')HJ) = (max
u(D; [u']; D'); max

u'(D'))IJ. �

58 Proof: ([u']; D') := λIstJst. I[u', u1, …, un]J ∧ C1J ∧ … ∧ CmJ. Therefore: 

([u']; D')IJ ∧ ([u']; D')JK   iff   I[u', u1, …, un]J ∧ C1J ∧ … ∧ CmJ ∧ J[u', u1, …, un]K ∧ C1K ∧ … ∧ CmK    

iff I[u', u1, …, un]J ∧ C1J ∧ … ∧ CmJ ∧ I[u', u1, …, un]K ∧ C1K ∧ … ∧ CmK   iff  ([u']; D')IJ ∧ ([u']; D')IK. 

�

59 Proof:  

Claim1: If ∀IstJst(([u']; D')IJ → ([u']; D')I=([u']; D')J), then [u']; D' = [u']; D'; [u']; D' (note that the 
premise ensures that the relation denoted by [u']; D' is a KD45 kind of accessibility relation). 

Proof of Claim1: ([u']; D'; [u']; D')IJ   iff   ∃H(([u']; D')IH ∧ ([u']; D')HJ)   iff   (by the premise)  

∃H(([u']; D')IH ∧ ([u']; D')IJ)   iff   ∃H(([u']; D')IH) ∧ ([u']; D')IJ   iff   ([u']; D')IJ. �

([u']; D'; max
u'(D'))IJ iff ∃H(([u']; D')IH ∧ max

u'(D')HJ) iff         

∃H(([u']; D')IH ∧ ([u']; D')HJ ∧ ∀K(([u']; D')HK) → u'K⊆u'J)) iff (by the premise)      

∃H(([u']; D')IH ∧ ([u']; D')HJ ∧ ∀K(([u']; D')IK) → u'K⊆u'J) iff               

([u']; D'; [u']; D')IJ ∧ ∀K(([u']; D')IK) → u'K⊆u'J) iff (by Claim1)              

([u']; D')IJ ∧ ∀K(([u']; D')IK) → u'K⊆u'J) iff max
u'(D')IJ. �
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Thus, we obtain the corollary given in the main text of the chapter, repeated in (143) 

below. 

143. Simplifying 'max-under-max' representations (corollary):    

max
u(D; max

u'(D')) = max
u(D; [u']; D'); max

u'(D'),              

if the following three conditions obtain:       

 a. u is not reintroduced in D';        

 b. Dom([u']; D') = Dom(max
u'(D'));       

 c. D' is of the form [u1, …, un | C1, …, Cm].
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Chapter 6. Structured Nominal Reference: Quantificational 
Subordination 

1. Introduction 

The present chapter proposes an account of the contrast between the interpretations 

of the discourses in (1) and (2) below from Karttunen (1976). 

1. a. Harvey courts au girl at every convention.       

b. Sheu is very pretty. 

2. a. Harvey courts au girl at every convention.        

b. Sheu always comes to the banquet with him.            

[c. Theu girl is usually also very pretty.] 

The initial sentence (1a/2a) by itself is ambiguous between two readings (i.e. two 

quantifier scopings): it "can mean that, at every convention, there is some girl that 

Harvey courts or that there is some girl that Harvey courts at every convention. […] 

Harvey always courts the same girl […] [or] it may be a different girl each time" 

(Karttunen 1976: 377). 

The contrast between the continuations in (1b) and (2b) is that the former allows 

only for the "same girl" reading of sentence (1a/2a), while the latter is also compatible 

with the "possibly different girls" reading. 

Discourse (1) raises the following question: how can we capture the fact that a 

singular anaphoric pronoun in sentence (1b) can interact with and disambiguate 

quantifier scopings in sentence (1a)?  

To see that it is indeed quantifier scopings that are disambiguated, substitute exactly 

oneu girl for au girl in sentence (1a); this will yield two truth-conditionally independent 

scopings: (i) exactly one girl>>every convention, which is true in a situation in which 

Harvey courts more than one girl per convention, but there is exactly one (e.g. Faye 

Dunaway) that he never fails to court, and (ii) every convention>>exactly one girl. 
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To see that number morphology on the pronoun she is indeed crucial, consider the 

discourse in (3) below, where the (preferred) relative scoping of every convention and a girl

is the opposite of the one in discourse (1). 

3. a. Harvey courts au girl at every convention. b. Theyu are very pretty. 

Discourse (2) raises the following questions. First, why is it that adding an adverb of 

quantification, i.e. always/usually, makes both readings of sentence (2a) available?  

Moreover, on the newly available reading of sentence (2a), i.e. the every 

convention>>a girl scoping, how can we capture the intuition that the singular pronoun she

and the adverb always in sentence (2b) elaborate on the quantificational dependency 

between conventions and girls introduced in sentence (2a), i.e. how can we capture the 

intuition that we seem to have simultaneous anaphora to two quantifier domains and to 

the quantificational dependency between them? 

The phenomenon instantiated by discourses (1) and (2) is subsumed under the more 

general label of quantificational subordination (see for example Heim 1990: 139, (2)), 

which covers a variety of phenomena involving interactions between generalized 

quantifiers and morphologically singular cross-sentential anaphora. 

One of the main goals of this chapter is to show that the PCDRT system introduced 

in chapter 5 and motivated by mixed reading (weak & strong) donkey sentences receives 

independent empirical justification based on the phenomenon of quantificational 

subordination.  

To account for quantificational subordination, we will only need to modify the 

definition of selective generalized quantification. As already remarked in section 3.5 of 

chapter 5, there are two main strategies for the definition of generalized quantification in 

a dynamic system; the previous chapter explored one of them, namely the one that is 

closer to the DRT / FCS / DPL-style definition, while this chapter explores the other, 
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formally more complex strategy, namely the one that is closer to van den Berg's 

definition of generalized quantification1. 

The chapter is structured as follows. Section 2 informally presents the PCDRT 

analysis of the Karttunen discourses in (1) and (2) above. Section 3 introduces and 

justifies the new definition of dynamic generalized quantification that enables us to 

account for quantificational subordination. Section 4 presents the formal PCDRT analysis 

of the Karttunen discourses based on the novel notion of dynamic quantification 

introduced in section 3. Finally, section 6 briefly compares the PCDRT analysis of 

quantificational subordination with alternative accounts.  

The appendix to the chapter introduces generalized selective distributivity, i.e. 

selective distributivity generalized to arbitrary types, and studies some of the formal 

properties of DRS-level selective distributivity. 

The presentation of the PCDRT analysis of quantificational subordination in 

sections 3 and 4 repeats some of the basic notions and ideas introduced in the previous 

chapters. I hope that the resultant global redundancy is outweighed by the local 

improvement in readability. 

2. Structured Anaphora to Quantifier Domains 

This section shows semi-formally that the semantic framework proposed in the 

previous chapter (chapter 5), i.e. PCDRT, enables us to account for discourses (1) and (2) 

above. In particular, the main proposal will be that compositionally assigning natural 

language expressions finer-grained semantic values (finer grained than the usual 

meanings assigned in static Montague semantics) enables us to capture the interaction 

between generalized quantifiers, singular pronouns and adverbs of quantification 

exhibited by the contrast between the interpretations of (1) and (2). 

                                                

1 The fact that we are able to reformulate the two kidns of definitions of dynamic generalized quantification 
within the same type-logical system greatly facilitates their formal and empirical comparison, which 
(unfortunately) I must leave for a different occasion. 
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Just as in the previous chapter, the PCDRT semantic values are finer-grained in a 

very precise sense: the 'meta-types' e and t assigned to the denotations of the two kinds of 

'saturated' expressions (names and sentences respectively) are assigned types that are 

complex than the corresponding types in static extensional Montague semantics. That is, 

the 'meta-type' t abbreviates (st)((st)t), i.e. a sentence is interpreted as a DRS, and the 

'meta-type' e abbreviates se, i.e. a name is interpreted as a dref. The denotation of a 

common noun like girl will still be of type et – see (4) below – and the denotation of a 

selective generalized determiner like every will still be of type (et)((et)t). 

4. girl ⇝ λve. [girlet{v}], i.e. girl ⇝ λve.λIst.λJst. I=J ∧ girlet{v}J  

Accounting for cross-sentential phenomena in semantic terms (as opposed to purely 

/ primarily pragmatic terms) requires some preliminary justification. First, the same kind 

of finer-grained semantic values are independently motivated by intra-sentential 

phenomena, as shown by the account of mixed weak & strong donkey sentences in the 

previous chapter. 

Second, the phenomenon instantiated by discourses (1) and (2) is as much intra-

sentential as it is cross-sentential. Note that there are four separate components that come 

together to yield the contrast in interpretation between (1) and (2): (i) the generalized 

quantifier every convention, (ii) the indefinite a girl, (iii) the singular number morphology 

on the pronoun she and (iv) the adverb of quantification always/usually. To derive the 

intuitively correct interpretations for (1) and (2), we have to attend to both the cross-

sentential connections a girl–she and every convention–always/usually and the intra-

sentential interactions every convention–a girl and always–she. 

I conclude that an account of the contrast between (1) and (2) that involves a 

revamping of semantic values has sufficient initial plausibility to make its pursuit 

worthwhile. 

The PCDRT plural info states enable us to encode discourse reference to both 

quantifier domains, i.e. values, and quantificational dependencies, i.e. structure, as 

shown in the matrix in (5) below.  
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5. Info State I … u u' … 

i1 … x1 (i.e. ui1) y1  (i.e. u'i1) … 

i2 … x2  (i.e. ui2) y2  (i.e. u'i2) … 

i3 … x3  (i.e. ui3) y3  (i.e. u'i3) … 

… … … … … 

Quantifier domains (sets):
{x1, x2, x3, …}, {y1, y2, y3, …} 

Quantifier dependencies (relations): 
{<x1, y1>, <x2, y2>, <x3, y3>, …} 

Just as before, the values are the sets of objects that are stored in the columns of the 

matrix, e.g. a dref u for individuals stores a set of individuals relative to a plural info 

state, since u is assigned an individual by each assignment (i.e. row). The structure is 

distributively encoded in the rows of the matrix: for each assignment / row in the plural 

info state, the individual assigned to a dref u by that assignment is structurally correlated 

with the individual assigned to some other dref u' by the same assignment. 

Thus, plural info states enable us to pass information about both quantifier domains 

and quantificational dependencies across sentential / clausal barriers, which is exactly 

what we need to account for the interpretation of discourses (1) and (2). More precisely, 

we need the following two ingredients.  

First, we need a suitable interpretation for selective generalized determiners, e.g. 

every in (1a/2a), which needs to do two things: (i) it stores in the plural info state the 

restrictor and nuclear scope sets of individuals that are related by the generalized 

determiner; (ii) it stores in the plural info state the quantificational dependencies between 

the individuals in the restrictor and / or nuclear scope set and any other quantifiers or 

indefinites in the restrictor or nuclear scope of the quantification.  

For example, the indefinite a girl in (1a/2a) is in the nuclear scope of the every-

quantification, while in the usual donkey examples (Every farmer who owns a
u
 donkey 

beats itu), we have an indefinite in the restrictor of the quantification. 

Given that a plural info state stores (i) sets of individuals and (ii) dependencies 

between such sets, both of them are available for subsequent anaphoric retrieval, e.g. 
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always and she in (2b) are simultaneously anaphoric to (i) every convention and a girl on the 

one hand and (ii) the dependency between conventions and girls on the other hand. 

The second ingredient is a suitable interpretation of singular number morphology on 

pronouns, e.g. she in (1b) and (2b), that can interact with quantifiers and indefinites in the 

previous discourse, e.g. every convention and a girl in (1a/2a), and with quantifiers in the 

same sentence, e.g. the adverb always in (2b). 

In particular, I will take the singular number morphology on she in (1b) to require 

that the set of individuals stored by the current plural info state relative to u be a 

singleton. This set of individuals is introduced by the indefinite a girl in (1a) – irrespective 

of whether the indefinite has wide or narrow scope relative to every convention. This is 

possible because we use plural info states, by means of which we store sets of individuals 

and pass them across sentential boundaries – we can thus constrain their cardinality by 

subsequent anaphoric elements like she. 

If the indefinite a girl has narrow scope relative to every convention, the singleton 

requirement contributed by she applies to the set of all girls that are courted by Harvey at 

some convention or other. Requiring this set to be a singleton boils down to removing 

from consideration all the plural information states that would satisfy the narrow scope 

every convention>>a girl, but not the wide scope a convention>>every girl.  

We therefore derive the intuition that, irrespective of which quantifier scoping we 

assume for sentence (1a), any plural info state that we obtain after a successful update 

with sentence (1b) is bound to satisfy the representation in which the indefinite au girl (or 

a quantifier like exactly oneu girl) takes wide scope. 

In the case of discourse (2) however, the adverb of quantification always in (2b) – 

which is anaphoric to the nuclear scope set introduced by every convention in (2a) – can 

take scope over the singular pronoun she. In doing so, the adverb 'breaks' the plural info 

state containing all the conventions into smaller sub-states, each storing a particular 

convention. Then, the singleton requirement contributed by singular morphology on sheu

is enforced locally, relative to these sub-states, and not globally, relative to the whole 
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plural info state. We therefore end up requiring that the courted girl is unique per 

convention and not across the board (the latter option being instantiated by discourse (1)). 

The following section will introduce, explain and motivate the new definition of 

selective generalized quantification in PCDRT – and the corresponding (minor) 

adjustments of the meanings of indefinites, pronouns and definites. 

3. Redefining Generalized Quantification 

We turn now to the definition of selective generalized quantification in PCDRT.  

3.1. Four Desiderata 

The definition has to satisfy four desiderata, the first three of which are about 

anaphoric connections that can be established internally, within the generalized 

quantification (i.e. between antecedents in the restrictor and anaphors in the nuclear 

scope) and the last of which is about anaphora that can be established externally (i.e. 

between antecedents introduced by or within the quantification and anaphors that are 

outside the quantification). 

First, we want our definition to be able to account for the fact that anaphoric 

connections between the restrictor and the nuclear scope of the quantification can in fact 

be established, i.e. we want to account for donkey anaphora. 

Second, we want to account for such anaphoric connections while avoiding the 

proportion problem which unselective quantification (in the sense of Lewis 1975) runs 

into, i.e. we need the generalized determiner to relate sets of individuals (i.e. sets of 

objects of type e) and not sets of 'assignments' (i.e. sets of objects of type s).  

Sentence (6) below provides a typical instance of the proportion problem: 

intuitively, (6) is false in a situation in which there are ten farmers, nine have a single 

donkey each that they do not beat, while the tenth has twenty donkeys and he is busy 

beating them all. But the unselective formalization of most-quantification as 

quantification over 'assignments' incorrectly predicts that (6) is true in the above situation 
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because more than half of the <farmer, donkey> pairs (twenty out of twenty-nine) are 

such that the farmer beats the donkey. 

6. Most farmers who own au donkey beat itu. 

The third desideratum is that the definition of selective generalized quantification 

should be compatible with both strong and weak donkey readings: we want to allow for 

the different interpretations associated with the donkey anaphora in (7) (Heim 1990) and 

(8) (Pelletier & Schubert 1989) below. 

7. Most people that owned au slave also owned hisu offspring. 

8. Every person who has au dime will put itu in the meter. 

Sentence (7) is interpreted as asserting that most slave-owners were such that, for 

every (strong reading) slave they owned, they also his offspring. Sentence (8) is 

interpreted as asserting that every dime-owner puts some (weak reading) dime of her/his 

in the meter.  

We also need to allow for mixed weak & strong relative-clause sentences like the 

one in (9) below (i.e. the kind of sentence we have analyzed in chapter 5). Sentence (9) is 

interpreted as asserting that, for any person that is a computer buyer and a credit card 

owner, for every computer s/he buys, s/he uses some credit card of her/his to pay for the 

computer. 

9. Every person who buys au computer and has au' credit card uses itu' to pay for itu. 

Thus, the first three, internal desiderata simply recapitulate the main points we have 

made in chapters 2 through 5 and they are only meant to ensure that the new definition of 

selective generalized quantification preserves all welcome the results we have previously 

obtained.  

The fourth desideratum, however, is about the novel phenomenon of 

quantificational subordination we have introduced by means of the discourses in (1) and 

(2) above. These discourses indicate that selective generalized determiners need to make 

anaphoric information externally available, i.e. they need to introduce dref's for the 

restrictor and nuclear scope sets of individuals related by the generalized determiner that 
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can be retrieved by subsequent anaphora. Furthermore, we also need to make available 

for anaphoric take-up the quantificational dependencies between different quantifiers 

and/or indefinites (see the discussion of discourse (2) in the previous section). 

In more detail, generalized quantification supports anaphora to two sets: (i) the 

maximal set of individuals satisfying the restrictor DRS, i.e. the restrictor set, and (ii) the 

maximal set of individuals satisfying the restrictor and nuclear scope DRS's, i.e. the 

nuclear scope set
2. Note that the latter set is the nuclear scope set that emerges as a 

consequence of the conservativity of natural language quantification – and, as Chierchia 

(1995) and van den Berg (1996a) (among others) observe, we need to build 

conservativity into the definition of dynamic quantification to account for the fact that the 

nuclear scope DRS can contain anaphors dependent on antecedents in the restrictor3. 

The discourse in (10) below exemplifies anaphora to nuclear scope sets: sentence 

(10b) is interpreted as asserting that the people that went to the beach are the students that 

left the party after 5 am (which, in addition, formed a majority of the students at the 

party). 

10. a. Mostu students left the party after 5 am.       

b. Theyu went directly to the beach. 

The discourses in (11) and (12) below exemplify anaphora to restrictor sets. Both 

examples involve determiners that are right downward monotonic, which strongly favor 

anaphora to restrictor sets as opposed to anaphora to nuclear scope sets. 

                                                

2 Throughout the paper, I will ignore anaphora to complement sets, i.e. sets obtained by taking the 
complement of the nuclear scope relative to the restrictor, e.g. Very few students were paying attention to 

the lecture. They were hungover. 

3 Thus, in a sense, Chierchia (1995) and van den Berg (1996a) suggest that the conservativity universal 
proposed in Barwise & Cooper (1981) should be replaced by / derived from an 'anaphoric' universal that 
would have the form: the meanings of natural language determiners have to be such that they allow for 
anaphoric connections between the restrictor and nuclear scope of the quantification (I am indebted to 
Roger Schwarzschild, p.c., for making this observation clearer to me). 

In a dynamic system, the 'anaphoric' universal boils down to the requirement that the nuclear scope update 
be interpreted relative to the info state that is the output of the restrictor update. And the two strategies of 
defining dynamic generalized quantification explored in chapter 5 and chapter 6 respectively are two 
different ways of implementing this requirement (see in particular the discussion in section 3.5 of chapter 5
and section 1 of chapter 6, i.e. the present chapter). 
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11. a. Nou student left the party later than 10 pm.       

b. Theyu had classes early in the morning. 

12. a. Very fewu people with a rich uncle inherit his fortune.     

b. Most of themu don't. 

Consider (11) first: any successful update with a nou quantification ensures that the 

nuclear scope set is empty and anaphora to it is therefore infelicitous; the only anaphora 

possible in (11) is anaphora to the restrictor set. The same thing happens in (12) albeit for 

a different reason: anaphora to the restrictor set is the only possible one because anaphora 

to the nuclear scope set would yield a contradiction, namely: most of the people with a 

rich uncle that inherit his fortune don't inherit his fortune. 

Thus, a selective generalized determiner will receive a translation of the form 

provided in (13) below, which is in the spirit – but fairly far from the letter – of van den 

Berg (1996a) (see his definition (4.1) on p. 149). 

13. detu,u'⊑u ⇝ λPet.λP'et. max
u(〈u〉(P(u))); max

u'⊑u(〈u'〉(P'(u'))); [DET{u, u'}] 

The translation in (13) can be semi-formally paraphrased as follows.  

First note that, as expected, detu,u'⊑u relates a restrictor dynamic property Pet and a 

nuclear scope dynamic property P'et. When these dynamic properties are applied to 

individual dref's, i.e. P(u) and P'(u'), we obtain a restrictor DRS P(u) and a nuclear scope 

DRS P'(u') of type t := (st)((st)t). 

Which brings us to the three sequenced updates in (13), namely max
u(〈u〉(P(u))), 

max
u'⊑u(〈u'〉(P'(u'))) and [DET{u, u'}]. The first update is formed out of three distinct 

pieces, namely the restrictor DRS P(u), the operator 〈u〉(…) which takes scope over the 

restrictor DRS and, finally, the operator max
u(…) that takes scope over everything else. 

The second update is formed out of the same basic pieces, i.e. the restrictor DRS P'(u'), 

the operator 〈u'〉(…) and the operator max
u'⊑u(…). The last update is a test containing the 

static condition DET{u, u'} contributed by the particular determiner under consideration 

and which relates two individual dref's u and u'. 
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These are the individual dref's introduced by the generalized determiner, more 

exactly by the operators max
u(…) and max

u'⊑u(…): they introduce the dref's u and u'

respectively and u stores the restrictor set of individuals, while u' stores the nuclear scope 

set of individuals obtained via conservativity, which is encoded by the superscripted 

inclusion u'⊑u. 

The restrictor set u is the maximal set of individuals (maximality is contributed by 

max
u(…)) such that, when we take each u-individual separately (distributivity is 

contributed by 〈u〉(…)), this individual satisfies the restrictor dynamic property (i.e. P(u)). 

The nuclear scope set u' is obtained in a similar way except for the requirement that 

it is the maximal structured subset of the restrictor set u (i.e. max
u'⊑u(…)). The notion of 

structured subset u'⊑u is introduced and discussed in the very next section.  

We finally reach the third update, which tests that the restrictor set u and the nuclear 

scope set u' stand in the relation denoted by the corresponding static determiner DET (i.e. 

DET{u, u'}). 

As already mentioned, the three updates in (13) are sequenced, i.e. dynamically 

conjoined. Recall that dynamic conjunction ';' is interpreted as relation composition, as 

shown in (14) below. 

14. D1; D2 := λIst.λJst. ∃Hst(D1IH ∧ D2HJ) 4,      

 where D1 and D2 are DRS's of type t := (st)((st)t). 

The remainder of this section is dedicated to formally spelling out the meaning of 

generalized determiners in (13) above and, also, the PCDRT meanings for indefinite 

articles and pronouns.  

We will need: (i) two operators over plural info states, namely a selective

maximization operator max
u(…) and a selective distributivity operator 〈u〉(…), which will 

                                                

4 Also, recall the difference between dynamic conjunction ';', which is an abbreviation, and the official, 

classical static conjunction '∧'. 
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enable us to define updates of the form max
u(〈u〉(…)) and (ii) a notion of structured subset

between two sets of individuals that requires the subset to preserve the quantificational 

dependencies, i.e. the structure, associated with the individuals in the superset – which 

will enable us to define u'⊑u and, thereby, updates of the form max
u'⊑u(…). 

3.2. Structured Inclusion 

Let us start with the notion of structured subset. Recall that plural info states store 

both values (quantifier domains) – in the columns of the matrix – and structure (quantifier 

dependencies) – in the rows of the matrix. We can therefore define two different notions 

of inclusion: one that takes into account only values, i.e. value inclusion, and one that 

takes into account both values and structure, i.e. structured inclusion. Let us examine 

them in turn. 

Requiring a dref u3 to simply be a value subset of another dref u1 relative to an info 

state I is defined as shown in (15) below. For example, the info state I in (16) satisfies the 

condition u3⊆u1 because u3I={x1, x2, x3}⊆u1I={x1, x2, x3, x4}. 

15. u3⊆u1 := λIst. u3I⊆u1I

16. Info State I u1 u2 u3

i1 x1 y1 x1

i2 x2 y2 x3

i3 x3 y3 x1

i4 x4 y4 x2

As the info state I in (16) shows, value inclusion disregards structure completely: 

the correlation / dependency between the u1-individuals and the u2-individuals, i.e. the 

relation {<x1, y1>, <x2, y2>, <x3, y3>, <x4, y4>}, is lost in going from the u1-superset to the 

u3-subset: as far as u3 and u2 are concerned, x1 is still correlated with y1, but it is now also 

correlated with y3; moreover, x2 is now correlated with y4 and x3 with y2. 

If we were to use the notion of value subset in (15) to define dynamic generalized 

quantification, we would make incorrect predictions. To see this, consider the discourse 
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in (17) below, where u1 stores the set of conventions5 and u2 stores the set of 

corresponding girls. Furthermore, assume that every 1
u
 convention takes scope over a 2

u
 girl

and that the correlation between u1-conventions and courted u2-girls is the one 

represented in (16) above. 

17. a. Harvey courts a 2
u  girl at every 1

u  convention.       

b. She
2

u  usually 3 1
u u⊆  comes to the banquet with him. 

Intuitively, the adverb usually is anaphoric to the set of conventions and sentence 

(17b) is interpreted as asserting that at most conventions, the girl courted by Harvey at 

that convention comes to the banquet with him. The dref u3 in (16) above does store most 

conventions (three out of four), but it does not preserve the correlation between 

conventions and girls established in sentence (17a). 

Note that a similarly incorrect result is achieved for donkey sentences like the one in 

(18) below: the restrictor of the quantification introduces a dependency between all the 

donkey-owning u1-farmers and the u2-donkeys that they own; the nuclear scope set u3

needs to contain most u1-farmers, but in such a way that the correlated u2-donkeys remain 

the same. That is, the nuclear scope set contains a most-subset of donkey owning farmers 

that beat their respective donkey(s). The info state in (16) above and the notion of value-

only inclusion in (15) are yet again inadequate. 

18. Most , 
1 3 1

u u u⊆  farmers who own a 2
u  donkey beat it

2
u . 

Thus, to capture the intra-sentential and cross-sentential interaction between 

anaphora and quantification, we need a notion of structured inclusion, i.e. a notion of 

value inclusion that preserves structure. That is, the only way to go from a superset to a 

subset should be by discarding rows in the matrix: in this way, we are guaranteed that the 

subset will contain only the dependencies associated with the superset (but not 

necessarily all dependencies – see below). 

                                                

5 Note that, in the case of a successful every-quantification, the restrictor and the nuclear scope sets end up 
being identical (both with respect to value and with respect to structure – for more details, see (65) below 
and its discussion), so, for simplicity, I conflate them into dref u1. 
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Following van den Berg (1996a), I will introduce a dummy / exception individual # 

that I will use as a tag for the rows in the matrix that should be discarded in order to 

obtain a structured subset u' of a superset u – as shown by the matrix in (20) below. The 

formal definition is provided in (19). 

19. u3⋐u1 := λIst. ∀is∈I(u3i=u1i ∨ u3i=#) 

20. Info State I u1 u2 u3

i1 x1 y1 x1

i2 x2 y2 x2

i3 x3 y3 # 

i4 x4 y4 x4

Unlike van den Berg (1996a), I will not take the introduction of the dummy 

individual # to require us to make the underlying logic partial, i.e. I will not assigned the 

undefined truth-value to a lexical relation that takes the dummy individual # as an 

argument, e.g. girl(#) or courted_at(#, x1). Instead, I will take such lexical relations to 

simply be false6,7, which will allow us to keep the underlying type logic classical. The 

fact that the dummy individual # always yields falsity (as opposed to always yielding 

truth) is meant to ensure that we do not introduce # as the default value of a dref that 

vacuously satisfies any lexical relation. 

                                                

6 Conflating undefinedness and falsity in this way is a well-known 'technique' in the presupposition 
literature: a Fregean / Strawsonian analysis of definite descriptions distinguishes between what such 
descriptions contribute to the asserted content and what they contribute to the presupposed content 
associated with any sentence in which they occur. In contrast, the Russellian analysis of definite 
descriptions takes everything to be asserted, i.e. it conflates what is asserted and what is presupposed 
according to the Fregean / Strawsonian analysis. Therefore, if the presupposed content is not true, the 
Russellian will have falsity whenever the Fregean / Strawsonian will have undefinedness. 

While this conflation seems to be counter-intuitive and ultimately incorrect in the case of presupposition, it 
does not seem to be so in the case of structured inclusion. At this point, I cannot see any persuasive 
argument (empirical or otherwise) for a formally unified treatment of structured inclusion and 
presupposition (albeit van den Berg seems to occasionally suggest the contrary, see for example van den 
Berg 1994: 11, fn. 9), so I will work with the simplest possible system that can model structured inclusion. 

7 We ensure that any lexical relation R of arity n (i.e. of type en
t, defined recursively as in Muskens 1996: 

157-158, i.e. as e
0
t := t and em+1

t := e(em
t)) yields falsity whenever # is one of its arguments by letting 

R⊆(De
M \{#})n. 
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At the same time, requiring the dummy individual # to falsify any lexical relation 

makes it necessary for us to define lexical relations in PCDRT as shown in (22) below. 

That is, atomic conditions discard / ignore the dummy party of the plural info state, i.e. 

I #
1

u = ∪…∪I #
n

u = , and are interpreted only relative to the non-discarded part of the 

plural info state, i.e. I # #,...,
1 n

u u≠ ≠ . Note also that they are interpreted distributively 

relative to this non-discarded part, i.e. we universally quantify over every 'assignment' i

in I # #,...,
1 n

u u≠ ≠ . 

21. I # #,...,
1 n

u u≠ ≠  := {is∈I: u1i≠# ∧ … ∧ uni≠#} 

22. R{u1, ..., un} := λIst. I # #,...,
1 n

u u≠ ≠ ≠ Ø ∧ ∀is∈I # #,...,
1 n

u u≠ ≠ (R(u1i, …, uni)) 

Discarding the 'dummy' part of the info state when we evaluate the condition (as 

shown in (22) above) is crucial: if we were to interpret conditions relative to the entire 

plural info state, the condition would very often be false because the dummy individual # 

yields falsity – and we would not be able to allow for output info states like the one in 

(20) above, which we need to define dynamic quantification. Finally, the non-emptiness 

requirement enforced by the first conjunct in (22) rules out the degenerate cases in which 

a plural info state vacuously satisfies an atomic condition by being entirely 'dummy'. 

Let us return to the notion of structured inclusion needed for dynamic 

quantification. Note that the notion of structured inclusion ⋐ defined in (19) above 

ensures that the subset inherits only the superset structure – but we also need it to inherit 

all the superset structure, which we achieve by means of the definition in (23) below. 

23. u'⊑u := λIst. (u'⋐u)I ∧ ∀is∈I(ui∈u'Iu'≠# → ui=u'i) 

To see that we need the second conjunct in (23), consider again the donkey sentence 

in (7) above, i.e. Most people that owned a
u
 slave also owned hisu offspring. This 

sentence is interpreted as talking about every slave owned by any given person – 

therefore, the nuclear scope set, which needs to be a most-subset of the restrictor set, 

needs to inherit all the superset structure, i.e., for any slave owner in the nuclear scope 

set, we need to associate with her/him every slave (and his offspring) that s/he owned. 
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3.3. Maximization, Distributivity and Selective Quantification 

We turn now to the definition of the maximization and distributivity operators max
u

and distu, which are defined in the spirit – but not the letter – of the corresponding 

operators in van den Berg (1996a). Selective maximization plus selective distributivity8

enable us to dynamize λ-abstraction over both values, i.e. individuals, and structure, i.e. 

the quantificational dependencies associated with the individuals. We will consequently 

be able to extract and store the restrictor and nuclear scope structured sets needed to 

define dynamic generalized quantification. 

To see that we need maximization over both values and structure, consider the 

discourse in (24) below. Sentence (24b) elaborates on the relation between students and 

cakes introduced by the first sentence. Note that this relation is the Cartesian product of 

the set of students and the set of cakes, i.e. we want to introduce the set of all students, 

the set of all cakes and the maximal relation / structure associating the two sets. That is, 

we want to introduce the entire set of cakes relative to each and every student. We will 

achieve this by means of a distributivity operator distu over students taking scope over a 

maximization operator max
u' operator over cakes. Note that the distributivity operator is 

anaphoric to the dref u introduced by a preceding maximization operator max
u over 

students, as shown in (25) below. 

24. a. Everyu student ate from everyu' cake. b. Theyu liked themu' (all) 9. 

25. max
u([student{u}]); distu(max

u'([cake{u'}])); [eat_from{u, u'}]; [like{u, u'}] 

Intuitively, the update in (25) instructs us to perform the following operations on a 

given input matrix I:  

• max
u([student{u}]): add a new column u and store all the students in it;  

                                                

8 Both maximization and distributivity are selective in the sense that they target a particular dref u over 
which they maximize or distribute), i.e. exactly in the sense in which the DPL/FCS/DRT-style dynamic 
generalized quantification introduced in chapters 2, 4 and 5 is selective and, by being so, solves the 
proportion and weak / strong ambiguity problems which mar the notion of unselective quantification 
introduced in Lewis (1975). 

9 Another example with a similar 'Cartesian product' interpretation is Every guest tasted every dish at the 

potluck party.
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• distu(max
u'([cake{u'}])): look at each u-individual separately – more exactly, for 

each such individual x, look at that subpart of the matrix that has only x in column 

u; relative to each such sub-matrix, add a new column u' and store all the cakes in 

that column; then, take the union of all the resulting matrices: the big union matrix 

will associated every u-individual separately with each and every cake; 

• [eat_from{u, u'}]; [like{u, u'}]: test that, for each row in the big union matrix, the u-

individual stored in that row ate from the u'-individual stored in that row; finally, 

test that, for every rowin the big union matrix, the u-individual stored in that row 

liked the u'-individual stored in that row. 

A different kind of example indicating that we need selective distributivity operators 

over and above the unselective distributivity built into the atomic conditions10 to obtain 

structure maximization is provided by the donkey sentence in (26) below. Intuitively, the 

donkey indefinite receives a strong reading, i.e. every farmer kicked every donkey he saw 

(and not only some). In particular, if two farmers happened to see the same donkeys, each 

one of them kicked each one the donkeys, i.e. we need to consider each farmer in turn 

and introduce every seen donkey with respect to each one of them. Again, this can be 

achieved by means of a distu operator over farmers taking scope over a max
u' operator 

over donkeys, as shown in (27) below. 

26. Everyu farmer who saw au' donkey kicked itu'. 

27. max
u([farmer{u}]; distu(max

u'([donkey{u'}, see{u, u'}]))); [kick{u, u'}] 

Notice that the example in (24) above indicates that we need a distu operator over 

the nuclear scope of every student (since we need to introduce every cake relative to each 

student), while the example (26) above indicates that we need a distu operator over the 

restrictor of every farmer (since we need to introduce every donkey that was seen relative 

to each farmer). We therefore expect our final definition of dynamic generalized 

determiners to contain two distributivity operators – and this is exactly how it will be. 

                                                

10 Atomic conditions are unselectively distributive because they contain the universal quantifications over 

'assignments' of the form ∀is∈I(…), i.e. they unselectively target 'assignments' (i.e. cases in the sense of 
Lewis 1975) and not individuals or individual dref's, as the selectively distributive operator distu does. 
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The maxu and distu operators are defined in (28) and (31) below. Consider the 

definition of max
u first: the first conjunct in (28) introduces u as a new dref (i.e. [u]) and 

makes sure that each individual in uJ 'satisfies' D, i.e. we store only individuals that 

'satisfy' D. The second conjunct enforces the maximality requirement: any other set uK

obtained by a similar procedure (i.e. any other set of individuals that 'satisfies' D) is 

included in uJ, i.e. we store all the individuals that satisfy D. 

28. max
u(D) := λIst.λJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uKu≠#⊆uJu≠#) 

29. max
u'⊑u(D) := max

u'([u'⊑u]; D) 

30. Iu=x := {is∈I: ui=x} 

31. distu(D) := λIst.λJst. ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø) ∧ ∀xe(Iu=x≠Ø → DIu=xJu=x), 

 i.e. distu(D) := λIst.λJst. uI=uJ ∧ ∀xe∈uI(DIu=xJu=x) 

The basic idea behind distributively updating an input info state I with a DRS D is 

that we first partition the info state I and then separately update each partition cell (i.e. 

subset of I) with D.  

Moreover, the partition of the info state I is induced by the dref u as follows: 

consider the set of individuals uI := {ui: i∈I}; each individual x in the set uI generates 

one cell in the partition of I, namely the subset {i∈I: ui=x}. Clearly, the family of sets 

{{i∈I: ui=x}: x∈uI} is a partition of the info state I. 

Thus, updating an info state I with a DRS D distributively over a dref u means 

updating each cell in the u-partition of I with the DRS D and then taking the union of the 

resulting output info states. The first conjunct in definition (31) above, i.e. uI=uJ, is 

required to ensure that there is a bijection between the partition cells induced by the dref 

u over the input state I and the partition cells induced by u over the output state J; without 

this requirement, we could introduce arbitrary new values for p in the output state J, i.e. 

arbitrary new partition cells11.  

                                                

11 Nouwen (2003): 87 was the first to observe that the first conjunct in this definition, namely uI=uJ, is 
necessary (the original definition in van den Berg 1996a: 145, (18) lacks it). 
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The second conjunct, i.e. ∀x∈uI(DIu=xJu=x), is the one that actually defines the 

distributive update: every partition cell in the input info state I is related by the DRS D to 

the corresponding partition cell in the output state J. The figure in (32) below 

schematically represents how the input state I is u-distributively updated with the DRS 

D
12. 

32. Updating info state I with D distributively over u. 

The definitions of generalized determiners and weak / strong indefinites are 

provided in (36), (37) and (38) below. For the justification of the account of weak / strong 

donkey ambiguities in terms of weak / strong indefinite articles, see chapter 5. 

33. u(D) := λIst.λJst. Iu=#=Ju=# ∧ Iu≠#≠Ø ∧ distu(D)Iu≠#Ju≠#  
13

                                                

12 Some properties of the distributivity operator (see also the appendix of this chapter):  

(i) distu(D; D') = distu(D); distu(D'), for any D and D' s.t. ∀<I,J>∈D(uI=uJ) and ∀<I,J>∈D'(uI=uJ) (i.e. 
distu distributes over dynamic conjunction) 

(ii) distu(distu' (D)) = distu' (distu(D)) 

(iii) distu(distu(D)) = distu(D). 

13 Some properties of the u(…) operator: 

(i) u(D; D') = u(D); u(D'), for any D and D' s.t. distu(D; D') = distu(D); distu(D') 

(ii) u(u(D)) = u(D) 

However, note that, in general, u(u'(D)) ≠ u'(u(D)). Consider for example the info state I in (42) below: while 

it is true that <I,I> is in the denotation of u(u'([u⋐u])), it is not true that <I,I> is in the denotation of 

u'(u([u⋐u])). Moreover, we can easily construct an info state I' such that <I',I' > is in the denotation of 

u'(u([u⋐u])), but not in the denotation of u(u'([u⋐u])). 

Iu=xIu=x'

Iu=x'' ...

Ju=xJu=x'

Ju=x'' ...

Input state I     – update with D distributively over u →→→→     Output state J

DIu=xJu=x

DIu= x'Ju=x'

DIu=x''Ju=x''
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34. 〈u〉(D) := λIst.λJst. Iu=#=Ju=# ∧ (Iu≠#=Ø → I=J) ∧ (Iu≠#≠Ø → distu(D)Iu≠#Ju≠#) 

35. DET{u, u'} := λIst. DET(uIu≠#, u'Iu'≠#),       

 where DET is a static determiner. 

36. detu,u'⊑u ⇝ λPet.λP'et. max
u(〈u〉(P(u))); max

u'⊑u(〈u'〉(P'(u'))); [DET{u, u'}] 

37. awk:u ⇝ λPet.λP'et. [u]; u(P(u)); u(P'(u)) 

38. astr:u ⇝ λPet.λP'et. max
u(u(P(u)); u(P'(u))) 

Note that the max-based definition of selective generalized quantification correctly 

predicts that anaphora to restrictor and nuclear scope sets is always anaphora to maximal 

sets, i.e. E-type anaphora (recall the Evans examples: Few
u
 congressmen admire Kennedy 

and theyu are very junior and Harry bought some
u
 sheep. Bill vaccinated themu

14; see also 

(10), (11) and (12) above). The maximality of anaphora to quantifier sets follows 

automatically as a consequence of the fact that we need maximal sets to correctly 

compute the meaning of dynamic generalized quantifiers. This is one of the major results 

in van den Berg (1996a) and PCDRT preserves it15.  

                                                

14 See Evans (1980): 217, (7) and (8) (page references are to Evans 1985). 

15 That the restrictor set needs to be maximal is established by every-quantifications: to determiner the truth 
of Every man left, we need to have access to the set of all men. That the nuclear scope set also needs to be 
maximal, namely the maximal subset of the restrictor set that satisfies the nuclear scope update, is 
established by downward monotonic quantifiers (i.e. by determiners that are downward monotonic in their 
right argument); for example, Few men left intuitively means that, among the set of men, the maximal set of 
men that left is a few-subset, i.e. it is less than half of the set of men. In particular, if Few men left is true, 
then Most men left is false – and the use of maximal nuclear scope sets correctly predicts that. 

If we were to use non-maximal subsets of the restrictor set of individuals, we would be able to capture the 
meaning of upward monotonic quantifiers, e.g. Most (some, two, at least two, etc.) men left can be 
interpreted as: introduce the maximal set of men (i.e. the maximal restrictor set); then, introduce some 
subset of the restrictor set that is a most-subset (i.e. it is more than half of the restrictor set) and that also 
satisfies the nuclear scope update. If you can do this, then the quantification update is successful. Note that, 
in this case, the nuclear scope set is not necessarily the maximal subset of the restrictor set that satisfies the 
nuclear scope update. The relevant definition is given in (i) below. 

(i) det
u,u'⊑u

⇝ λPet.λP'et. max
u(〈u〉(P(u))); [u' | u'⊑u, DET{u, u'}]; 〈u'〉(P'(u')) 

But this strategy will not work with downward monotonic quantifiers, e.g. Few (no, at most two etc.) 
students left cannot be interpreted as: introduce the maximal set of men (i.e. the maximal restrictor set); 
then, introduce some subset of the restrictor set that is a few-subset (i.e. it is less than half of the restrictor 
set, possibly empty) and that also satisfies the nuclear scope update (if the few-subset that was introduced is 
empty, we can assume that it vacuously satifies the nuclear scope update). We cannot do this because, even 
if we are successful in introducing a few-subset that satisfies the nuclear scope update, it can still be the 
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Moreover, this result is an important argument for a dynamic approach to 

generalized quantification in general and, in particular, for a dynamic approach to 

generalized quantification of the kind pursued in this chapter. 

3.4. The Dummy Individual and Distributivity Operators  

We have already established that the definition of generalized determiners in (36) 

above requires a distributivity operator distu. The distributivity operator is contributed by 

the operators u(D) and 〈u〉(D) defined in (33) and (34) above. The question is: why do we 

need the additional conjuncts in the definition of these operators over and above 

distributivity? 

To see the necessity of the first conjunct Iu=#=Ju=# in (33) and (34), consider the 

simple sentence in (39) below, represented in (40) without the operator u(…)  and in (41) 

with the operator u(…) 16. 

39. Au man fell in love with au' woman. 

40. [u | man{u}]; [u' | woman{u'}, f_i_l{u, u'}] 

41. [u]; u([man{u}]; [u' ]; u'([woman{u'}, f_i_l{u, u'}])) 

After processing sentence (39), we want our output info state to be such that each 

non-dummy u-man loves some non-dummy u'-woman and each non-dummy u'-woman 

loves some non-dummy u-man. However, if the conjunct Iu=#=Ju=# is lacking – as it is 

lacking in (40) above –, we might introduce some u'-women relative to 'assignments' that 

                                                                                                                                                

case that a most-subset, for example, also satisfies the update, i.e. a successful update with Few men left

does not rule out the possibility that Most men left, which is intuitively incorrect. 

For the quantification Few men left to rule out the possibility that a most-subset of the restrictor also 
satisfies the nuclear scope update, we need to introduce the maximal nuclear scope set, i.e. the maximal 
subset of the restrictor that satisfies the nuclear scope update and only afterwards test that the two maximal 
sets are related by the static determiner. This is a direct consequence of the proposition relating witness sets 
and quantifier monotonicity in Barwise & Coopeer (1981): 104 (page references to Partee & Portner 2002). 

In conclusion, to correctly computate the truth-conditions of generalized quantifications, the dynamic 
meaning of generalized determiners have to relate two maximal sets of individuals (i.e. the restrictor set 
and the nuclear scope set) – and this automatically and correctly predicts that E-type (i.e. unbound, 
'quantifier external') anaphora to quantificational domains is maximal. 

16 These oversimplified representations are good enough for our current purposes. For the actual PCDRT 
analysis of this example, see (55) and (60) in section 3.6 below. 



223

store the dummy individual # with respect to the dref u, see for example 'assignment' i3 in 

(42) below. 

42. Info State I u (men) u' (women) 

i1 x1 y1

i2 x2 y2

i3 # y3

i4 # # 

Given that we ignore both i3 and i4 in the evaluation of the lexical relation f_i_l{u, 

u'}, y3 can be any woman whatsoever (including a woman that is not loved by any man) – 

which can inadvertently falsify subsequent anaphoric sentences, e.g. the follow-up Sheu'

was pretty, which might actually be true of y1 and y2, but not of y3. The discourse Every
u

man fell in love with a
u'
 woman. Theyu' were pretty provides a similar argument for the 

necessity of the first conjunct Iu=#=Ju=# in (33) and (34). 

The second conjunct Iu≠#≠Ø in the definition the operator u(…) in (33) above 

encodes existential commitment. Note that the existential commitment associated with 

dref introduction is built into two distinct definitions: (i) the definition of lexical relations 

(see the conjunct I # #, ...,1 nu u≠ ≠ ≠ Ø in (22) above) and (ii) the definition of the operator 

u(…) (see the conjunct Iu≠#≠Ø in (33)).  

We need the former (i.e. the conjunct I # #, ...,1 nu u≠ ≠ ≠Ø in the definition of lexical 

relations) because the pair <Øst, Øst> belongs to the denotation of [u] for any dref u (since 

both conjuncts in the definition of [u] are universal quantifications). 

We need the latter (i.e. the conjunct Iu≠#≠Ø in the definition of the operator u(…)) 

because the definition of the distu operator is a universal quantification and is therefore 

trivially satisfied relative to the empty input info state Øst; that is, the pair <Øst, Øst> 

belongs to the denotation of distu(D) for any dref u and DRS D. 

Thus, we capture the existential commitment associated with indefinites by using 

the operator u(…) in their translation – see (37) and (38) above.
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In contrast, there is no such existential commitment in the definition of the the 

operator 〈u〉(…) in (34) above and, therefore, there is no such existential commitment in 

the definition of generalized determiners detu,u'⊑u in (36). This enables us to capture the 

meaning of both upward and (especially) downward monotonic quantifiers by means of 

the same definition. The problem posed by downward monotonic quantifiers is that their 

nuclear scope set can or has to be empty. 

For example, after a successful update with a nou,u'⊑u quantification (e.g. No man 

left), the nuclear scope set is necessarily empty (recall that we use nuclear scope sets with 

built-in conservativity), i.e. the dref u' will always store only the dummy individual # 

relative to the output info state. This, in turn, entails that no lexical relation in the nuclear 

scope DRS that has u' as an argument can be satisfied (because the first conjunct of any 

such lexical relation is I # #, ...,1 nu u≠ ≠ ≠ Ø – see (22) above). Thus, we need the operator 

〈u〉(…) – more precisely, the second conjunct in its definition in (34) above – to resolve 

the conflict between the emptiness requirement enforced by a no-quantification and the 

non-emptiness requirement enforced by lexical relations.  

Similarly, given that we use the same operator 〈u〉(…) in the formation of restrictor 

sets, we predict that John visited every Romanian colony is true (although it might not 

always be felicitous) in case there are no Romanian colonies, i.e. in case the restrictor set 

of the every-quantification is empty. 

Note that, despite the fact that definition (34) allows for empty restrictor and nuclear 

scope sets, we are still able to capture the fact that subsequent anaphora to such sets is 

infelicitous. This follows from: (i) the fact that lexical relations have a non-emptiness / 

existential requirement built in and (ii) pronouns will be defined by means of the operator 

u(…) (see (44) below), which also has a non-emptiness / existential requirement built in. 

Finally, note that the second conjunct the definition of 〈u'〉(…) in (34) requires the 

identity of the input state I and the output state J. That is, the nuclear scope DRS of a 

successful nou,u'⊑u quantification, i.e. 〈u'〉(P'(u')), will always be a test. Consequently, we 

correctly predict that anaphora to any indefinites in the nuclear scope of a nou,u'⊑u
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quantification is infelicitous, e.g. No
u,u'⊑u

 farmer owns a
u''

 donkey. #Itu'' is unhappy / 

#Theyu'' are unhappy (or Harry courts a girl
u''

 at no
u,u'⊑u

 convention. #Sheu'' is very 

pretty.). 

3.5. Singular Number Morphology on Pronouns 

Let us turn now to the last component needed for the account of discourses (1) and 

(2), namely the representation of singular pronouns. Their PCDRT translation, provided 

in (44) below, has the expected Montagovian form: it is the distributive type-lift of the 

dref u, i.e. λPet. u(P(u)), with the addition of the condition unique{u}, which is 

contributed by the singular number morphology and which requires uniqueness of the 

non-dummy value of the dref u relative to the current plural info state – see (43) below. 

43. unique{u} := λIst. Iu≠#≠Ø ∧ ∀is,i's∈Iu≠#(ui=ui') 

44. sheu ⇝ λPet. [unique{u}]; u(P(u)) 

In contrast, plural pronouns do not require uniqueness, as shown in (45) below.  

45. theyu ⇝ λPet. u(P(u)) 

Singular and plural anaphoric definite descriptions – we need them to interpret the 

anaphoric DP the girl in (2c) above among others – are interpreted as shown in (46) and 

(47) below. They exhibit the same kind of unique/non-unique contrast as the pronouns. 

46. the_sgu ⇝ λPet.λP'et. [unique{u}]; u(P(u)); u(P'(u)) 

47. the_plu ⇝ λPet.λP'et. u(P(u)); u(P'(u)) 

The uniqueness enforced by the condition unique{u} is weak in the sense that it is 

relativized to the current plural info state. However, we can require strong uniqueness, 

i.e. uniqueness relative to the entire model, by combining the max
u operator and the 

condition unique{u} – as shown by the Russellian, non-anaphoric meaning for definite 

descriptions provided in (48) below, which, as expected from a Russellian analysis, 
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requires both existence and strong uniqueness. This alternative meaning for definite 

articles is needed to interpret the non-anaphoric DP the banquet in (2b) above. 

48. the_sgu ⇝ λPet.λP'et. max
u(u(P(u))); [unique{u}]; u(P'(u)) 17

The PCDRT translation of proper names is provided in (49) below. The definitions 

of dynamic negation and truth are identical to the ones in chapter 5, as shown by (50) and 

(51) respectively. 

49. Harveyu ⇝ λPet. [u | u⋐Harvey]; u(P(u)),       

 where Harvey := λis. harveye. 

50. ~D := λIst. I≠Ø ∧ ∀Hst≠Ø(H⊆I → ¬∃Kst(DHK)) 18

51. A DRS D (of type t := (st)((st)t)) is true with respect to an input info state Ist iff 

∃Jst(DIJ). 

3.6. An example: Cross-Sentential Anaphora to Indefinites 

I will conclude this section with the PCDRT analysis of the simple example in (39) 

above. The transitive verb fall in love is translated as shown in (52) below. Also, for 

simplicity, I will assume that both indefinites are weak and are therefore translated as 

                                                

17 The plural counterpart of the Russellian singular definite article in (48) is provided in (i) below – the only 
difference is that we remove the unique{u} condition from its singular counterpart, just as we did for plural 
pronouns and anaphoric plural definite articles in (45) and (47) above. 

(i) the_plu ⇝ λPet.λP'et. max
u(u(P(u))); u(P'(u)) 

Note that the Russellian plural definite translation in (i) above is identical to the simplified translation of 
every in (65) below (see section 4.1), which preserves the intuitive equivalence between every-DP's and 
(distributive uses of) plural the-DP's, e.g. Every student left and The students left, already observed and 
captured in Link (1983). 

18 This definition of negation enables us to capture the interaction between negation and intra-sentential 
donkey anaphora in (i), (ii) and (iii) below (as already indicated in section 3.3 of chapter 5) and also 
between negation and cross-sentential anaphora in (iv). 

(i) Most farmers who own au donkey do not beat itu. 

(ii) Every farmer who owns au donkey doesn't feed itu properly. 

(iii) Most house-elves who fall in love with au witch do not buy heru anu' alligator purse. 

(iv) Everyu student bought severalu' books. But theyu didn't read (any of) themu'. 
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shown in (53) below. The semantic composition19 proceeds based on the syntactic 

structure schematically represented in (54) and yields the representation in (55). 

52. fall_in_love ⇝ λQ'(et)t.λve. Q'(λv'e. [f_i_l{v, v'}]) 

53. awk:u man ⇝ λPet. [u]; u([man{u}]); u(P(u))        

awk:u' woman ⇝ λPet. [u']; u'([woman{u'}]); u'(P(u')) 

54. awk:u man [fall_in_love [awk:u' woman]] 

55. [u]; u([man{u}]); u([u']; u'([woman{u'}]); u'([f_i_l{u, u'}])) 

To simplify the representation in (55), I will introduce the abbreviations in (56) and 

(57) below. The reader can easily check that the identities in (58) and (59) hold. 

56. u(C) := λIst. Iu≠#≠Ø ∧ ∀x∈uIu≠#(CIu=x),       

 where C is a condition (of type (st)t). 

57. u(u1, …, un) := λIst.λJst. Iu=#=Ju=# ∧ Iu≠#[u1, …, un]Ju≠#,     

 where u∉{u1, ..., un} and [u1, ..., un] := [u1]; ...; [un] 
20. 

58. u([C1, …, Cm]) = [u(C1), …, u(Cm)] 

59. u([u1, ..., un | C1, …, Cm]) = [u(u1, ..., un) | u(C1), …, u(Cm)]) 

Based on the identities in (58) and (59) and several fairly obvious simplifications, 

we obtain the final PCDRT translation of sentence (39), provided in (60) below. Based on 

the definition of truth in (51) above, we derive the truth-conditions in (61) below, which 

agree with our intuitions about the truth-conditions of sentence (39). 

60. [u, u(u') | man{u}, u(woman{u'}), u(f_i_l{u, u'})] 

61. λIst. I≠Ø ∧ ∃xe∃ye(man(x) ∧ woman(y) ∧ f_i_l(x, y)) 

                                                

19 That is, the type-driven translation of example (39); for the precise definition, see section 5 of chapter 3. 

20 That is: [u1, ..., un] := λIst.λJst. ∃H1…∃Hn-1(I[u1]H1 ∧ … ∧ Hn-1[un]J). 
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3.7. The Dummy Info State as Default Discourse Context  

In general, I take the default context of interpretation for all discourses to be the 

singleton info state {i#}, where i# is the 'assignment' that stores the dummy individual # 

relative to all individual dref's. When we apply the truth-conditions in (61) above to the 

default input info state {i#}, we obtain ∃xe∃ye(man(x) ∧ woman(y) ∧ f_i_l(x, y)), i.e. 

precisely the classical first-order truth-conditions assigned to sentence (39). 

Moreover, taking {i#} to be the default context of interpretation enables us to 

capture the infelicity of discourse-initial anaphors, e.g. #Sheu is pretty, because multiple 

meaning components (in particular, the condition unique{u}, the lexical relation 

pretty{u} and the operator u(…)) cannot be satisfied relative to the input info state {i#}.  

Hence, the felicitous deictic use of a pronoun like sheu requires us to non-

linguistically update the default input info state {i#} before processing the sentence 

containing the pronoun; intuitively, this update is contributed by the deixis associated 

with the pronoun (see Heim 1982/1988: 309 et seqq for a similar assumption21). 

4. Quantificational Subordination in PCDRT 

This section presents the PCDRT analysis of the contrast in interpretation between 

the discourses in (1) and (2) above. 

4.1. Quantifier Scope 

We start with the two possible quantifier scopings for the discourse-initial sentence 

(1a/2a). For simplicity, I will assume that the two scopings are due to the two different 

lexical entries for the ditransitive verb court_at, provided in (62) and (63) below. As 

chapter 5 showed, PCDRT is compatible with Quantifier Raising / Quantifying-In and, in 

                                                

21 "If something has been mentioned before, there will always be a card for it in the file […] But does the 
file also reflect what is familiar by contextual salience? So far we have not assumed it does, but let us make 
the assumption now. […] An obvious implication is that files must be able to change, and in particular, 
must be able to have new cards added, without anything being uttered. For instance, if halfway through a 
conversation between A and B a dog comes running up to them and draws their attention, then that event 
presumably makes the file increase by a new card" (Heim 1982/1988: 309-310). 
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general, with any of the quantifier scoping mechanisms proposed in the literature, there is 

no need to use any of them for our current purposes. 

Furthermore, I will assume that the syntactic structure of the sentence is the one 

schematically represented in (64) below. 

62. court_at1 ⇝ λQ'(et)t.λQ''(et)t.λve. Q'(λv'e. Q''(λv''e. [court_at{v, v', v''}])) 

63. court_at2 ⇝ λQ'(et)t.λQ''(et)t.λve. Q''(λv''e. Q'(λv'e. [court_at{v, v', v''}])) 

64. Harvey [[court_at1/2 [a girl]]  [every convention]] 

Thus, court_at1 assigns the indefinite a girl wide scope relative to every convention, 

while court_at2 assigns it narrow scope. 

Turning to the meaning of the quantifier every convention, note that we can safely 

identify the restrictor dref u and the nuclear scope dref u' of any everyu,u'⊑u-quantification: 

the definition in (36) above entails that, if J is an arbitrary output state of a successful 

everyu,u'⊑u-quantification, u and u' have to be identical both with respect to value and with 

respect to structure, i.e. we will have that ∀js∈J(uj=u'j). We can therefore conflate the 

two dref's and assume that every contributes only one, as shown in (65) below. I will also 

assume that the restrictor set of the every 1
u

-quantification is non-empty, so I will replace 

the operator 〈u〉(…) with the simpler operator u(…). 

65. every 1
u

⇝ λPet.λP'et. max 1
u (

1
u (P(u1))); 

1
u (P'(u1)) 

The PCDRT translations of the generalized quantifier every 1
u
 convention and of the 

indefinite a
wk: 

2
u
 girl (which, for the moment, I assume to be weak) are given in (66) and 

(67) below, followed by the compositionally derived representations of the two quantifier 

scopings of sentence (1a/2a), which are provided in (68) and (69). 

To make the representations simpler, I will assume that the PCDRT translation of 

the proper name Harvey is λPet.P(Harvey) instead of the one provided in (49) above. The 

reader can easily convince herself that this simplification does not affect the PCDRT 

truth-conditions for the two discourses under consideration. 
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66. every 1
u
 convention ⇝ λPet. max 1

u ([convention{u1}]); 
1

u (P(u1))  

67. a
wk: 

2
u
 girl ⇝ λPet. [u2 | girl{u2}]; 

2
u (P(u2)) 

68. (a
wk: 

2
u
 girl>>every 1

u
 convention)         

[u2 | girl{u2}]; 
2

u (max 1
u ([convention{u1}])); [

2
u (court_at{Harvey, u2, u1})] 

69. (every 1
u
convention>>a

wk: 
2

u
 girl)        

max 1
u ([convention{u1}]); [

1
u (u2) | 

1
u (girl{u2}), 

1
u (court_at{Harvey, u2, u1})] 

The reader can check that the (truth-conditions derived by the) representations in 

(68) and (69) are the intuitively correct ones. I will examine them only in informal terms. 

The "wide-scope indefinite" representation in (68) updates the default input info 

state {i#} as follows. First, we introduce some non-empty (i.e. non-dummy) set of 

individuals relative to the dref u2. Then, we test that each u2-individual is a girl. Then, 

relative to each u2-individual, we introduce the non-empty set containing all and only 

conventions and store it relative to the dref u1. Finally, we test that, for each u2-girl, for 

each of the corresponding u1-conventions (which, in this case, means: for every 

convention), Harvey courted the girl currently under consideration at the convention 

currently under consideration. 

By the time we are done processing (68), the output info state contains a non-empty 

set of u2-girls that where courted by Harvey at every convention and, relative to each u2-

girl, u1 stores the set of all conventions. 

The "narrow-scope indefinite" representation in (69) updates the default input info 

state {i#} as follows. First, we introduce the non-empty set of individuals containing all 

and only conventions relative to the dref u1. Then, for each u1-convention, we introduce a 

u2-set of individuals. Finally we test that, for each u1-convention, each of the 

corresponding u2-individuals are girls and are such that Harvey courted them at the 

convention currently under consideration. 

By the time we are done processing (69), the output info state stores the set of all 

conventions under the dref u1 and, relative to each u1-convention, the dref u2 stores a non-
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empty set of girls (possibly different from convention to convention) that Harvey courted 

at that particular convention. 

4.2. Quantifier scope and Singular Anaphora, Cross-Sententially 

It is now easy to see how sentence (1b) – and, in particular, the singular number 

morphology on the pronoun she
2u  – forces the "indefinite wide-scope" reading for the 

preceding sentence (1a): the condition unique{u2} effectively conflates the two readings 

by requiring the set of u2-girls obtained after processing (68) or (69) above to be a 

singleton. This requirement leaves untouched the truth-conditions derived on the basis of 

(68) – but makes the truth-conditions associated with (69) above strictly stronger.  

The PCDRT translation of the pronoun and the compositionally derived 

representation of sentence (1b) are provided in (70) and (71) below. For convenience, I 

provide the two complete representations of discourse (1) in (72) and (73) below.  

70. she
2u ⇝ λPet. [unique{u2}]; 

2
u (P(u2)) 

71. [unique{u2}, very_pretty{u2}] 

72. (a
wk: 

2
u
 girl>>every 1

u
 convention)         

[u2 | girl{u2}]; 
2

u (max 1
u ([convention{u1}]));     

[
2

u (court_at{Harvey, u2, u1}), unique{u2}, very_pretty{u2}] 

73. (every 1
u
convention>>a

wk: 
2

u
 girl)        

max 1
u ([convention{u1}]);          

[
1

u (u2) | 
1

u (girl{u2}), 
1

u (court_at{Harvey, u2, u1}), unique{u2}, very_pretty{u2}] 

4.3. Quantifier Scope and Singular Anaphora, Intra-Sententially 

In contrast, sentence (2b) contains the adverb of quantification always, which can 

take scope above or below the singular pronoun she; in the former case, the u2-

uniqueness requirement is weakened (and, basically, neutralized) by being relativized to 

u1-conventions. 
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More precisely, I take the meaning of always to be universal quantification over an 

anaphorically retrieved restrictor, as shown in (74) below. Since always is basically 

interpreted as every, I provide a simplified translation that conflates the restrictor and 

nuclear scope dref's – much like the simplified translation for every in (65) above 

conflated them. The general format for the interpretation of quantifiers that anaphorically 

retrieve their restrictor set is provided in (75). 

74. always
1

u ⇝ λPet. 
1

u (P(u1)) 

75. detuu'⊑u ⇝ λPet. max
u'⊑u(〈u'〉(P(u'))); [DET{u, u'}] 

The restrictor dref of always in (2b) is the nuclear scope dref of the quantifier 

every 1u convention in the preceding sentence (2a). To see that always is indeed anaphoric to 

the nuclear scope and not to the restrictor dref of every, we need to consider other 

determiners that do not effectively identity them, e.g. most in (76) below. In this case, it is 

intuitively clear that always quantifies over the conventions at which Harvey courts a girl 

(the nuclear scope dref) and not over all conventions (the restrictor dref). 

76. a. Harvey courts a girl at most conventions.        

b. She always comes to the banquet with him.  

The definite description the banquet in (2b) is intuitively a Russellian definite 

description (see (48) above), which contributes existence and a relativized (i.e. anaphoric) 

form of uniqueness:  we are talking about a unique banquet per convention. The relevant 

meaning for the definite article is given in (77) below. 

77. the_sg
1

u 3
u
 ⇝ λPet.λP'et. 

1
u (max 3

u (
3

u (P(u3))); [unique{u3}]; 
3

u (P'(u3))) 

The relativized uniqueness is captured by the fact that the unique{u3} condition is 

within the scope of the 
1

u (…) operator 22. Thus, the banquet is in fact interpreted as a 

                                                

22 Incidentally, note that the definite article the_sg
1

u 3
u

 is anaphoric to the restrictor set u1 of the every-

quantification in the preceding sentence (2a) – unlike always, which is anaphoric to the nuclear scope set. 
To see this, we have to consider determiners like most that do not conflate their restrictor and nuclear scope 
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possessive definite description of the form its
1u 3u  banquet, or, more explicitly, of the form 

the
1u 3u  banquet of it

1u , where it
1u  is anaphoric to u1-conventions. The PCDRT translation 

of the definite description, obtained based on the translations in (77) and (78), is provided 

in (79) below. 

78. banquet of it
1

u ⇝ λve. [banquet{v}, of{v, u1}] 

79. the_sg
1

u 3
u
 banquet of it

1
u ⇝         

           λPet. 
1

u (max 3
u ([banquet{u3}, of{u3, u1}]); [unique{u3}]; 

3
u (P(u3)))  

However, to exhibit the interaction between the adverb always
1

u  and the pronoun 

she
2

u  in a simpler and more transparent way, I will assume that sentence (2b) contributes 

a dyadic relation of the form come_with_Harvey_to_the_banquet_of that relates girls and 

conventions. Just like court_at, this dyadic relation can be translated in two different 

ways, corresponding to the two possible relative scopes of she
2

u  and always
1

u  (that is, I 

employ the same scoping technique as the one used for sentence (1a/2a) in (62) and (63) 

above). The two different translations are provided in (80) and (81) below. The basic 

syntactic structure of sentence (2b) is provided in (82). 

80. come_to_banquet_of1 ⇝ λQ(et)t.λQ'(et)t.       

              Q'(λv'e. Q(λve. [come_to_banquet_of{v', v}])) 

81. come_to_banquet_of2 ⇝ λQ(et)t.λQ'(et)t.       

              Q(λve. Q'(λv'e. [come_to_banquet_of{v', v}])) 

82. she [[always] come_to_banquet_of1/2] 

The first lexical entry come_to_banquet_of1 gives the pronoun she
2

u  wide scope over 

the adverb always
1

u , while the second lexical entry come_to_banquet_of2 gives the pronoun 

narrow scope relative to the adverb. The corresponding, compositionally derived PCDRT 

representations are provided in (83) and (84) below. 

                                                                                                                                                

dref's. So, consider discourse (76) again: intuitively, there is a unique banquet at every convention, not only 
at the majority of conventions where Harvey courts a girl. 
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83. (she
2

u >>always
1

u )         

[unique{u2}, 
2

u (come_to_banquet_of{u2, u1})] 

84. (always
1

u >>she
2

u )          

[
1

u (unique{u2}), 
1

u (come_to_banquet_of{u2, u1})] 

Thus, there are two possible representations for sentence (2a) – see (68) and (69) 

above – and two possible representations for sentence (2b) – given in (83) and (84) 

above. Hence, there are four possible representations for discourse (2) as a whole. 

Out of the four possible combinations, three boil down to effectively requiring the 

indefinite a
wk: 

2
u
 girl to take wide scope over the quantifier every 1

u
 convention. This can 

happen if: (i) we assign the representation in (68) to sentence (2a), in which case it does 

not matter which of the two representations in (83) and (84) we assign to sentence (2b), 

or (ii) we assign the representation in (83) to sentence (2b), which, as we have already 

shown for discourse (1) (see section 4.2 above), effectively identifies the two possible 

representations of sentence (2a). 

We are left with the fourth combination (69) + (84), i.e. every 1
u
convention>>a

wk: 
2

u
 

girl + always
1

u >>she
2

u , which is given in (85) below and which provides the desired 

"narrow-scope indefinite" reading that is available for discourse (2), but not for (1). 

85. max 1
u ([convention{u1}]); [

1
u (u2)]; [

1
u (girl{u2}), 

1
u (court_at{Harvey, u2, u1})];  

[
1

u (unique{u2}), 
1

u (come_to_banquet_of{u2, u1})] 

Intuitively, the PCDRT representation in (85) instructs us to modify the input info 

state {i#} by introducing the set of all conventions relative to the dref u1, followed by the 

introduction of a non-empty set of u2-individuals relative to each u1-convention. The 

remainder of the representation tests that, for each u1-convention, the corresponding u2-

set is a singleton set consisting of a girl that is courted by Harvey at the u1-convention 

currently under consideration and that comes with him at the banquet of said u1-

convention.
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5. Summary 

PCDRT enables us to formulate in classical type logic a compositional dynamic 

account of the intra- and cross-sentential interaction between generalized quantifiers, 

anaphora and number morphology exhibited by the quantificational subordination 

discourses in (1) and (2) above from Karttunen (1976). 

The main proposal is that plural info states together with a suitable dynamic 

reformulation of independently motivated denotations for generalized determiners and 

number morphology in static Montague semantics enables us to account for 

quantificational subordination in terms of anaphora to quantifier domains and, 

consequently, for the contrast in interpretation between the discourses in (1) and (2) 

above. 

The cross-sentential interaction between quantifier scope and anaphora, in particular 

the fact that a singular pronoun in the second sentence can disambiguate between the two 

readings of the first sentence, can be captured by plural information states because they 

enable us to store both quantifier domains (i.e. values) and quantificational dependencies 

(i.e. structure), pass them across sentential boundaries and further elaborate on them, e.g. 

by letting a pronoun constrain the cardinality of a previously introduced quantifier 

domain. 

In the process, we were also able to show how the definite descriptions in sentences 

(2b) and (2c) can be analyzed and also how natural language quantifiers enter structured 

anaphoric connections as a matter of course, usually functioning simultaneously as both 

indefinites and pronouns. 

6. Comparison with Alternative Approaches 

6.1. Cross-Sentential Anaphora and Uniqueness 

In this section (and the following one), I will briefly indicate some of the ways in 

which PCDRT relates to the previous literature on uniqueness effects associated with 
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singular anaphora (see Evans 1977, 1980, Parsons 1978, Cooper 1979, Heim 1982/1988, 

Kadmon 1987, 1990, Neale 1990 and Roberts 2003 among others). 

As indicated in section 3.5 of the present chapter (see also section 3.4 of chapter 5), 

the uniqueness enforced by the condition unique{u} is weak in the sense that it is 

relativized to the current plural info state. However, we can require strong uniqueness, 

i.e. uniqueness relative to the entire model, by combining the max
u operator and the 

condition unique{u} – as, for example, in the PCDRT translation for Russellian, non-

anaphoric definite descriptions provided in (48) above. 

The same max
u + unique{u} strategy can be employed to capture the strong 

uniqueness intuitions associated with the "narrow-scope indefinite" reading of the 

quantificational subordination discourse in (2) above, i.e. the fact that discourse (2) as a 

whole implies that Harvey courts a unique girl per convention. 

In more detail: we have assumed throughout this chapter (for simplicity) that the 

indefinite a girl in (2a) receives a weak reading – but, if we assume that the indefinite has 

a strong / maximal reading (see the translation in (38) above), we can capture the above 

mentioned uniqueness intuitions. The PCDRT representation of the "narrow-scope strong 

indefinite" reading is provided in (86) below, which differs from the representation in 

(85) above only with respect to the presence of the additional maximization operator 

max 2
u  contributed by the strong indefinite. 

86. max 1
u ([convention{u1}]); 

1
u (max 2

u ([girl{u2}, court_at{Harvey, u2, u1}]));  

[
1

u (unique{u2}), 
1

u (come_to_banquet_of{u2, u1})] 

The strong uniqueness effect emerges as a consequence of the combined meanings 

assigned to the strong indefinite and the singular pronoun: the strong indefinite makes 

sure (by max 2
u ) that, with respect to each u1-convention, the dref u2 stores all the girls 

courted by Harvey at that convention; the singular pronoun subsequently requires (by 

unique{u2}) that the set of u2-individuals stored relative to each u1-individual is a 

singleton set. Together, the strong indefinite and the singular pronoun require that, at 

each u1-convention, Harvey courts exactly one girl, which the dref u2 stores. 
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Thus, PCDRT can capture the intuition that discourse (2) is interpreted as talking 

about conventions at which Harvey courts a unique girl (possibly different from 

convention to convention). Moreover, the fact that, in PCDRT, the uniqueness 

implications are a consequence of combining the meanings of the indefinite and of the 

singular anaphor captures the observation in Kadmon (1990): 279-280 that "[…] 

indefinite NP's don't always have unique referents. […] When anaphora is attempted, 

however, the uniqueness effect always shows up".  

In a sense, this observation is literally captured in PCDRT: singular pronouns 

always contribute a unique{u} condition. However, whether this condition yields strong 

uniqueness depends on the weak / strong reading of the antecedent indefinite. Against 

Kadmon, I take this variation to be a welcome prediction since it converges with the 

wavering uniqueness intuitions that native speakers have with respect to various cases of 

singular cross-sentential anaphora (I will return to this issue presently).  

The very same ingredients employed in PCDRT to derive the (relativized) 

uniqueness effects in quantificational subordination also provide an account of the 

(absolute / non-relativized) uniqueness intuitions associated with the well-known 

example in (87) below.  

87. There is astr:u doctor in London and heu is Welsh.      

(Evans 1980: 222, (26)23) 

88. max
u([doctor{u}, in_London{u}]); [unique{u}, Welsh{u}] 

In contrast, the weak and strong readings for the indefinite article in example (89) 

below (from Heim 1982/1988: 28, (14a)) are truth-conditionally indistinguishable in 

PCDRT24, i.e. there are no strong uniqueness implications – and correctly so. Thus, 

PCDRT can also account for the difference between the interpretations of (87) and (89). 

                                                

23 Page references are to Evans (1985). 

24 The weak / strong contrast associated with an indefinite has truth-conditional effects only if there is 
anaphora to that indefinite. 
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89. There is a doctorwk/str:u who is Welsh in London. 25

Finally, given that indefinite articles are associated with both a weak and a strong 

meaning enables us to account for the observation in Heim (1982): 31 that singular cross-

sentential anaphora is not necessarily associated with uniqueness implications, as shown 

by the narration-type example in (90) below (from Heim (1982): 31, (29)). 

90. There was awk:u doctor in London. Heu was Welsh… 

Summarizing, the hypothesis that the indefinite article is ambiguous between a weak 

and a strong reading together with proposal that singular number morphology on 

pronouns contributes a unique condition enables PCDRT to capture the three-way 

contrast between (87), (89) and (90) above. In particular, the contrast between (87) and 

(90) is due to what reading is associated with the indefinite in each particular case. 

PCDRT does not have anything to say about this choice – and, I think, rightfully so: as 

much of the literature observes (Heim 1982/1988, Kadmon 1990, Roberts 2003 among 

others), the choice is sensitive to various factors that are pragmatic in nature and / or have 

related to the global structure of the discourse (e.g. that (90) is a narrative, while (87) is 

not). 

Thus, unlike Heim (1982) and classical DRT / FCS / DPL in general, PCDRT can 

capture the uniqueness intuitions (sometimes) associated with cross-sentential singular 

anaphora – and the ingredients of the analysis, in particular the two meanings associated 

with the indefinite article, are independently motivated by mixed reading donkey 

sentences (see chapter 5 above).  

Moreover, the overall account is compositional and the unique{u} condition 

contributed by singular number morphology on anaphors is a local constraint of the same 

kind as ordinary lexical relations, in contrast to the non-local and non-compositional26

                                                

25 PCDRT also makes correct predictions with respect to the similar examples in (i) and (ii) below, due to 
Heim (1982): 28, (27) and (27a). 

(i) A wine glass broke last night. It had been very expensive. 

(ii) A wine glass which had been very expensive broke last night. 

26 At least, not compositional in any obvious way. 
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uniqueness condition proposed in Kadmon (1990) to account for such uniqueness 

effects27. 

Also, unlike Kadmon (1990) (see the contrast between the preliminary and the final 

version of the uniqueness condition in Kadmon 199028), PCDRT captures the constrast 

between the absolute and relativized uniqueness effects instantiated by (87) (where the 

doctor is absolutely unique) and (2) above (where there is a unique girl per convention) 

without any additional stipulations.  

In particular, relativized uniqueness is a consequence of the distributivity operators 

contributed by the quantifier taking scope over the singular pronoun – and these 

distributivity operators are independently motivated by the scopal interaction between 

multiple quantifiers and by the interaction between generalized quantification and donkey 

anaphora (see the discussion in section 3.3 above). 

Finally, the fact that indefinite articles are analyzed in PCDRT as being associated 

with both a weak and a strong meaning (independently motivated by mixed reading 

donkey sentences) adds the needed flexibility to account for the observation that cross-

sentential anaphora is not always associated with uniqueness implications, as shown by 

the contrast between (87) and (90) above. 

6.2. Donkey Anaphora and Uniqueness 

The uniqueness implications associated with intra-sentential singular donkey 

anaphora are, by and large, just as unstable as the ones associated with cross-sentential 

singular anaphora. 

                                                

27 This is the preliminary (simpler) version of the uniqueness condition in Kadmon (1990): 284, (30): "A 
definite NP associated with a variable X in DRS K is used felicitously only if for every model M, for all 
embedding functions f, g verifying K relative to M, f(X)=g(X)". 

28 The preliminary version of the uniqueness condition is provided in fn. 27 above. The final version of the 

uniqueness condition is as follows: "Let α be a definite NP associated with a variable Y, let Kloc be the local 

DRS of α, and let K be the highest DRS s.t. K is accessible from Kloc and Y∈UK. α is used felicitously only 

if for every model M, for all embedding functions f, g verifying K relative to M, if ∀X∈BK f(X)=g(X) then 

f(Y)=g(Y)" (Kadmon 1990: 293, (31)), where BK := {X: ∃K' accessible from K s.t. K'≠K and X∈UK'}. 
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On the one hand, the examples in (91) and (92) below exhibit uniqueness effects – 

more precisely: uniqueness effects relativized to each particular value of 'main' 

generalized determiner of each sentence (i.e. most, every and every respectively). 

91. Every man who has au son wills himu all his money.     

(Parsons 1978: 19, (4), attributed to B. Partee) 

92. Every man who has au daughter thinks sheu is the most beautiful girl in the world.  

(Cooper 1979: 81, (60)) 

On the other hand, the examples in (93), (94), (95) and (96) below do not seem to 

exhibit uniqueness effects29. Note in particular that there are no uniqueness effects 

associated even with the weak donkey anaphora au' credit card-itu' in (96) (for more 

discussion of this observation, see chapter 5 above). 

93. Every farmer who owns au donkey beats itu. 

94. Most people that owned au slave also owned hisu offspring.     

(Heim 1990: 162, (49)) 

95. No parent with au son still in high school has ever lent himu the car on a 

weeknight.            

(Rooth 1987: 256, (48)) 

96. Every person who buys au TV and has au' credit card uses itu' to pay for itu. 

In general, previous accounts of donkey anaphora are designed to account either for 

the first set of examples, which exhibit uniqueness (e.g. Parsons 1978, Cooper 1979, 

Kadmon 1990 among others), or for the second set of examples, which do not (e.g. Kamp 

1981, Heim 1982/1988, 1990, Neale 1990, Kamp & Reyle 1993 among others). This is 

not to say that these approaches cannot be amended to account for a broader range of data 

– the point is only that the basic architecture of the theory is such that either uniqueness 

or non-uniqueness follows from it. 

                                                

29 Kadmon (1990): 307 takes examples like (93) and (94) above to exhibit uniqueness – see also example 
(48) in Kadmon 1990: 307, repeated in (i) below. At the same time, Kadmon (1990): 308-309 mentions that 
some informants disagree and "treat [(i)] as if it said 'at least one dog'; for them, [(i)] doesn't display a 
uniqueness effect". 

(i) Most women who own a dog talk to it. 
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In this section, I argue that the PCDRT combination of plural information states 

(plus maximization) on the one hand and the unique condition (plus distributivity) on the 

other hand makes for a flexible theory that can accommodate both kinds of donkey 

examples in a natural way. The main idea will be that all these resources enable us to 

'partition' the restrictor of a generalized quantification in various ways and, depending on 

this 'partitioning', the morphologically singular anaphors in the nuclear scope of the 

generalized quantification contribute uniqueness or not. 

The intuition that the uniqueness effects associated with donkey anaphora are 

dependent on how we 'think' about the restrictor of the generalized quantification is by no 

means new – it underlies the notion of cases in Lewis (1975), the use of minimal 

situations in Heim (1990) (among others) and the quantification over instances in 

Kadmon (1990) (see Kadmon 1990: 301). Thus, in this section, I argue that PCDRT 

enables us to formulate in a new and intuitive formalization of this familiar intuition. 

Singular Donkey Anaphora Does Not Always Imply Uniqueness 

The assumption that singular donkey anaphora can involve non-singleton sets has 

been repeatedly challenged because singular donkey anaphora seems to be intuitively 

associated with a kind of uniqueness implication30. Relative-clause donkeys in particular 

(like (1) and (2) above) are claimed to be associated with uniqueness presuppositions: 

some authors (e.g. Kanazawa 2001: 391, fn. 5) actually distinguish between relative-

clause and conditional donkey sentences and claim that the former but not the latter 

contribute some form of uniqueness. 

However, this is not the whole story. First, the uniqueness intuitions associated with 

relative-clause donkeys are much weaker (if at all present) when we consider examples 

with multiple donkey indefinites like (96) above, i.e., in a sense, relative-clause donkey 

sentences that are closer in form to conditional donkey sentences. 

Second, even the proponents of uniqueness have to concede that donkey uniqueness 

is of a rather peculiar kind. One of the main debates revolves around the 'sage plant' 

                                                

30 For recent discussion, see Kanazawa (2001) and Geurts (2002). 
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example in (97) below which, on the face of it, strongly argues against donkey 

uniqueness. 

97. Everybody who bought au sage plant here bought eight others along with itu. 

(Heim 1982/1988: 89, (12)) 

Kadmon (1990): 317 conjectures that the donkey anaphora in (97) still contributes a 

uniqueness  presupposition, but the "speakers accept this example because it can't make 

any difference to truth conditions which sage plant the pronoun it stands for, out of all the 

sage plants that a buyer x bought (for each buyer x)". 

But, as Heim (1990): 161 points out, Kadmon's 'supervaluation'31 analysis makes 

incorrect predictions with respect to the example in (95) above from Rooth 1987: 

intuitively, sentence (95) is falsified by any parent who has a son in high school and who 

has lent him the car on a weeknight even if said parent has another son who never got the 

car – which is to say that it does make a difference in this case which son the pronoun 

himu in (95) stands for32. 

This being said, example (91) above does seem to exhibit uniqueness implications – 

so, an empirically adequate account of donkey anaphora should be flexible enough to 

accommodate the wavering nature of the uniqueness intuitions associated with it. 

Capturing the Wavering Nature of the Uniqueness Intuitions 

As it now stands, the revised version of PCDRT introduced in this chapter predicts 

that donkey anaphora is associated with relativized uniqueness implications, i.e. it can 

account for the uniqueness intuitions associated with (91) above. As shown in (98) 

below, relativized uniqueness emerges as a consequence of the interaction between: (i) 

the distributivity operators contributed by selective generalized determiners, (ii) the 

maximization contributed by the strong reading of the indefinite and (iii) the unique

condition contributed by the singular pronoun. 

                                                

31 The connection with supervaluation treatments of vagueness is due to Mats Rooth – see Heim (1990): 
160, fn. 11. 

32 For more discussion, see also Geurts (2002): 145 et seqq. 
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98. Everyu' man who has astr:u son wills himu all his money.     

max
u'(u'([man{u'}]; max

u([son{u}, have{u', u}])));     

u'([unique{u}, will_all_money{u', u}])33

Parsons (1978) considers the uniqueness effects associated with the donkey sentence 

in (91) above and suggests two different ways to capture them. The above PCDRT 

analysis can be seen as an implementation of the first suggestion: 

"One might suggest that the feeling of inappropriateness [of sentence (91) when 
taken to be talking about men that have more than one son] comes explicitly from 
the use of the pronoun. How would that work? Well, one purported meaning of 'a' 
is 'one', in the sense of 'exactly one'. Usually this is thought to be a presupposition, 
implication, or implicature of the utterance rather than part of the content of what 
is said. But perhaps the use of a singular pronoun can make the import part of the 
official content.           
The suggestion then is that 'a' can mean either 'at least one' or 'exactly one'. 
Normally it means the former, but certain grammatical constructions force the 
latter reading. The former reading is the 'indefinite' one, and the latter is the 
'definite' one."          
(Parsons 1978: 19) 

Interestingly, Parson's second suggestion is the one that is taken up by D-/E-type 

approaches that take pronouns to be numberless Russellian definite descriptions (e.g. 

Neale 1990)34. 

                                                

33 An unfortunate consequence of the fact that the unique{u} condition contributed by the pronoun is taken 
to be part of the assertion is that the PCDRT representation in (98) is true only if every man has exactly one 
son, while, intuitively, the quantification should be restricted to men that have only one son. That is, the 
intuitively correct representation for (91) is the one in (i) below, where the unique{u} condition occurs in 
the restrictor. This representation can be obtained if we assume that the unique{u} condition is 
presupposed and that presuppositions triggered in the nuclear scope of tripartite quantificational structures 
can be accommodated in the restrictor (both assumptions, i.e. that number morphology on pronouns is 
presuppositional and that nuclear scope presuppositions can be accommodated in the restrictor, are 
independently assumed and motivated in the literature – see for example Beaver & Zeevat 2006, Heim 
2005 and references therein). 

(i) maxu'(u'([man{u'}]; maxu([son{u}, have{u', u}]); [unique{u}])); u'(will_all_money{u', u}]). 

34 "Sometimes 'the' doesn't mean 'exactly one', but rather 'at least one' or 'every'. It means 'at least one' in 
everyone must pay the clerk five dollars and it means 'every' in you should always watch out for the other 

driver. Or something like this. So perhaps the treatment of pronouns as paraphrases is correct, but we have 
to tailor the meaning of 'the' for the situation at hand. For example, in our sample sentence we need to read 
the donkey he owns as every donkey he owns. This response would involve specifying some method for 
determining which reading of the is appropriate in a given paraphrase; I haven't carried this out" (Parsons 
1978: 20). 
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Thus, the version of PCDRT proposed in this chapter (chapter 6) sides with the 

"uniqueness" approaches (e.g. Parsons 1978, Cooper 1979, Kadmon 1990 among others) 

– and therefore accounts for only one of the two sets of data. In contrast, the version of 

PCDRT proposed in the previous chapter (chapter 5), which does not take singular 

pronouns to contribute a unique condition, sides with the "non-uniqueness" approaches 

(e.g. Kamp 1981, Heim 1982/1988, 1990, Neale 1990, Kamp & Reyle 1993 among 

others).  

The trade-off is as follows. On the one hand, chapter 5 accounts for a variety of 

donkey sentences, i.e. cases of intra-sentential anaphora, including mixed reading 

examples like (96) above. On the other hand, chapter 6 accounts for a variety of 

uniqueness effects with cross-sentential and intra-sentential anaphora, i.e. forcing the 

"wide-scope indefinite" reading for discourse (1) above, deriving the relativized 

uniqueness effects for the "wide-scope indefinite" reading of discourse (2) and deriving 

the relativized uniqueness effects for the donkey sentence in (91) above. 

I will now show that there is a straightforward way to recover the results of chapter 

5 within the version of PCDRT introduced in the present chapter. The main observation 

is that unique{u} conditions are vacuously satisfied under distributivity operators like 

distu, so, to cancel the uniqueness effects, we only need to assume that selective 

generalized determiners introduce such distributivity operators relative to their nuclear 

scope update. 

The simplest such operator is the unselective distributivity operator defined in (99) 

below, which is used in the definition of generalized quantification in (103). Note that 

this definition of generalized quantification differs from the one introduced in (36) above 

(see section 3.3) only with respect to the nuclear scope distributivity operator. 

99. (D) := λIstJst. ∃Rs((st)t)(I=Dom(R) ∧ J=∪Ran(R)  ∧ ∀<is,Jst>∈R(D{i}J),  

 where D is of type t := (st)((st)t). 

100. u(D) := λIstJst. uI=uJ ∧ ∀xe∈uI( (D)Iu=xJu=x) 

101. u D  := λIst.λJst. Iu=#=Ju=# ∧ Iu≠#≠Ø ∧ u(D)Iu≠#Ju≠#

102. 〈u〉 D  := λIst.λJst. Iu=#=Ju=# ∧ (Iu≠#=Ø → I=J) ∧ (Iu≠#≠Ø → u(D)Iu≠#Ju≠#) 
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103. detu, '⊑u ⇝ λPet.λP'et. max
u(〈u〉(P(u))); max

u'⊑u(〈u'〉 P'(u') ); [DET{u, u'}] 

The distributivity operator (D) is unselective because any input info state I is 

updated with the DRS D in a pointwise manner, i.e. we update each of the 'assignments' 

is∈I with D.  

This way of updating a set of 'assignments' is unselective in same sense as the 

generalized quantification over cases proposed in Lewis (1975) is unselective: the 

definition in (103) instructs us to take each 'assignment'  delivered by the restrictor of the 

quantification separately and check that it satifies the nuclear scope of the quantification, 

where 'assignments' are also known as: "cases" in the terminology of Lewis (1975), 

"minimal situations" in the terminology of Heim (1990) and "instances" in the 

terminology of Kadmon (1990). 

Note that the use of unselective distributivity in the definition of dynamic 

generalized quantification does not endanger our previous results: the definition in (103) 

does not have a proportion problem (because DET relates the relevant sets of inviduals) 

and can account for weak / strong ambiguities, including mixed reading donkey 

sentences. For example, sentence (96) is represented as shown in (104) below. The 

unique{u'} and unique{u} conditions contributed by the singular donkey pronouns itu'

and itu are vacuously satisfied because the unselective  operator 'feeds' them only 

singleton informations states {i}35.  

104. Everyu'' person who buys astr:u TV and has awk:u' c.card uses itu' to pay for itu. 

max
u''(u''([pers{u''}]; max

u([TV{u}, buy{u'', u}]); [u' | c.card{u'}, hv{u'', u'}])); 

  u'' [unique{u'}, unique{u}, u'(use_to_pay{u'', u', u})]   

                                                

35 More precisely: the second conjunct of the definitions of unique{u'} or unique{u} is indeed vacuously 
satisfied with respect to any singleton info state {i} whatsoever, but the first conjunct of their definitions 

fails for any {i} such that ui=# or u'i=# (i.e. {i}u'≠#≠Ø is false or {i}u≠#≠Ø is false). Therefore, the nuclear 
scope update u'' [unique{u'}, unique{u}, u'(use_to_pay{u'', u', u})]  fails for any input info state I where 

there is at least one is∈Iu''≠# such that ui=# or u'i=#. But this does not affect the truth-conditions derived by 
the representation in (104), which are the intuitively correct ones for mixed reading donkey sentence in 
(96). And, as far as the anaphoric potential goes (both with respect to value and with respect to structure), it 
seems to me that the above mentioned consequence of the u'' …  operator is in fact desirable. 
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Thus, our strategy is to neutralize the uniqueness effects associated with intra-

sentential singular anaphora by introducing suitable distributivity operators that take the 

nuclear scope of the main generalized quantification as argument. This (as opposed to, 

for example, making the unique condition contributed by the singular pronoun optional) 

has the desirable consequence that we leave untouched the uniqueness effects associated 

with cross-sentential anaphora in general and with quantificational subordination in 

particular; that is, we preserve all the results previously obtained in this chapter (see 

sections 4 and 6.1 above). 

Summarizing, the increased flexibility of the theoretical architecture of PCDRT 

(when compared to previous approaches) enables it to account for the unstable 

uniqueness intuitions associated with donkey anaphora. The account makes crucial use of 

plural info states and distributivity operators. More precisely, in any tripartite 

quantificational structure, we have a choice between selective and unselective nuclear 

scope distributivity. The decision to use one or the other depends on how we 'think about' 

the relation between the restrictor and the nuclear scope of the quantification on a 

particular occasion (which, in turn, is determined by the global discourse context, world 

knowledge etc., i.e. by various pragmatic factors):  

• if we focus on the individuals contributed by the restrictor, we predicate the nuclear 

scope of each such individual separately, so we use a selective distributivity 

operator distu and we obtain uniqueness effects (relativized to u); 

• if we focus on the (minimal) cases / situations contributed by the restrictor, we 

predicate the nuclear scope of each such case separately, so we use an unselective 

distributivity operator  and we neutralize / cancel all uniqueness effects.

These two choices, i.e. distu and , are the two extremes of a possibly much 

richer spectrum: if we use distu, we are as coarse-grained as possible when we predicate 

the nuclear scope update; if we use ,, we are as fine-grained as possible. In between 

these extremes, we can define a family of of multiply selective distributivity operators as 
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shown in (105) and (106) below (see also appendix 0 below). I leave their investigation 

for future research36. 

105. u,u',…(D) := λIst.λJst. (Iu=#=Ju=# ∧ Iu'=#=Ju'=# ∧ …) ∧  Iu≠#,u'≠#,…≠Ø ∧    

    distu,u',…(D)Iu≠#,u'≠#,…Ju≠#,u'≠#,…  

106. 〈u,u',…〉(D) := λIst.λJst. (Iu=#=Ju=# ∧ Iu'=#=Ju'=# ∧ …) ∧ (Iu≠#,u'≠#,…=Ø → I=J) ∧  

     (Iu≠#,u'≠#,…≠Ø → distu,u',…(D)Iu≠#,u'≠#,…Ju≠#,u'≠#,…) 

6.3. Telescoping 

The phenomenon of telescoping is exemplified by discourses (107) and (108) 

below, where a singular pronoun seems to be cross-sententially anaphoric to a quantifier. 

The term is due to Roberts (1987, 1989) and is meant to capture the fact that, in such 

discourses, "from a discussion of the general case, we zoom in to examine a particular 

instance" (Roberts 1987: 36). 

107. a. Eachu candidate for the space mission meets all our requirements.  

b. Heu has a PhD in Astrophysics and extensive prior flight experience.   

 (Roberts 1987: 36, (38)37) 

108. a. Eachu degree candidate walked to the stage.     

b. Heu took hisu diploma from the Dean and returned to hisu seat.   

 (Roberts 1987: 36, (34), attributed to B. Partee) 

The main observation about this phenomenon (which can be traced back to a pair of 

examples due to Fodor & Sag 1982 and to Evans 1980) is that "the possibility of 

anaphoric relations in such telescoping cases depends in part on the plausibility of some 

sort of narrative continuity between the utterances in the discourse" (Roberts 1987: 36). 

Thus, Evans (1980) observes that the discourse in (109) below is infelicitous. The 

examples in (110) and (111) from Poesio & Zucchi (1992) are similarly infelicitous. 

                                                

36 The analysis of the interaction between donkey anaphora and quantificational adverbs (always, usually

etc.) in conditionals might require such multiply selective distributivity operators. 

37 Page references to Roberts (1990). 
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109. #Everyu congressman came to the party and heu had a marvelous time.  

 (Evans 1980: 220, (21)38) 

110. #Everyu dog came in. Itu lay down under the table.     

 (Poesio & Zucchi 1992: 347, (1)) 

111. #Eachu dog came in. Itu lay down under the table.     

 (Poesio & Zucchi 1992: 360, (39c)) 

The challenge posed by telescoping is to account both for the felicity of (107) and 

(108) and for the infelicity of (109), (110) and (111), as Poesio & Zucchi (1992) and 

Roberts (1995, 1996) among others emphasize. 

In this respect, DRT / FCS / DPL approaches (Kamp 1981, Heim 1982/1988, Kamp 

& Reyle 1993 among others) fail because they can account only for the infelicity of 

(109), (110) and (111), but not for the felicity of (107) and (108). This is a direct 

consequence of the fact that generalized quantifiers are externally static in this kind of 

systems (such systems also fail to account for the quantificational subordination 

discourse in (2) above).  Dynamic Montague Grammar (DMG, see Groenendijk & 

Stokhof 1990) and systems based on it (e.g. Dekker 1993) define generalized quantifers 

as externally dynamic and, therefore, fail in the opposite way: they can account for the 

felicity of (107) and (108), but not for the infelicity of (109), (110) and (111). Moreover, 

DMG does not derive the correct truth-conditions for all telescoping and quantificational 

subordination discourses (see the discussion in Poesio & Zucchi (1992): 357-359). 

The analyses of telescoping in Poesio & Zucchi (1992), Roberts (1995, 1996)39 and 

Wang et al (2006) (among others – see the detailed discussion in Wang et al 2006) are 

more flexible and they can account for both kinds of examples. These accounts make 

crucial use of more general, pragmatic notions having to with world knowledge and 

global discourse structure: (i) accommodation (for Poesio & Zucchi 1992 and Roberts 

1995, 1996) and (ii) rhetorical relations (for Wang et al 2006). These accounts differ with 

                                                

38 Page references to Evans (1980). 

39 See also the modal subordination accounts in Geurts (1995/1999) and Frank (1996), which could be 
generalized to quantificational subordination following the same basic strategy as Poesio & Zucchi (1992) 
and Roberts (1995, 1996). 
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respect to their main strategy of analysis: Poesio & Zucchi (1992) and Roberts (1995, 

1996) take the infelicitous examples as basic and then devise special mechanisms to 

account for the felicitous examples, which extract and pass on the relevant discourse 

information; Wang et al (2006) take the felicitous examples as basic, assume that the 

relevant discourse information is always available, but that it has to accessed in a 

particular way. 

The PCDRT account of telescoping I will sketch below falls in the same category as 

the Wang et al (2006) account: plural information states ensure that the relevant 

information is always available, but the singular number morphology on the anaphoric 

pronoun constrains the way in which it can be accessed. At the same time, I will make 

limited use of accommodation – and, in this respect, the account is similar to Poesio & 

Zucchi (1992) and Roberts (1995, 1996). 

The PCDRT account is a development of the suggestion made in Evans (1980): 220 

with respect to the infelicity of (109). Evans conjectures that the infelicity is a 

consequence of a clash in semantic number between the antecedent and the anaphor (note 

that there is no clash in morphological number): on the one hand, the quantificational 

antecedent contributes a non-singleton condition on its restrictor set; on the other hand, 

the singular pronoun anaphoric to the restrictor set requires it to be a singleton.  

I will formalize the non-singleton requirement contributed by selective generalized 

determiners by means of the non-unique condition defined in (112) below40. 

112. non-unique{u} := λIst. Iu≠#≠Ø ∧ ∃is,i's∈Iu≠#(ui≠ui') 

In addition, I will make use of two ingredients independently motivated by the 

uniqueness effects associated with donkey anaphora (see the previous section), namely: 

(i) the unique{u} condition contributed by the singular number morphology on a 

                                                

40 Green (1989) and Chierchia (1995) (among others) argue that this non-singleton condition has 
presuppositional status. In contrast, Neale (1990) suggests that it is in fact an implicature. I find the 
arguments in Green (1989) more persuasive, but I leave a more careful investigation of this issue for future 
research. For simplicity, I will take the non-unique{u} condition contributed by generalized determiners to 
be part of the assertion. 
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pronoun and (ii) the fact that a distu or  operator that takes scope over such a 

condition ensures that it is vacuously satisfied.  

More concretely, I will assume that the global accommodation of a distributivity 

operator u(…) is licensed in the case of the felicitous example analyzed in (113) below, 

but it is not licensed in the case of the infelicitous example analyzed in (114). 

113. Eachu candidate meets all our requirements. u( Heu has a PhD in Astrophysics ).

max
u([candidate{u}]); u([meet_requirements{u}]); [non-unique{u}];  

u([unique{u}, have_PhD{u}]) 

114. Eachu dog came in. #Itu lay down under the table.     

max
u([dog{u}]); u([come_in{u}]); [non-unique{u}];    

 [unique{u}, lay_under_table{u}] 

Of course, nothing in the above analysis specifies when we can and when we cannot 

accommodate such a distributivity operator. I will return to this issue below. For now, 

note only that accommodating such an operator should not come for free because we 

introduce a new meaning component in the discourse representation that is not associated 

with any morpho-syntactic realization.  

The account of the felicitous example in (113) above captures in a direct way the 

'telescoping' intuitions associated with it, i.e. the fact that, as Roberts (1987) puts it, the 

second sentence "zooms in" from a discussion of the general case to a particular instance: 

the distributivity operator partitions a particular domain of quantification and each cell of 

the partition is associated with a particular individual; after the domain is partitioned in 

this way, we update each cell in the partition separately, i.e. "instance by instance". 

Note also that the PCDRT account correctly predicts that telescoping cases with 

plural pronouns are felicitous (or at least better than their singular counterparts), as shown 

by (115) and (116) below. The reason is that plural pronouns like theyu do not contribute a 

unique{u} condition, hence there is no need to accommodate a distributivity operator 

u(…) to neutralize / cancel the effects of such a condition. 

115. a. Everyu dog came in. b. (?)Theyu lay down under the table. 
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116. a. Everyu congressman came to the party. b. (?)Theyu had a marvelous time. 

 (Evans 1980: 220, (22)) 

Similarly, PCDRT can account for the plural anaphora example in (117), which 

combines quantificational subordination and telescoping – and, also, for the variation on 

this example in (118). Note in particular that PCDRT can capture the relativized 

uniqueness effects in (118), i.e. the fact that, intuitively, every man loves exactly one 

woman; this is due to the fact that the unique{u'} condition contributed by the singular 

pronoun heru' is within the scope of the distributivity operator u(…) contributed by the 

pronoun theyu. 

117. a. Everyu man loves au' woman. b. Theyu bring themu' flowers to prove this. 

 (van den Berg 1996a: 168, (16)) 

118. a. Everyu man loves au' woman. b. Theyu bring heru' flowers.   

 (Wang et al 2006: 7, (20)) 

Moreover, PCDRT can capture the relativized uniqueness associated with the cross-

sentential anaphora au' spare pawn-itu' in example (119) below from Sells (1985) (see also 

Kadmon 1990 for discussion). We only need to assume that a distributivity operator u(…) 

with scope over the second sentence in (119) is accommodated. At the same time, 

PCDRT correctly predicts that the restrictive relative clause example in (120) (also from 

Sells 1985) does not have relativized uniqueness implications associated with it. 

119. a. Everyu chess set comes with astr:u' spare pawn.     

b. u( Itu' is taped to the top of the box ). 

120. Everyu chess set comes with awk/str:u' spare pawn that is taped to the top of the 

box. 

Using the same ingredients, PCDRT can also account for the contrast in 

acceptability between (121) and (122) below, from Roberts (1996) (examples (1) and (1') 

on p. 216) – we only need to assume that the accommodation of a distributivity operator 

u(…) is possible in the case of (122) but not in the case of (121).  

121. a. Everyu frog that saw anu' insect ate itu'. #Itu' was a fly. 

122. a. Everyu' frog that saw anu' insect ate itu'. b. u( Itu' disappeared forever ). 
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The infelicity of (121) is derived as follows: given that it is not possible for multiple 

frogs to eat the same insect (this is world knowledge), after we process the update 

contributed by the first sentence in (121), there should be at least as many eaten insects as 

there are frogs. But the unique{u'} condition contributed by the pronoun itu' in the second 

sentence of (121), which is not in the scope of any distributivity operator, requires that 

there is only one such eaten insect (which, by the way, was a fly).  Since there are at most 

as many insects as there are frogs, this means that the set of frogs is (at most) a singleton, 

which contradicts the non-unique{u} condition contributed by  the determiner everyu. 

Finally, the same ingredients also enable us to account for the examples in (123) and 

(124) below from Wang et al (2006) (examples (2) on p. 1 and (19) on p. 7 respectively) 

– and for the relativized uniqueness effects associated with (123). 

123. a. Everyu hunter that saw au' deer shot itu'. b. u( Itu' died immediately. ) 

124. a. Everyu hunter that saw au' deer shot itu'. b. Theyu' died immediately. 

The problem left unaddressed by the account sketched above is how to decide when 

we can and when we cannot accommodate such distributivity operators. – and which 

distributivity operator it is, i.e. which quantificational domain we "zoom in". PCDRT, 

which is a semantic framework, does not (have to) say any thing about this – but I want 

to suggest that it offers the two things that we can expect from a semantic theory, namely: 

(i) it provides a precisely circumscribed way in which a more general pragmatic theory 

can interface with the semantic theory and (ii) when the pragmatic 'parameters' / factors 

are specified, it delivers the intuitively correct truth-conditions.  

The previous literature uncovered two important factors that determine whether a 

distributivity operator can be accommodated or not in PCDRT: (i) the rhetorical structure 

of the discourse – see Wang et al (2006) and (ii) general world knowledge – see the 

notion of script in Poesio & Zucchi (1992). As I have suggested, PCDRT needs to be 

supplemented with the same kind of pragmatic theory that these alternative approaches 

assume; there are, however, certain differences between PCDRT and these alternative 

approaches. 
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Compared to the accommodation theories proposed in Poesio & Zucchi (1992) and 

Roberts (1995, 1996)41, which involve accommodation of discourse referents, conditions, 

DRS's etc. (triggered by the presuppositional nature of quantifier domain restriction in the 

case of Roberts 1995, 1996), the PCDRT accommodation procedure is much simpler and 

involves a clearly circumscribed alteration of the discourse representation, namely: the 

global accommodation of a distributivity operator with the purpose of satisfying the 

unique{u} presupposition42 contributed by singular number morphology on pronouns. 

Therefore, I expect that the over-generation problem faced by PCDRT is milder than the 

one faced by these theories. 

Compared to Wang et al (2006) and van den Berg (1996a) (and also Poesio & 

Zucchi 1992 and Roberts 1987, 1989, 1995, 1996), PCDRT has the advantage that, given 

its underlying type logic, a Montagovian compositional interpretation procedure can be 

easily specified, as the present chapter and the previous one have shown. 

Moreover, PCDRT simplifies the system in van den Berg (1996a) both with respect 

to the underlying logic (which is not partial anymore) and with respect to various 

definitions (e.g. the definitions of the maximization and distributivity operatos) and 

translations (e.g. the translation of indefinite articles and pronouns).  

Finally, unlike the account proposed in Wang et al (2006) (see p. 17 et seqq), the 

PCDRT account of telescoping is more modular, in the sense that its semantic 

interpretation procedure (i.e. type-driven translation) is separated from the more global 

pragmatics of discourse (which involves world knowledge, rhetorical relations etc.). The 

separation of the semantic and pragmatic interpretive components in PCDRT enables us 

to simplify multiple aspects of the semantic theory: its underlying logic, the notion of 

                                                

41 Roberts (1995, 1996) build on the more explicit account in Roberts (1987, 1989), which involves 
accommodation of DRS's. 

42 The condition unique{u} contributed by number morphology on pronouns is clearly presuppositional – I 
treat it as an assertion throughout the present dissertation only for simplicity. 

See Heim (2005) and reference therein for more discussion of the presuppositional contributions of 
pronominal morphology. See Beaver & Zeevat (2006) for a recent discussion of accommodation. See 
Kramer (1998) for a systematic investigation of presupposition in a framework based on CDRT (Muskens 
1996), hence closely related to PCDRT. 
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info state that we use, the operators that we need to access the information stored in these 

states and the translations given for various lexical items. 

I will conclude with the observation that the brief comparison with the previous 

literature in the last three sections can only be preliminary – and for at least three reasons: 

• uniqueness implications are taken to have presuppositional status in much of the 

previous literature (and for good reason), while I have assumed (for simplicity) that 

the unique{u} condition is part of the assertion; thus, a more thorough comparison 

will be possible only when PCDRT is extended with a theory of presupposition (see 

Krahmer 1998 for an extensive investigation of presupposition within a framework 

that also builds on the CDRT of Muskens 1996); 

• the import of various design choices specific to different theoretical architectures 

can be properly evaluated only in the context of a precise investigation of the factors 

that affect uniqueness in particular instances of singular intra- and cross-sentential 

anaphora – and such an investigation is beyond the scope of the present dissertation 

(but see Roberts 2003 and Wang et al 2006 for two recent discussions); 

• the uniqueness implications associated with singular cross-sentential anaphora are 

closely related to the maximality implications associated with plural cross-sentential 

anaphora – and a proper comparison needs to take into account how any given 

theory fares with respect to both of them; the present investigation, however, 

focuses on morphologically singular anaphora and on the arguments it provides for 

a notion of plural information state43. 

Given the primarily foundational purpose of the present investigation, such issues 

can be addressed only partially – but I hope to have at least shown that PCDRT provides 

a promising framework within which it is possible to formulate simpler and, in certain 

respects, better analyses of quantificational subordination, donkey anaphora and 

telescoping and the uniqueness effects associated with them. 

                                                

43 For more discussion of the distinction between plural information states and morphologically plural 
anaphora, see chapter 8 below and Brasoveanu 2006c. 
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Appendix 

A1. Extended PCDRT: The New Definitions and Translations 

125. Structured Inclusion, Maximization and Distributivity Operators.   

a. u'⋐u := λIst. ∀is∈I(u'i=ui ∨ u'i=#)        

b. u'⊑u := λIst. (u'⋐u)I ∧ ∀is∈I(ui∈u'Iu'≠# → ui=u'i)      

c. max
u(D) := λIst.λJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uKu≠#⊆uJu≠#)   

d. max
u'⊑u(D) := max

u'([u'⊑u]; D)        

e. distu(D) := λIst.λJst. ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø) ∧ ∀xe(Iu=x≠Ø → DIu=xJu=x),   

  i.e. distu(D) := λIst.λJst. uI=uJ ∧ ∀xe∈uI(DIu=xJu=x),     

  where Iu=x := {is∈I: ui=x}        

f. u(D) := λIst.λJst. Iu=#=Ju=# ∧ Iu≠#≠Ø ∧ distu(D)Iu≠#Ju≠#     

g. 〈u〉(D) := λIst.λJst. Iu=#=Ju=# ∧ (Iu≠#=Ø → I=J) ∧ (Iu≠#≠Ø → distu(D)Iu≠#Ju≠#)  

h. u(C) := λIst. Iu≠#≠Ø ∧ ∀x∈uIu≠#(CIu=x),   where C is a condition (of type (st)t)  

i. u(u1, …, un) := λIst.λJst. Iu=#=Ju=# ∧ Iu≠#[u1, …, un]Ju≠#,     

  where u∉{u1, ..., un} and [u1, ..., un] := [u1]; ...; [un]

126. Distributivity-based Equivalences.       

a. u([C1, …, Cm]) = [u(C1), …, u(Cm)]        

b. u([u1, ..., un | C1, …, Cm]) = [u(u1, ..., un) | u(C1), …, u(Cm)])

127. Atomic Conditions.        

a. R{u1, ..., un} := λIst. I # #,...,
1 n

u u≠ ≠ ≠ Ø ∧      

   ∀is∈I # #,...,
1 n

u u≠ ≠ (R(u1i, …, uni)),     
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  where I # #,...,
1 n

u u≠ ≠  := {is∈I: u1i≠# ∧ … ∧ uni≠#}    

b. DET{u, u'} := λIst. DET(uIu≠#, u'Iu'≠#),   where DET is a static determiner.  

c. unique{u} := λIst. Iu≠#≠Ø ∧ ∀is,i's∈Iu≠#(ui=ui')

128. Translations.          

a. detu,u'⊑u ⇝ λPet.λP'et. max
u(〈u〉(P(u))); max

u'⊑u(〈u'〉(P'(u'))); [DET{u, u'}]   

b. detuu'⊑u ⇝ λPet. max
u'⊑u(〈u'〉(P(u'))); [DET{u, u'}]      

c. awk:u ⇝ λPet.λP'et. [u]; u(P(u)); u(P'(u))       

d. astr:u ⇝ λPet.λP'et. max
u(u(P(u)); u(P'(u)))       

e. heu ⇝ λPet. [unique{u}]; u(P(u))        

f. theyu ⇝ λPet. u(P(u))         

g. the_sgu ⇝ λPet.λP'et. [unique{u}]; u(P(u)); u(P'(u))     

h. the_plu ⇝ λPet.λP'et. u(P(u)); u(P'(u))       

i. the_sgu ⇝ λPet.λP'et. max
u(u(P(u))); [unique{u}]; u(P'(u))    

j. the_plu ⇝ λPet.λP'et. max
u(u(P(u))); u(P'(u))      

k. the_sguu' ⇝ λPet.λP'et. u(max
u'(u'(P(u'))); [unique{u'}]; u'(P'(u')))    

l. Harveyu ⇝ λPet. [u | u⋐Harvey]; u(P(u)),   where Harvey := λis. harveye   

m. everyu ⇝ λPet.λP'et. max
u (u(P(u))); u(P'(u))      

n. alwaysu ⇝ λPet. u(P(u))
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A2. Generalized Selective Distributivity 

First, we need to generalize our abbreviation for partition cells induced by dref's 

over plural information states, as shown in (129) below. 

129. Iu=x := {is∈Ist: ui=x} and Ip=w := {is∈Ist: pi=w}.              

In general:            

I
, n1α ...,α1 nf f= =  := {is∈Ist: α1i=f1 ∧ … ∧ αni=fn},      

 where the types of the terms α1,…,αn are in DRefTyp and   

 for each m s.t. 1≤m≤n, if the type of αm is (sτ), then fm is of type τ∈STyp. 

Second, we generalize DRS-level distributivity to multiple dref's, as shown in (130) 

below. 

130. DRS-level selective distributivity (i.e. distributivity over type t := (st)((st)t)).   

distu(D) := λIstJst. uI=uJ ∧ ∀xe∈uI(DIu=xJu=x),     

 where u is of type e := se and D is of type t := (st)((st)t).      

In general:                     

dist
n1α ,...,α (D) := λIstJst. (α1I=α1J ∧ … ∧ αnI=αnJ) ∧     

∀f1∈α1I…∀fn∈αnI(I , n1α ...,α1 nf f= = ≠Ø ↔ J
, n1α ...,α1 nf f= = ≠Ø) ∧

∀f1∈α1I…∀fn∈αnI(I , n1α ...,α1 nf f= = ≠Ø → DI
, n1α ...,α1 nf f= = J

, n1α ...,α1 nf f= = ),  

 where the types of the terms α1, …, αn are in DRefTyp     

  and for each m s.t. 1≤m≤n, if the type of αm is (sτ), then fm is of type τ∈STyp

  and D is of type t := (st)((st)t). 
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The general version of DRS-level selective distributivity is more complicated 

because we work simultaneously with n partitions induced by the drefs α1, …, αn on both 

the input state I and the output state J. The intersection of two partitions is another 

partition, but we are not guaranteed than the intersection of any two cells in the two 

partitions is non-empty – hence the antecedent of the conditional in the third conjunct of 

the generalized definition in (130), i.e. I
, n1α ...,α1 nf f= = ≠Ø. 

Moreover, we want to ensure that there is a bijection between the intersection of the 

n partitions over the input state I and the intersection of the n partitions over the output 

state J, hence the first two conjuncts in the generalized definition in (130): the first one 

ensures that the values of the n drefs that we distribute over are the same; the second 

conjunct ensures that there is a bijection between the non-empty, n-distributive cells in 

the input state partition and the non-empty, n-distributive cells in the output state 

partition. 

Note that the first two conjuncts in the generalized definition in (130) could be 

replaced with the biconditional ∀f1…∀fn(I , n1α ...,α1 nf f= = ≠Ø ↔ J
, n1α ...,α1 nf f= = ≠Ø), which 

would make clear the parallel between the general case dist
n1α ,...,α (D) and the special 

case distu(D) – since the first conjunct of the special case definition in (130) can be 

replaced with ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø)44. We can now easily see that the identity in (131) 

below holds. 

                                                

44 Thus, the two most compact (and completely parallel) definitions are: 

(i) distu(D) := λIstJst. ∀xe(Iu=x≠Ø ↔ Ju=x≠Ø) ∧ ∀xe(Iu=x≠Ø → DIu=xJu=x) 

(ii) dist
n1α ,...,α (D) := λIstJst. ∀f1…∀fn(I , n1α ...,α1 nf f= = ≠Ø ↔ J

, n1α ...,α1 nf f= = ≠Ø) ∧    

       ∀f1…∀fn(I , n1α ...,α1 nf f= = ≠Ø → DI
, n1α ...,α1 nf f= = J

, n1α ...,α1 nf f= = ) 
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131. distα(distα'(D)) = distα,α'(D)45           

 (in more detail: distα(distα'(D)) = distα,α'(D) = distα',α(D) = distα'(distα(D))) 

Finally, we define generalized selective distributivity, i.e. distributivity generalized 

to arbitrary distributable types as shown in (132) below. The distributable types are the 

same as the dynamically conjoinable types DCTyp (see definition (62) in section 4 of 

chapter 5). 

132. Generalized Selective Distributivity.              

For any term β of type τ, for any τ∈DCTyp:          

n1:{α ,...,α }δ β := dist
n1α ,...,α (β)        

  if τ=t and the types of the terms α1,…,αn are in DRefTyp.       

n1:{α ,...,α }δ β := λvn+1. ,n1:{α ,...,α }n+1vδ β(vn+1)       

  if τ=(σρ), vn+1 is of type σ and σ∈ DRefTyp.    

Abbreviation. δ:Øβ := δβ

To understand the intuition behind the above definition of generalized distributivity, 

we need to begin with the end, i.e. with the abbreviation. Let us assume that our term β is 

a dynamic property Pet, i.e. an object that can be an argument for an extensional 

generalized determiner. We want to distribute over this property P, i.e. we want to define 

a distributed property δP of type et based on property P.  

                                                

45 Proof. I use the definitions of distα(D) and distα,α'(D) in the immediately preceding footnote. 

distα(distα'(D))IJ = ∀f(Iα=f≠Ø ↔ Jα=f≠Ø) ∧ ∀f(Iα=f≠Ø → distα'(D)Iα=fJα=f) =  

(since distα'(D)Iα=fJα=f = ∀f'(Iα=f,α'=f'≠Ø ↔ Jα=f,α'=f'≠Ø) ∧ ∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f')) 

∀f(Iα=f≠Ø ↔ Jα=f≠Ø) ∧ ∀f(Iα=f≠Ø → ∀f'(Iα=f,α'=f'≠Ø ↔ Jα=f,α'=f'≠Ø) ∧ ∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f')) =  

∀f∀f'(Iα=f,α'=f'≠Ø ↔ Jα=f,α'=f'≠Ø) ∧ ∀f(Iα=f≠Ø → ∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f') =  

∀f∀f'(Iα=f,α'=f'≠Ø ↔ Jα=f,α'=f'≠Ø) ∧ ∀f∀f'(Iα=f,α'=f'≠Ø → DIα=f,α'=f'Jα=f,α'=f') = distα,α'(D)IJ. �
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By the second clause of definition (132), we have that: 

133. δP = δ:ØP = λve. δ:{v}P(v),     where P(v) is a DRS. 

Since P(v) is a DRS, i.e. of type t, we can apply the first clause of definition (132). 

Therefore: 

134. δP = δ:ØP = λve. δ:{v}P(v) = λve. distv(P(v)) 

Thus, the distributed property δP is obtained by distributing over the DRS P(v) with 

respect to the dref variable v. For example, if we distribute over the extensional properties 

denoted by man and leave, we obtain the distributed properties in (135) below. 

135. δman = δ(λve. [manet{v}]) = λve. distv([manet{v}])          

δleave = δ(λve. [leaveet{v}]) = λve. distv([leaveet{v}]) 

A3. DRS-Level Selective Distributivity: Formal Properties 

This appendix investigates the basic formal properties of DRS-level selective 

distributivity. Crucially, I will assume throughout this chapter the simpler PCDRT system 

introduced in chapter 5 that does not countenance the dummy individual #. The simpler 

PCDRT system assigns semantic values to atomic conditions, DRS's etc. that are 

formally much better behaved than the ones assigned by the PCDRT system of chapter 6

which has to introduce the dummy individual # in order to define structured inclusion. 

Let us first define what it means for a DRS D to be closed under arbitrary unions. 

136. The union ∪  of a set  of pairs of info states <I, J> is defined as the pair of 

info states <∪Dom( ), ∪Ran( )>. 

137. A DRS D (of type t := (st)((st)t)) is closed under arbitrary unions iff, given a 

set  of info state pairs s.t. ⊆D, we have that D(∪Dom( ))(∪Ran( )), i.e. 

∪ ∈D. 



261

The following kinds of DRS's are closed under arbitrary unions – again, if we 

assume their simpler definitions according to the PCDRT system of chapter 5 that does 

not countenance the dummy individual: 

138. a. Tests that contain only conditions denoting c-ideals (e.g. atomic conditions, 

dynamic negations of DRS's whose domains are c-ideals etc.) are closed under 

arbitrary unions since c-ideals are closed under arbitrary unions.            

b. A DRS D of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm

are c-ideals, is closed under arbitrary unions46.               

c. A DRS max
u(D), where D is of the form [u1, …, un | C1, …, Cm] and the 

conditions C1, …, Cm are c-ideals, is closed under arbitrary unions47.            

                                                

46 Proof. Recall that the denotation of a DRS D of the form [u1, …, un | C1, …, Cm], where the conditions 
C1, …, Cm are c-ideals, can be defined as shown in (ii) below based on the relation in (i). 

(i) D := {<is, js>: i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}; 

(ii) D = {<Ist, Jst>: ∃ s(st)≠Ø(I=Dom( ) ∧ J=Ran( ) ∧ ⊆ D)}. 

Now take an arbitrary set  of info state pairs s.t. ⊆D. For any pair of info states <I, J>∈ , there is some 

⊆ D s.t. I=Dom( ) and J=Ran( ). If we take the union of all such relations , we will obtain a relation 

* s.t. *⊆ D and s.t. ∪Dom( )=Dom( *) and ∪Ran( )= Ran( *). Hence, we have that 

D(∪Dom( ))(∪Ran( )). �

47 Proof. Consider a DRS of the form maxu(D), where D is of the form in the immediately preceding proof. 
Then the DRS D' = ([u]; D) = [u, u1, …, un | C1, …, Cm] is of the same form and has a similar kind of 
denotation in terms of the relation D' defined in (i) below. 

(i) D' := {<is, js>: i[u, u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)} 

Note that, in this case, the following identities hold: Dom(maxu(D)) = Dom([u]; D) = Dom(D') – because, 

for any info state I∈Dom([u]; D), there is a maximal state J in the set of output states ([u]; D)I: this 
maximal state is the image of I under the relation D'; since J is the supremum info state, it follows that uJ

is also the supremum set of individuals. 

Now take an arbitrary set  of info state pairs s.t. ⊆maxu(D). We show that 

maxu(D)(∪Dom( ))(∪Ran( )), i.e.: (i) D'(∪Dom( ))(∪Ran( )) and (ii) ∀K(D'(∪Dom( ))K →
uK⊆u(∪Ran( ))).  

We know that maxu(D)⊆D', therefore ⊆D' and (i) follows because D' is closed under arbitrary unions (by 
the previous proof). 

Now suppose (ii) does not hold, i.e. there is a K s.t. D'(∪Dom( ))K and s.t. uK⊄u(∪Ran( )). Based on the 

observation above, the set of output states corresponding to ∪Dom( ), i.e. the set D'(∪Dom( )), has a 

supremum info state, i.e. the image of ∪Dom( ) under the relation D'. Let's abbreviate it as *. Now, 

since * is the supremum info state, the set u * is also the supremum set of individuals, so uK⊆u * and, 

therefore, u *⊄u(∪Ran( )).  

I will now show that u * = u(∪Ran( )), which yields a contradiction. Consider an arbitrary pair of info 

states <I, J>∈ ; given that ⊆maxu(D), we have that maxu(D)IJ, i.e. that ∀K(D'IK → uK⊆uJ). In 
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d. A DRS D; D' is closed under arbitrary unions if D and D' are closed under 

arbitrary unions, i.e. dynamic conjunction preserves closure under arbitrary 

unions48.                    

e. A DRS distα(D) is closed under arbitrary unions for any dref α if D is closed 

under arbitrary unions49. 

                                                                                                                                                

particular, we have that uJ = u I, where I is the image of I under the relation D', i.e. the supremum output 
state in the set of output states D'I. The union of all such supremum output states I corresponding to some 

input state I∈Dom( ) is precisely *, i.e. *=∪I∈Dom( )
I and, therefore, u * is the union of all the sets u I. 

Thus, we have that u * = ∪I∈Dom( )u
I = ∪J∈Ran( )uJ = u(∪J∈Ran( )J) = u(∪Ran( )). Contradiction. �

48 Proof. Take an arbitrary set  of info state pairs s.t. ⊆(D; D'). This means that for any <I, J>∈ , there 

is an H s.t. DIH and D'HJ. For every pair <I, J>∈ , choose two other pairs IH and HJ s.t. DIH and D'HJ. 
Abbreviate the union of all the IH pairs ' and the union of all the HJ pairs ''. We have that Dom( ) = 
Dom( '), Ran( ) = Ran( '') and Ran( ') = Dom( ''). 

Since '⊆D and ''⊆D' and D and D' are closed under arbitrary unions, we have that 

D(∪Dom( '))(∪Ran( ')) and D'(∪Dom( ''))(∪Ran( '')). Given that Ran( ') = Dom( ''), we have 

that (D; D')(∪Dom( '))(∪Ran( '')), i.e. (D; D')(∪Dom( ))(∪Ran( )), i.e. D; D' is closed under 

arbitrary unions. �

49 Proof. First note that, in general, distα(D) is not closed under arbitrary unions; selective distributivity is 
based on unions, but not on arbitrary unions of info states. Assume, for example, that we have two pairs <I, 

J>∈D and <I', J'>∈D s.t.  αI=αJ, αI'=αJ', |αI|=|αI'|=1 and, in addition, αI=αI'. Both pairs will be in 

distα(D), but the union of these two pairs, i.e. <I∪I', J∪J'> is not necessarily in the distributed DRS 

distα(D) – not unless it is in the DRS D itself. This is where the assumption that D is closed under arbitrary 

unions becomes useful: it entails that <I∪I', J∪J'>∈D and, since α(I∪I')=α(J∪J')=αI (because we know 

that αI=αJ=αI'=αJ') and |α(I∪I')|=|α(J∪J')|=1, we have that <I∪I', J∪J'>∈ distα(D). The proof 
generalizes this observation to arbitrary sets of pairs (i.e. there is no more insight to be gained from it). I 
provide it here for completeness.  

Suppose we have a set  of info states pairs s.t. ⊆ distα(D). We have to show that <∪Dom( ), 

∪Ran( )>∈distα(D). By the definition of distα(D), any pair <I, J>∈  has one of the following two forms: 

(i) <I, J>∈D, αI=αJ and |αI|=1; (ii) arbitrary unions of sets of pairs of the kind specified in (i), under the 

condition that, for any two such pairs <I, J> and <I', J'>, αI≠αI'. Therefore, <∪Dom( ), ∪Ran( )> is the 
result of taking the union of some arbitrary set of pairs of info states of the kind specified in (i), i.e. pairs of 

the form <I, J> s.t. <I, J>∈D, αI=αJ and |αI|=1. 

We will partition this sets of pairs into equivalence classes as follows: the equivalence class of a given pair 

<I, J> is the set <I,J>={<I', J'>∈D: αI'=αJ' ∧ |αI'|=1 ∧ αI=αI'}. For each such equivalence class of pairs 
<I,J>, we take its union ∪ <I,J>, where the union is defined as in (136) above, i.e. as the pair of info states 

∪ <I,J>=<∪Dom( <I,J>), ∪Ran( <I,J>)> This pair is in the denotation of the DRS D, i.e. <∪Dom( <I,J>), 

∪Ran( <I,J>)>∈D, because <I,J>⊆D and, by assumption, D is closed under arbitrary unions. Moreover, 

each pair <∪Dom( <I,J>), ∪Ran( <I,J>)> satisfies the conditions α(∪Dom( <I,J>)=α(∪Ran( <I,J>)) 

(because α(∪Dom( <I,J>))=αI=αJ=α(∪Ran( <I,J>)) and |α(∪Dom( <I,J>))|=1 (because |αI|=1). Therefore, 

for each pair <I, J>, we have that <∪Dom( <I,J>), ∪Ran( <I,J>)>∈ distα(D). Moreover, for any two distinct 

equivalence classes of pairs <I,J> and <K,L>, their unions  <∪Dom( <I,J>), ∪Ran( <I,J>)> and  

<∪Dom( <K,L>), ∪Ran( <K,L>)> satisfy the additional condition α(∪Dom( <I,J>))≠α(∪Dom( <K,L>)). 
Therefore, the union of such pairs (i.e. of all pairs resulting from unions of equivalence classes) is also in 
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For example, the DRS max
u'([happy_for{u', u}]) is closed under arbitrary unions in 

the following sense. Suppose that this DRS contains the pairs of info states <I1, J1> and 

<I2, J2> in (139) below. The two pairs of info states record the following: given an input 

state I1 such that uI1 is John, the set of individuals that are happy for him are Jessica, 

Mary and Sue; similarly, given an input state I2 such that uI2 is Bill, the set of individuals 

that are happy for him are Jane and Jessica. Then, the DRS max
u'([happy_for{u', u}]) 

also contains the pair of info states <I1∪I2, J1∪J2>, since, given the set of individuals 

u(I1∪I2), i.e. John and Bill, the set of individuals that are happy for at least one of the two 

is Jane, Jessica, Mary and Sue. 

    139. max
u'([happy_for{u', u}]) is 

closed under arbitrary unions.
maxu'([h.f{u', u}])I1J1 Output state J1 … u u' …

Input state I1 … u … j1 … john jess …

i1  john  j2 … john mary …

    j3 … john sue …

    maxu'([h.f{u', u}])I2J2 Output state J2 … u u' … 

Input state I2 … u … j4 … bill jane …

i2 … bill … j5 … bill jess …

We can now state the following observation. 

140. Selective distributivity and closure under arbitrary unions.             

If a DRS D is closed under arbitrary unions, then distα(D)⊆D, for any term α

whose type is in DRefTyp
50.            

                                                                                                                                                

distα(D). But this big union is precisely <∪Dom( ), ∪Ran( )>, i.e. <∪Dom( ), ∪Ran( )>∈ distα(D) 

and we have that distα(D) is closed under arbitrary unions. �

50 Proof. It follows directly from the observation about distα(D) in (i) below and the assumption that D is 

closed under arbitrary unions. �

(i) The denotation of a DRS distα(D) contains all and only:  

(a) those pairs <I, J>∈D such that αI=αJ and |αI|=1;  
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More generally (since distα(D) is closed under arbitrary unions for any dref α if D

is closed under arbitrary unions – see (138e) above):              

If a DRS D is closed under arbitrary unions, then dist
n1α ,...,α (D)⊆D, for any terms 

α1, …, αn whose types are in DRefTyp. 

The inclusion distα(D)⊆D can be strengthened to equality, i.e. we can also show 

that D⊆distα(D), if we require closure under subsets over and above closure under 

unions. 

141. A DRS D (of type t := (st)((st)t)) is closed under subsets iff, for any pair of info 

states <I, J>∈D, there is a set ⊆D of info state pairs such that:             

(i) all the pairs in  are of the form <{is}, {js}>, i.e. they contain only singleton 

info states;                  

(ii) ∪ =<I, J>, where ∪ =<∪Dom( ), ∪Ran( )> (see (136) above), i.e. 

I=∪Dom( ) and J=∪Ran( );               

(iii) for any set of info state pairs '⊆ , we have that D(∪Dom( '))(∪Ran( ')), 

i.e. ∪ '∈D (note that this condition follows automatically if D is also closed 

under unions). 

142. The following kinds of DRS's are closed under subsets (if we assume their 

denotations according to the PCDRT system of chapter 5):      

a. Tests that contain only conditions denoting c-ideals (e.g. atomic conditions, 

dynamic negations of DRS's whose domains are c-ideals etc.) are closed under 

subsets since c-ideals are closed under subsets.              

b. A DRS D of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm

are c-ideals, is closed under subsets51. 

                                                                                                                                                

(b) arbitrary unions of sets of pairs of the kind specified in (a) above, under the condition that, for 

any two such pairs <I, J> and <I', J'>, αI≠αI' – hence, given that αI=αJ, αI'=αJ' and |αI|=|αI'|=1, 
we have that I and I' are disjoint and J and J' are disjoint. 

51 Proof: Recall that the denotation of a DRS D of the form [u1, …, un | C1, …, Cm], where the conditions 
C1, …, Cm are c-ideals, can be defined as shown in (ii) below based on the relation in (i). 

(i) D := {<is, js>: i[u1, …, un]j ∧ j∈(∪C1)∩ … ∩(∪Cm)}; 
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We can now state the very useful observation in (143) below, which shows that 

PCDRT with selective distributivity properly extends the PCDRT system of chapter 5

without selective distributivity only when maximization operators or generalized 

determiners are involved. 

143. Selective distributivity and closure under arbitrary unions and subsets. 

If a DRS D is closed under arbitrary unions and subsets, then distα(D)=D, for any 

term α whose type is in DRefTyp and any DRS D s.t. ∀<I, J>∈D(αI=αJ)52.     

More generally (this follows directly from the special case distα(D)=D and from 

the fact that distα,α'(D) = distα(distα'(D)) – see (131) above):             

If a DRS D is closed under arbitrary unions and under subsets, then 

dist
n1α ,...,α (D)=D, for any terms α1, …, αn whose types are in DRefTyp and any 

DRS D s.t. ∀<I, J>∈D (α1I=α1J ∧ … ∧ αnI=αnJ). 

                                                                                                                                                

(ii) D = {<Ist, Jst>: ∃ s(st)≠Ø(I=Dom( ) ∧ J=Ran( ) ∧ ⊆ D)}. 

Now take an arbitrary pair of info states <I, J>∈D; by (ii), there is some ⊆ D s.t. I=Dom( ) and 

J=Ran( ). Take the set  of info states pairs to be as follows  := {<{is}, {js}>: <is, js>∈ }. For every pair 

of info states <{i}, {j}>∈ , there is the singleton relation {<i, j>}⊆ ⊆ D s.t. {i}=Dom({<i, j>}) and 

{j}=Ran({<i, j>}), therefore ⊆D. Moreover, ∪ = <∪Dom( ), ∪Ran( )> = <Dom( ), Ran( )> 

= <I, J>. The last condition, namely that for any set of info state pairs '⊆ , it is the case that 

D(∪Dom( '))(∪Ran( ')), i.e. that ∪ '∈D, follows directly from (ii), the fact that, for any '⊆ , 

<Dom( '), Ran( ')>∈D. �

52 Proof. Since D is closed under arbitrary unions, we have that distα(D)⊆D by observation (140). We just 

have to prove that D⊆ distα(D).  

Take an arbitrary pair <I, J>∈D. Since D is closed under subsets, we know that there is a ⊆D s.t. ∪
=<∪Dom( ), ∪Ran( )> = <I, J> and  contains only info state pairs of the form <{is}, {js}>. Take a pair 

<{i}, {j}>∈ ⊆D. We know that α{i}=α{j} because, by assumption, ∀<I, J>∈D(αI=αJ). Moreover, 

|α{i}|=|{αi}|=1. Therefore, any pair <{i}, {j}>∈  is s.t. <{i}, {j}>∈ distα(D). 

We now apply the same technique as the one we used in the proof of (138e). We partition the set  of pairs 

into equivalence classes; the equivalence class of a pair <{i}, {j}>∈  is <{i},{j}> := {<{i'}, {j'}>∈ : 

αi'=αi}; thus, ∪ <{i},{j}>=<∪Dom( <{i},{j}>), ∪Ran( <{i},{j}>)> and, since  = ∪<{i},{j}>∈
<{i},{j}>, we have 

that ∪ , i.e. <I, J>, is the union of the set of pairs formed ∪ <{i},{j}>. 

Since D is closed under arbitrary unions and <{i},{j}>⊆ ⊆D, we have that ∪ <{i},{j}>=<∪Dom( <{i},{j}>), 

∪Ran( <{i},{j}>)>∈D. Moreover, α(∪Dom( <{i},{j}>)) = α({i}) = α{j} = α(∪Ran( <{i},{j}>)) and, therefore, 

we also have that |α(∪Dom( <{i},{j}>))|=1. Thus, ∪ <{i},{j}>=<∪Dom( <{i},{j}>), ∪Ran( <{i},{j}>)>∈
distα(D) for any pair <{i}, {j}>∈ . Moreover, since for any two distinct equivalence classes <{i},{j}> and 

<{i'},{j'}>, we have that α(∪Dom( <{i},{j}>))≠α(∪Dom( <{i'},{j'}>)),  the union of all ∪ <{i},{j}> is also in 

distα(D). But this big union is precisely ∪  = <∪Dom( ), ∪Ran( )> = <I, J>. Thus, <I, J>∈distα(D) and 

therefore D⊆distα(D). �
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It follows from the observation in (143) above that selective distributive operators 

are vacuous when applied to tests containing only conditions denoting c-ideals or to 

DRS's of the form [u1, …, un | C1, …, Cm], where the conditions C1, …, Cm are c-ideals – 

if, in the latter case, we distribute over a dref α different from u1, …, un. 

The equivalence in (144) below shows that, in PCDRT / IP-CDRT, selective 

distributivity operators distribute over dynamic conjunction. 

144. distα(D; D') = distα(D); distα(D'),        

  for any term α whose type is in DRefTyp and any DRS's D and D' s.t. 

  ∀<I, J>∈D(αI=αJ) and ∀<I, J>∈D'(αI=αJ)53

Finally, we show that we can extend our previous results about the reduction of 

multiply embedded max
u operators to more complex representations involving selective 

distributivity in addition to embedded max
u operators. In particular, the statement in 

(145) below is a theorem of PCDRT (or IP-CDRT) with selective distributivity. The 

conditions are identical to the ones needed to reduce structures with multiply embedded 

max
u operators that do not contain selectively distributive operators (see the Appendix to 

the previous chapter). 

145. Simplifying 'Max-under-Max' Representations with selective distributivity: 

  max
u(D; distu(max

u'(D'))) = max
u(D; distu([u']; D')); distu(max

u'(D')), 

 if the following three conditions obtain:       

a. u is not reintroduced in D';        

                                                

53 Proof:  

(distα(D); distα(D'))IJ = ∃H(distα(D)IH ∧ distα(D')HJ)  

= ∃H(αI=αH ∧ ∀f∈αI(DIα=fHα=f) ∧ αH=αJ ∧ ∀f∈αH(D'Hα=fJα=f)) 

= ∃H(αI=αH=αJ ∧ ∀f∈αI(DIα=fHα=f ∧ D'Hα=fJα=f))  

= (given that ∀<I, J>∈D(αI=αJ) and ∀<I, J>∈D'(αI=αJ)) αI=αJ ∧ ∀f∈αI(∃H(DIα=fH ∧ D'HJα=f))  

= αI=αJ ∧ ∀f∈αI((D; D')Iα=fJα=f) = distα(D; D')IJ. �
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b. ∀Ist∀Xet (∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(max
u'(D')IJ ∧ X=uJ));   

c. max
u'(D') = [u']; D'; max

u'(D')54. 

                                                

54 Proof. 

Claim1.  If ∀Ist∀Xet(∃Jst(([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(maxu'(D')IJ ∧ X=uJ)), then ∀Ist∀Xet(∃Jst(distu([u']; 

D')IJ ∧ X=uJ) ↔ ∃Jst(distu(maxu'(D'))IJ ∧ X=uJ)). 

Proof of Claim1. ∀Ist∀Xet(∃Jst(distu([u']; D')IJ ∧ X=uJ) ↔ ∃Jst(distu(maxu'(D'))IJ ∧ X=uJ)) = 

∀Ist∀Xet(∃Jst(uI=uJ ∧ ∀xe∈uI(([u']; D')Iu=xJu=x) ∧ X=uJ) ↔ ∃Jst(uI=uJ ∧ ∀xe∈uI(maxu'(D')Iu=xJu=x) ∧
X=uJ)) =  

∀Ist(∃Jst(uI=uJ ∧ ∀xe∈uI(([u']; D')Iu=xJu=x)) ↔ ∃Jst(uI=uJ ∧ ∀xe∈uI(maxu'(D')Iu=xJu=x))) 

LR����: Assume that, for an arbitrary I, we find some J s.t. uI=uJ ∧ ∀xe∈uI(([u']; D')Iu=xJu=x). Pick an 

arbitrary x; we have that ([u']; D')Iu=xJu=x. By hypothesis, we have that ∀Ist∀Xet(∃Jst(([u']; D')IJ ∧ X=uJ) ↔
∃Jst(maxu'(D')IJ ∧ X=uJ)). Instantiate I with Iu=x and X with {x}. We therefore have that: 

∃Jst(([u']; D')Iu=xJ ∧ {x}=uJ) ↔ ∃Jst(maxu'(D')Iu=xJ ∧ {x}=uJ) 

The left hand-side is true because ([u']; D')Iu=xJu=x is true and, obviously, uJu=x={x}. We can therefore find 

a state Jx s.t. maxu'(D')Iu=xJ
x ∧ {x}=uJ

x. Thus, for all xe∈uI, there is some Jx s.t. maxu'(D')Iu=xJ
x ∧ {x}=uJ

x. 

Take the union of all these states, i.e. ∪x∈uIJ
x. Clearly, uI=u(∪x∈uIJ

x) and ∀xe∈uI(maxu'(D')Iu=xJ
x). 

Therefore ∃Jst(uI=uJ ∧ ∀xe∈uI(maxu'(D')Iu=xJu=x)). 

RL����: the reasoning is parallel. End of proof of Claim1.

Thus, maxu(D; distu(maxu'(D')))IJ =  

∃H(([u]; D)IH ∧ distu(maxu'(D'))HJ) ∧ ∀K(∃H(([u]; D)IH ∧ distu(maxu'(D'))HK) → uK⊆uJ)  

By condition (145b) and Claim1, we have that: ∀Ist∀Xet(∃Jst(u([u']; D')IJ ∧ X=uJ) ↔
∃Jst(distu(maxu'(D'))IJ ∧ X=uJ)). 

Therefore, maxu(D; distu(maxu'(D')))IJ =  

∃H(([u]; D)IH ∧ distu(maxu'(D'))HJ) ∧ ∀K(∃H(([u]; D)IH ∧ distu([u']; D')HK) → uK⊆uJ) =  

∃H(([u]; D)IH ∧ distu(maxu'(D'))HJ) ∧ ∀K(([u]; D; distu([u']; D'))IK → uK⊆uJ) 

We have that maxu'(D') = [u']; D'; maxu'(D') (condition (145c)). Hence: maxu(D; distu(maxu'(D')))IJ = 

∃H(([u]; D)IH ∧ distu([u']; D'; maxu'(D'))HJ) ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uJ) 

Since u is not reintroduced in D' (condition (145a)), we have by fact (144) that distu([u']; D'; maxu'(D')) = 
distu([u']; D'); distu(maxu'(D')). Therefore: maxu(D; distu(maxu'(D')))IJ =  

∃H(([u]; D; distu([u']; D'))IH ∧ distu(maxu'(D'))HJ) ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uJ) = 

∃H(([u]; D; distu([u']; D'))IH ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uJ) ∧ distu(maxu'(D'))HJ) 

Since u is not reintroduced in D' (condition (145a)), we have that uJ=uH. Hence: maxu(D; 
distu(maxu'(D')))IJ = 

∃H(([u]; D; distu([u']; D'))IH ∧ ∀K(([u]; D; distu([u']; D'))IK) → uK⊆uH) ∧ distu(maxu'(D'))HJ)  =  

∃H(maxu(D; distu([u']; D'))IH ∧ distu(maxu'(D'))HJ) = (maxu(D; distu([u']; D')); distu(maxu'(D')))IJ. �
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Just as before, we can further simplify the three conditions in (145). First, given the 

first condition, i.e. (145a), the second condition is equivalent to Dom([u']; D') = 

Dom(max
u'(D')). Moreover, based on the two facts in (146) (see the appendix of chapter 

5 for their proofs), we can further simplify condition (145c). 

146. a. If D' is of the form [u1, …, un | C1, …, Cm],      

    then ∀IstJst(([u']; D')IJ → ([u']; D')I=([u']; D')J).            

b. If ∀IstJst(([u']; D')IJ → ([u']; D')I=([u']; D')J),      

    then max
u'(D') = [u']; D'; max

u'(D'). 

Thus, we have the corollary in (147) below. 

147. Simplifying 'Max-under-Max' Representations with selective distributivity 

(corollary):           

max
u(D; distu(max

u'(D'))) = max
u(D; distu([u']; D')); distu(max

u'(D')),         

if the following three conditions obtain:       

a. u is not reintroduced in D';        

b. Dom([u']; D') = Dom(max
u'(D'));       

c. D' is of the form [u1, …, un | C1, …, Cm]. 

The right handside of the identity can be further simplified if the DRS [u']; D' is 

closed under unions and subsets, in which case we can omit the distributive operator 

embedded under max
u since distu([u']; D') = [u']; D' – this holds because, by (147a), u is 

not reintroduced in D' and, therefore, ∀<I, J>∈([u']; D')(uI=uJ). Consequently, we have 

the additional corollary in (148) below, which is useful for the simplification of 

derivations. 

148. Simplifying 'Max-under-Max' Representations with selective distributivity 

(corollary2):           

max
u(D; distu(max

u'(D'))) = max
u(D; [u']; D'); distu(max

u'(D')),          

if the following three conditions obtain:       

a. u is not reintroduced in D';        
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b. Dom([u']; D') = Dom(max
u'(D'));       

c. D' is of the form [u1, …, un | C1, …, Cm]       

 and C1, …, Cm are c-ideals.        

Moreover, (148b) actually follows from (148c) because C1, …, Cm are c-ideals. 
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Chapter 7. Structured Modal Reference: Modal Anaphora and 
Subordination 

1. Introduction 

This chapter shows that PCDRT can be extended to analyze structured discourse 

reference in the modal domain. In particular, adding a new type w for possible worlds is 

the only extension to our underlying logic Dynamic Ty2 that is needed to account for the 

discourse in (1) below, i.e. to derive its intuitively correct truth-conditions and explicitly 

capture the individual-level and modal anaphoric connections established in it. 

1. a. [A] man cannot live without joy.        

b. Therefore, when he is deprived of true spiritual joys, it is necessary that he 

become addicted to carnal pleasures        

(Thomas Aquinas1). 

We will focus on only one of the meaning dimensions of this discourse, namely the 

entailment relation established by therefore between the modal premise (1a) and the modal 

conclusion in (1b)2. We are interested in the following features of this discourse. First, we 

want to capture the meaning of the entailment particle therefore, which relates the content

of the premise (1a) and the content of the conclusion (1b) and requires the latter to be 

entailed by the former. I take the content of a sentence to be truth-conditional in nature, 

i.e. to be the set of possible worlds in which the sentence is true, and entailment to be 

content inclusion, i.e. (1a) entails (1b) iff for any world w, if (1a) is true in w, so is (1b)3. 

                                                

1 Attributed to Thomas Aquinas, http://en.wikiquote.org/wiki/Thomas_Aquinas#Attributed. 

2 For the multi-dimensionality of the meaning of therefore-discourses, see for example Grice (1975) and 
Potts (2003). 

3 I am grateful to a Logic & Language 9 reviewer for pointing out that modeling the entailment relation 
expressed by therefore as a truth-conditional relation, i.e. as requiring inclusion between two sets of 
possible worlds, cannot account for the fact that the discourse Pi is an irrational number, therefore 

Fermat's last theorem is true is not intuitively acceptable as a valid entailment and it cannot be accepted as 
a mathematical proof despite the fact that both sentences are necessary truths (i.e. they are true in every 
possible world). I think that at least some of the available accounts of hyper-intensional phenomena are 
compatible with my proposal, so I do not see this as an insurmountable problem. 
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Second, we are interested in the meanings of (1a) and (1b). I take meaning to be 

context-change potential, i.e. to encode both content (truth-conditions) and anaphoric 

potential. Thus, on the one hand, we are interested in the contents of (1a) and (1b). They 

are both modal quantifications: (1a) involves a circumstantial modal base (to use the 

terminology introduced in Kratzer 1981) and asserts that, in view of the circumstances, 

i.e. given that God created man in a particular way, as long as a man is alive, he must find 

some thing or other pleasurable; (1b) involves the same modal base and elaborates on the 

preceding modal quantification: in view of the circumstances, if a man is alive and has no 

spiritual pleasure, he must have a carnal pleasure. Note that we need to make the contents 

of (1a) and (1b) accessible in discourse so that the entailment particle therefore can relate 

them. 

On the other hand, we are interested in the anaphoric potential of (1a) and (1b), i.e. 

in the anaphoric connections between them. These connections are explicitly represented 

in discourse (2) below, which is intuitively equivalent to (1) albeit more awkwardly 

phrased. 

2. a. If a 1
u  man is alive, he

1
u  must find something 2

u  pleasurable / he
1

u  must have 

a 2
u  pleasure.           

b. Therefore, if he
1

u  doesn't have any 3
u  spiritual pleasure, he

1
u  must have a 4

u

carnal pleasure. 

Note in particular that the indefinite a 1
u
 man in the antecedent of the conditional in 

(2a) introduces the dref u1, which is anaphorically retrieved by the pronoun he
1

u  in the 

antecedent of the conditional in (2b). This is an instance of modal subordination (Roberts 

1989), i.e. an instance of simultaneous modal and invididual-level anaphora (see Geurts 

1995/1999, Frank 1996 and Stone 1999): the interpretation of the conditional in (2b) is 

such that it seems to covertly duplicate the antecedent of the conditional in (2a), i.e. the 

conditional in (2b) asserts that, if a man is alive and doesn't have any spiritual pleasure, 

he must have a carnal one. 
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I will henceforth analyze the simpler and more transparent discourse in (2) instead 

of the naturally occurring discourse in (1). The challenge posed by (2) is that, when we 

compositionally assign meanings to (i) the modalized conditional in (2a), i.e. the premise, 

(ii) the modalized conditional in (2b), i.e. the conclusion, and (iii) the entailment particle 

therefore, which relates the premise and the conclusion, we have to capture both the 

intuitively correct truth-conditions of the whole discourse and the modal and individual-

level anaphoric connections between the two sentences of the discourse and within each 

one of them. 

The structure of the chapter is the following. Section 2 outlines the proposed 

account of the Aquinas discourse in (1/2) above. The discourse is basically analyzed as a 

network of structured anaphoric connections and the meaning (and validity) of the 

Aquinas argument emerges as a consequence of the intertwined individual-level and 

modal anaphora.  

Section 3 defines the formal system, dubbed Intensional PCDRT (IP-CDRT), i.e. 

the extension of PCDRT with (dref's for) possible worlds. Section 4 shows how 

modalized conditionals and the entailment particle therefore are analyzed in IP-CDRT, 

while section 5 introduces the IP-CDRT analysis of modal subordination: modal 

subordination is basically analyzed as an instance of restricting the domain of modal 

quantifiers via structured modal anaphora; that is, the antecedent of (2b) is 

simultaneously anaphoric to the set of worlds and the set of individuals introduced by the 

the antecedent of (2a) and, also, to the quantificational dependency established between 

these two sets. 

In order to make the presentation simpler and, hopefully, clearer, the development 

of Intensional PCDRT in sections 3, 4 and 5 builds on the simpler PCDRT system 

introduced in chapter 5, which does not contain all the extensions introduced in chapter 6

for the PCDRT analysis of quantificational subordination (e.g. the dummy individual, 

distributivity operators over individual dref's etc.). 

It is only in section 6 that I revise the analysis of modal quantification, modal 

anaphora and modal subordination within an intensional system that incorporates and 
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extends the PCDRT system of chapter 6. The revised analysis introduced in section 6 will 

explicitly and systematically capture the intuitive parallel between quantificational 

subordination and modal subordination – in particular, the intuitive parallel between the 

quantificational subordination discouse Harvey courts a
u
 girl at every convention. Sheu

always comes to the banquet with him (Karttunen 1976) and the modal subordination 

discourse Au
 wolf might come in. Itu would attack Harvey first (based on Roberts 1989). 

The final section (section 7) compares IP-CDRT with alternative analyses of 

modalized conditionals and modal subordination. 

2. Structured Reference across Domains 

This section outlines the account of the Aquinas discourse in (1/2) above. I first 

show how to extend Plural Compositional DRT (PCDRT) with (dref's for) possible 

worlds (2.1). The extension enables us to analyze the discourse in (1/2) as a network of 

structured anaphoric connections. The meaning (and validity) of the Aquinas argument 

emerges as a consequence of the intertwined individual-level and modal anaphora (2.2). 

2.1. Extending PCDRT with Possible Worlds 

To analyze discourse (1/2), I will extend Dynamic Ty2 (and PCDRT) with a new 

basic type w for possible worlds. Thus, we will work with a Dynamic Ty3 logic with four 

basic types: t (truth-values), e (individuals; variables: x, x' etc.) and w (possible worlds; 

variables: w, w' etc.) and s ('variable assignments'; variables: i, j, i', j' etc.). The only 

modifications we have to make to the Dynamic Ty2 logic introduced in chapter 3 are: (i) 

resetting the set of basic static types BasSTyp to {t, e, w} and (ii) redefining the notion 

of standard frame for Dynamic Ty3 so that Dt, De, Dw and Ds are non-empty and pairwise 

disjoint sets. In particular, the set of four axioms that ensures that the objects in the 

domain Ds actually behave like variable assignments in the relevant respects remain the 

same. 

In the spirit of Stone (1999), I will analyze modal anaphora by means of dref's for 

static modal objects; in this way, we will explicitly capture the intuitive parallel between 

anaphora and quantification in the individual and modal domains argued for in Geurts 
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(1995/1999), Frank (1996), Stone (1999), Bittner (2001) and Schlenker (2005) among 

others. I will call the resulting system Intensional Plural CDRT (IP-CDRT). IP-CDRT 

takes the research program in Muskens (1996), i.e. the unification of Montague semantics 

and DRT, one step further: IP-CDRT unifies – in classical type logic – the static Lewis 

(1973) / Kratzer (1981) analysis of modal quantification and van den Berg's Dynamic 

Plural Logic. 

Throughout this chapter, I will continue to subscript terms with their types, e.g. xe, 

ww, is. I will also subscript lexical relations with their world variable, e.g. seew(x, y) is 

meant to be interpreted as x sees y in world w. 

Just as in CDRT+GQ and PCDRT, a dref for individuals u will be a function of type 

se from 'assignments' is to individuals xe; intuitively, the individual useis is the individual 

that i assigns to the dref u. In addition, IP-CDRT has dref's for possible worlds p, p', …, 

p1, p2, which are functions of type sw from 'assignments' is to possible worlds ww; 

intuitively, the world pswis is the world that i assigns to the dref p. 

As in PCDRT, dynamic info states are sets of 'variable assignments', i.e. terms I, J

etc. of type st. A sentence is still interpreted as a DRS, i.e. a relation of type (st)((st)t) 

between an input and an output info state. An individual dref u stores a set of individuals 

with respect to an info state I, abbreviated uI := {useis: is∈Ist} (that is, uI is the image of 

the set of 'assignments' I under the function u). A dref p stores a set of worlds, i.e. a 

proposition, with respect to an info state I, abbreviated pI := {pswis: is∈Ist} (that is, pI is 

the image of the set of 'assignments' I under the function p). 

Propositional dref's have two uses: (i) they store contents, e.g. the content of the 

entire conditional in (2a) (i.e. the content of the premise of the Aquinas argument); (ii) 

they store possible scenarios (in the sense of Stone 1999), e.g. the set of worlds 

introduced by the conditional antecedent in (2a), i.e. a possible scenario containing a man 

that is alive and on which the consequent of the conditional in (2a) further elaborates 

As before, we use plural info states to store sets of individuals and propositions 

instead of simply using dref's for sets of individuals or possible worlds (their types would 

be s(et) and s(wt)) because we need to store in our discourse context (i.e. in our 



275

information states) both the values assigned to various dref's and the structure associated 

with those values, as shown in (3) below. 

3. Info State I … u u' p p' … 

i1 … x1    (i.e. ui1) y1    (i.e. u'i1) w1    (i.e. pi1) v1    (i.e. p'i1) … 

i2 … x2    (i.e. ui2) y2    (i.e. u'i2) w2    (i.e. pi2) v2    (i.e. p'i2) … 

i3 … x3    (i.e. ui3) y3    (i.e. u'i3) w3    (i.e. pi3) v3    (i.e. p'i3) … 

… … … … … … … 

Values (sets of individuals 
or worlds): {x1, x2, x3, …},  
{w1, w2, w3, …} etc. 

Structure (relations between individuals and / or worlds): {<x1, y1>, 
<x2, y2>, <x3, y3>, …}, {<x1, y1, w1>, <x2, y2, w2>, <x3, y3, w3>, …}, {<w1, 
v1>, <w2, v2>, <w3, v3>, …} etc. 

Mixed reading donkey sentences, donkey anaphora to structure (both analyzed in 

chapter 5) and quantificational subordination (analyzed in chapter 6) provide empirical 

motivation for plural info states. The example of modal subordination in (5) below, 

which is intuitively parallel to the example of quantificational subordination in (4), 

provides independent empirical support. 

4. a. Every 1
u  man saw a 2

u  woman. b. They
1

u  greeted them
2

u . 

5. a. A 1
u  wolf might 1

p  enter the cabin. b. It
1

u  would
1

p  attack John. 

In both discourses, we do not simply have anaphora to sets of values (individuals 

and / or possible worlds), but anaphora to structured sets. 

In particular, if man m1 saw woman n1 and m2 saw n2, (4b) is interpreted as asserting 

that m1 greeted n1, not n2, and that m2 greeted n2, not n1; the structure of the greeting is 

the same as the structure of the seeing4. Similarly, (5b) is interpreted as asserting that, if a 

wolf entered the cabin, it would attack John, i.e. if a black wolf x1 enters the cabin in 

world w1 and a white wolf x2 enters the cabin in world w2, then x1 attacks John in w1, not 

in w2, and x2 attacks John in w2, not in w1.  

                                                

4 The fact that correspondence interpretation of discourse (4) – in which the structure of the greeting is the 
same as the structure of the seeing – is a distinct reading for this discourse and not simply a particular 
understanding of a vague / underspecified cumulative-like reading is argued for in Krifka (1996b) and 
Nouwen (2003). 
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A plural info state I stores the quantificational structure associated with sets of 

individuals and possible worlds: (4a) requires each variable assignment i∈I to be such 

that the man u1i saw the woman u2i; (4b) elaborates on this structured dependency by 

requiring that, for each i∈I, the man u1i greeted the woman u2i. The structured 

dependency can be represented in the (by now) familiar way, i.e. by means of a matrix 

like the one in (6) below. 

6. Info state I … u1 (men) u2 (women) … 

i1 … m1 (=u1i1) n1 (=u2i1) … 

  
                                        

   
1 1

man m saw woman n

14444244443

i2 … m2 (=u1i2) n2 (=u2i2) … 

i3 … m3 (=u1i3) n3 (=u2i3) … 

… … … … … 

Similarly, (5a) outputs an info state I such that, for each i∈I, the wolf u1i enters the 

cabin in the world p1i; (5b) elaborates on this structured dependency: for each assignment 

i∈I, it requires the wolf u1i to attack John in world p1i. 

7. Info state I … u1 (wolves) p1 (worlds) … 

i1 … x1 (=u1i1) w1 (=p1i1) … 

  
                                                            

  
1 1

wolf x enters the cabin in world w

144444424444443

i2 … x2 (=u1i2) w2 (=p1i2) … 

i3 … x3 (=u1i3) w3 (=p1i3) … 

… … … … … 

Moreover, we need plural info states to capture structured anaphora between the 

premise(s) and the conclusion of entailment discourses like (1/2) above or (8) and (9) 

below. 

8. a. Every 1
u  man saw a 2

u  woman. b. Therefore, they
1

u  noticed them
2

u . 
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9. a. A 1
u  wolf might 1

p  enter the cabin. b. It
1

u  would
1

p  see John 2
u .              

c. Therefore, it
1

u  would
1

p  notice him
2

u . 

2.2. Structured Reference in Modal Discourse 

Let us return now to discourse (2), which is analyzed as shown in (10) below. 

10. CONTENT 1
p : if 2

p  (a 1
u  man

2
p  is alive

2
p );       

   must 3
p

, ,
1

p µ ω  (p2, p3); he
1

u  has
3

p  a 2
u  pleasure

3
p .    

THEREFORE 4
p

, ,p* * *µ ω  (p1, p4):        

   if 5
p (p5⋐p2; not(he

1
u  has

5
p  a 3

u  spiritual pleasure
5

p ));    

   must 6
p

, ,
4

p µ ω  (p5, p6); he
1

u  has
6

p  a 4
u  carnal pleasure

6
p . 

The representation in (10) is basically a network of structured anaphoric 

connections. Consider the conditional in (2a) first. The morpheme if introduces a dref p2

that stores the content of the antecedent – we need this distinct dref because the 

antecedent in (2b) is anaphoric to it (due to modal subordination). The indefinite a man

introduces an individual dref u1, which is later retrieved: (i) by the pronoun he in the 

consequent of (2a), i.e. by donkey anaphora, and (ii) by the pronoun he in the antecedent 

of (2b), i.e. by modal subordination. 

The modal verb must in the consequent of (2a) contributes a tripartite 

quantificational structure and it relates three propositional dref's. The dref p1 stores the 

content of the whole modalized conditional. The dref p2, which was introduced by the 

antecedent and which is anaphorically retrieved by must, provides the restrictor of the 

modal quantification. Finally, p3 is the nuclear scope of the modal quantification; it is 

introduced by the modal must, which constrains it to contain the set of ideal worlds 

among the p2-worlds – ideal relative to the p1-worlds, a circumstantial modal base µ and 

an empty ordering source ω. Finally, we test that the set of ideal worlds stored in p3

satisfies the remainder of the consequent. 
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Consider now the entailment particle therefore. I take it to relate contents and not 

meanings. We can see this by examining the discourses in (8) and (9) above: in both 

cases, the contents (i.e. truth-conditions) of the premise(s) and the conclusion stand in an 

inclusion relation, but not their meanings (i.e. context change potentials). Further support 

is provided by the fact that the felicity of therefore-discourses is context-dependent – 

which is expected if therefore relates contents because contents are determined in a 

context-sensitive way. Consider, for example, the discourse in (11) below: entailment 

obtains if (11) is uttered on a Thursday in a discussion about John, but not otherwise. 

11. a. HeJohn came back three days agoThursday.       

b. Therefore, John came back on a Monday.

Moreover, I propose that therefore in (2b) should be analyzed as a modal relation, in 

particular, as expressing logical consequence; thus, I analyze discourse (1/2) as a modal 

quantification that relates two embedded modal quantifications, the second of which is 

modally subordinated to the first. Just as the modal must, therefore contributes a necessity 

modal relation and introduces a tripartite quantificational structure: the restrictor is p1 (the 

content of the premise) and the nuclear scope is the newly introduced dref p4, which 

stores the set of ideal p1-worlds – ideal relative to the dref p* (the designated dref for the 

actual world w*), an empty modal base µ* and an empty ordering source ω* (the modal 

base µ* and the ordering source ω* are empty because therefore is interpreted as logical 

consequence). Since µ* and ω* are empty, the dref p4 is identical to p1. 

Analyzing therefore as an instance of modal quantification makes at least two 

welcome predictions. First, it predicts that we can interpret it relative to different modal 

bases and ordering sources – and this prediction is borne out. Therefore expresses causal

consequence in (12) below and it seems to express a form of practical inference in (13). 

12. Reviewers are usually people who would have been poets, historians, biographers, 

etc., if they could; they have tried their talents at one or the other, and have failed; 

therefore they turn critics.         

(Samuel Taylor Coleridge, Lectures on Shakespeare and Milton) 
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13. We cannot put the face of a person on a stamp unless said person is deceased. My 

suggestion, therefore, is that you drop dead.      

(attributed to J. Edward Day; letter, never mailed, to a petitioner who wanted 

himself portrayed on a postage stamp) 

Second, it captures the intuitive equivalence between the therefore discourse A man 

saw a woman, therefore he noticed her and the modalized conditional If a man saw a woman, 

he (obviously / necessarily) noticed her (they are equivalent provided we add the premise A 

man saw a woman to the conditional). 

The conditional in (2b) is interpreted like the conditional in (2a), with the additional 

complication that its antecedent is anaphoric to the antecedent of the conditional in (2a), 

i.e. to the dref p2. The dref p5 is a structured subset of p2, symbolized as p5⋐p2. We need 

structured inclusion because we want p5 to preserve the structure associated with the p2-

worlds, i.e. to preserve the quantificational correspondence between the p2-worlds and the 

u1-men that are alive in them. The modal verb must in (2b) is anaphoric to p5, it 

introduces the set of worlds p6 containing all the p5-worlds that are ideal relative to the 

p4-worlds, µ and ω (the same as the modal base and ordering source in the premise (2a)) 

and it checks that, in each ideal p6-world, all its associated u1-men have a carnal pleasure. 

3. Intensional Plural CDRT (IP-CDRT) 

In an intensional Fregean / Montagovian framework, the compositional aspect of 

interpretation is largely determined by the types for the extensions of the 'saturated' 

expressions, i.e. names and sentences, plus the type that enables us to build intensions out 

of these extensions. Let us abbreviate them as e, t and s, respectively. In IP-CDRT, we 

assign the following dynamic types to the 'meta-types' e, t and s: a sentence is interpreted 

as a DRS, i.e. as a relation between info states, hence t := (st)((st)t) (the same as in 

PCDRT); a name is interpreted as an individual dref, hence e := se (again, the same as in 

PCDRT). Finally, s := sw, i.e. we use the type of propositional dref's to build intensions. 
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To interpret a noun like 'man', we define an atomic manp{u} based on the static one 

manw(x), as shown in (14) below. The IP-CDRT atomic conditions are the obvious 

intensionalized versions of the corresponding PCDRT conditions. 

14. Atomic conditions – first attempt.     

manp{u} := λIst. I≠Ø ∧ ∀is∈I(manpi(ui)). 

In general, the IP-CDRT basic meanings for lexical items are the usual 

intensionalized versions of the corresponding extensional PCDRT meanings, as shown in 

table (45) below. I use the following notational conventions: 

u, u' etc. for dref's of type e:=se (recall that they are constants in our Dynamic Ty3 

logic) and v, v' etc. for variables of type e:=se;  

p, p' etc. for dref's of type s:=sw (which are also constants in our Dynamic Ty3 logic) 

and q, q' etc. for variables of type s:=sw; 

, ' etc. for variables over dynamic propositions of type st, where s:=sw and 

t:=(st)((st)t); 

P, P' etc. for variables over dynamic intensional properties of type e(st), where e:=se; 

Q, Q' etc. for variables over dynamic intensional quantifiers of type (e(st))(st). 

15. TR 0: IP-CDRT Basic Meanings (TN – Terminal Nodes).

Lexical Item Translation 

Type                                     
e := se                                    

t := (st)((st)t)                         
s := sw

[sleep]
inV
 ⇝ λve. λqs. [sleepq{v}],     

 where sleep is of type e(wt) 

e(st) 

[own]
trV
 ⇝ λQ(e(st))(st). λve. λqs. Q(λv'e. λq's. [ownq'{v, v'}])(q),  

 where own is of type e(e(wt))     

equivalently:            ⇝
λQ(e(st))(st). λve. Q(λv'e. λqs. [ownq{v, v'}])  

((e(st))(st))(e(st))

[buy]
diV
 ⇝ λQ'(e(st))(st). λQ(e(st))(st). λve.    

Q'(λv'e. Q(λv''e. λqs. [buyq{v, v', v''}])),  
  where buy is of type e(e(e(wt))) 

(e(st)(st))((e(st)(st)) 
(e(st))) 

[house-elf]
N
 ⇝ λve. λqs. [house_elfq{v}],    

 where house_elf is of type e(wt) 

e(st) 
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15. TR 0: IP-CDRT Basic Meanings (TN – Terminal Nodes).

Lexical Item Translation 

Type                                     
e := se                                    

t := (st)((st)t)                         
s := sw

[heu] DP
 ⇝ λPe(st). P(ue) 

(e(st))(st)

[theu] D
 ⇝ λP'e(st). λPe(st). λqs. [uniqueq{u}]; P'(u)(q); P(u)(q), 

 where uniqueq{u} :=    

              λIst. I≠Ø ∧ ∀is∈I∀i's∈I(qi=qi' → ui=ui'), 
 i.e. anaphoric and 'weakly' unique. 

⇝ λP'e(st). λPe(st). λqs. P'(u)(q); P(u)(q),   
 i.e. anaphoric. 

(e(st))((e(st))(st)) 

[tv] DP
 ⇝ λPe(st). P(ve) 

(e(st))(st)

[heDobby] DP
 ⇝ λPe(st). P(Dobbye) 

(e(st))(st)

[Dobbyu]
DP

 ⇝ λPe(st). λqs. [u | u=Dobby]; P(u)(q) (e(st))(st)

[who]
DP

 ⇝ λPe(st). P
(e(st))(e(st))

[Ø]
I
/[-ed]

I
/[-s]

I
 ⇝ λ (st).  

(st)(st)

[doesn't]
I
/[didn't]

I
 ⇝ λ  (st). λqs. [~ (q)],     where: 

~D := λIst. I≠Ø ∧ ∀Hst(H≠Ø ∧ H⊆I → ¬∃Kst(DHK)),  
 where D is a DRS (type t) 

(st)(st)

[awk:u]
D
 ⇝ λP'e(st). λPe(st). λqs. [u]; P'(u)(q); P(u)(q),    

            i.e. λP'e(st). λPe(st). λqs. u(P'(u)(q); P(u)(q)),  

 where u(D) := [u]; D 

(e(st))((e(st))(st)) 

[astr:u]
D
 ⇝ λP'e(st). λPe(st). λqs. maxu(P'(u)(q); P(u)(q)),     where: 

maxu(D) := λIstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ),  

            i.e. λP'e(st). λPe(st). λqs. 
m

u(P'(u)(q); P(u)(q)),  

 where m
u(D) := maxu(D) 

(e(st))((e(st))(st)) 

[theu]
D
 ⇝ λP'e(st). λPe(st). λqs. maxu(P'(u)(q)); [uniqueq{u}]; P(u)(q), 

where uniqueq{u} :=     

          λIst. I≠Ø ∧ ∀is∈I∀i's∈I(qi=qi' → ui=ui') and 

maxu(D) := λIstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ),  

    i.e. λP'e(st). λPe(st). λqs. 
m

u(P'(u)(q)); [uniqueq{u}]; P(u)(q), 

    i.e. existence and uniqueness – the Russellian analysis 

⇝ λP'e(st). λPe(st). λqs. maxu(P'(u)(q)); P(u)(q),     where: 

(e(st))((e(st))(st)) 
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15. TR 0: IP-CDRT Basic Meanings (TN – Terminal Nodes).

Lexical Item Translation 

Type                                     
e := se                                    

t := (st)((st)t)                         
s := sw

maxu(D) := λIstJst. ([u]; D)IJ ∧ ∀Kst(([u]; D)IK → uK⊆uJ), 

    i.e. λP'e(st). λPe(st). λqs. 
m

u(P'(u)(q)); P(u)(q),             
    i.e. existence and maximality 

[detu]
D
 

e.g. everyu, nou, 

      mostu…     
(but not awk:u, 
astr:u, theu or theu) 

⇝ λP'e(st). λPe(st). λqs. [qdetu(P'(u)(q), P(u)(q))],   where: 

   pdetu(D1, D2) := λIst. I≠Ø ∧ DET(up[D1I],  up[(D1; D2)I]), 

 where up[DI] := ∪{uJ: ([u | uniquep{u}]; D)IJ} 
 and uniquep{u} :=    

  λIst. I≠Ø ∧ ∀is∈I∀i's∈I(pi=pi' →ui=ui') 
 and DET is the corresponding static determiner 

(e(st))((e(st))(st)) 

[and]
Conj

 ⇝ λv1. … λvn. v1 ⊓ … ⊓ vn 
τ(…(ττ)…) 

[or]
Conj

 ⇝ λv1. … λvn. v1 ⊔ … ⊔ vn 
τ(…(ττ)…) 

The IP-CDRT definitions of generalized conjunction ⊓ and generalized disjunction 

⊔ are the same as the PCDRT ones. 

3.1. An Example: Indicative Sentences in IP-CDRT 

Let us now look at the IP-CDRT analysis of a simple indicative sentence like the 

one in (16) below. I will assume that the LF of such a sentence contains an indicative 

mood morpheme in the complementizer head C, whose meaning is provided in (1) below: 

the indicative mood stakes the dynamic proposition st denoted by the remainder of the 

sentence and applies it to the designated dref for the actual world p*. We capture the fact 

that the dref p* refers to the actual world w* by requiring that p*I={w*}, where I is the 

input information state relative to which the sentence is interpreted. 

Furthermore, I assume that alive functions as an intransitive verb and that is

functions as a semantically vacuous inflectional head I, much like [Ø]
I
/[-ed]

I
/[-s]

I
 – and it 

is assigned the same kind of meaning, i.e. an identity function over dynamic propositions: 

λ (st). . 
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16. A wk: 
1

u  man is alive. 

17. [indp*] C
⇝ λ st. (p*) 

18. awk: 
1

u
⇝ λP'e(st). λPe(st). λqs. [u1]; P'(u1)(q); P(u1)(q)     

man ⇝ λve. λqs. [manq{v}]         

awk: 
1

u  man ⇝ λPe(st). λqs. [u1 | manq{u1}]; P(u1)(q)      

alive ⇝ λve. λqs. [aliveq{v}]         

awk: 
1

u  man is alive ⇝ λqs. [u1 | manq{u1}, aliveq{u1}]     

indp* a
wk: 

1
u  man is alive ⇝ [u1 | manp*{u1}, alivep*{u1}] 

Note that, before introducing the meaning of the indicative mood morpheme indp*, 

the composition makes available the dynamic proposition (of type st) λqs. [u1 | manq{u1}, 

aliveq{u1}] and it is based on this proposition that the meaning of the conditional 

antecedent in (2a) is obtained – as the following section endeavors to show. 

4. Conditionals, Modals and Therefore in IP-CDRT 

In this section, I show how to compositionally analyze in Intensional Plural CDRT 

(IP-CDRT):  

• modalized conditionals, i.e. the meaning of the particle if (4.1) and the meaning of 

modals (4.2); 

• the entailment particle therefore (4.3). 

4.1. If

To interpret the conditional in (2a) above, we need to: (i) extract the content of the 

antecedent of the conditional and store it in a propositional dref p2 and (ii) define a 

dynamic notion of structured subset of a set of worlds.  

We will first see how to extract the content of the antecedent of the conditional. For 

this purpose, I define two operators over a propositional dref p and a DRS D: a 
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maximization operator max
p(D) and a distributivity operator distp(D). The maximization 

operator over propositional dref's, defined in (19) below, is identical to the maximization 

operator over individual dref's in PCDRT.  

19. max
p(D) := λIstλJst. ([p]; D)IJ ∧ ∀Kst(([p]; D)IK → pK⊆pJ) 

The definition of the distributivity operator in (20) below follows the basic format 

(but not the exact implementation) of the corresponding operator over individual dref's in 

van den Berg (1994, 1996a) and incorporates an amendment of van den Berg's definition 

proposed in Nouwen (2003)5. Just like max
p, the distp operator is an operator over 

DRS's: its argument is a DRS D, i.e. a term of type t := (st)((st)t) and its value is another 

DRS (of type t), i.e. distp(D). 

20. Selective distributivity over modal dref's in IP-CDRT.     

distp(D) := λIstλJst. pI=pJ ∧ ∀w∈pI(DIp=wJp=w),     

  where Ip=w := {is∈I: pi=w}      

  and p is of type s := sw and D is of type t := (st)((st)t). 

The basic idea behind distributively updating an input info state I with a DRS D is 

that we first partition the info state I and then separately update each partition cell (i.e. 

subset of I) with D. Moreover, the partition of the info state I is induced by a dref p as 

follows: consider the set of worlds pI := {pi: i∈I}; each world w in the set pI generates 

one cell in the partition of I, namely the subset {i∈I: pi=w}. Clearly, the family of sets 

{{i∈I: pi=w}: w∈pI} is a partition of the info state I: the union of the family of sets is the 

info state I and, for any two distinct worlds w and w' in pI, the sets {i∈I: pi=w} and {i∈I: 

pi=w'} are disjoint. 

Thus, updating an info state I with a DRS D distributively over a dref p means 

updating each cell in the p-partition of I with the DRS D and then taking the union of the 

resulting output info states. The first conjunct in definition (20) above, i.e. pI=pJ, is 

required to ensure that there is a bijection between the partition cells induced by the dref 

                                                

5 See van den Berg (1994): 14, (43), van den Berg (1996a): 145, (18) and Nouwen (2003): 87, (4.17). 
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p over the input state I and the partition cells induced by p over the output state J; without 

this requirement, we could introduce arbitrary new values for p in the output state J, i.e. 

arbitrary new partition cells6,7.  

The second conjunct, i.e. ∀w∈pI(DIp=wJp=w), is the one that actually defines the 

distributive update: every partition cell in the input info state I is related by the DRS D to 

the corresponding partition cell in the output state J. The figure in (21) below 

schematically represents how the input state I is p-distributively updated with the DRS D. 

21. Updating the info state I with the DRS D distributively over the dref p. 

The Appendix to the chapter studies in more detail the formal properties of selective 

distributity, generalizes it to distributivity over multiple dref's and defines distributivity 

operators over arbitrary distributable types over and above the basic distributable type t

:= (st)((st)t). 

The operators max
p(D) and distp(D) enable us to 'dynamize' λ-abstraction over 

possible worlds, i.e. to extract and store contents: the distp(D) update checks one world at 

a time that the set of worlds stored in p satisfies the DRS D and the max
p(D) update 

collects in p all the worlds that satisfy D. I will analyze if as a dynamic λ-abstractor over 

                                                

6 See Nouwen (2003): 87. 

7 Note that the first conjunct could be replaced with the biconditional ∀w(Ip=w≠Ø ↔ Jp=w≠Ø). 

Ip=wIp=w'

Ip=w'' ...

Jp=wJp=w'

Jp=w'' ...

Input state I     – update with D distributively over p →→→→     Output state J

DIp=wJp=w

DIp= w'Jp=w'

DIp= w''Jp=w''
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possible worlds, i.e. as a morpheme that extracts the content of a dynamic proposition st

and stores it in a newly introduced propositional dref p, as shown in (22) below. The 

representation in (23) shows how the meaning of if combines with the dynamic 

proposition contributed by A
wk: 

1
u
 man is alive and stores its content in the dref p2. 

22. if p ⇝ λ st. max
p(distp( (p))) 

23. a
wk: 

1
u
 man is alive ⇝ λqs. [u1 | manq{u1}, aliveq{u1}]     

if 2
p
 a

wk: 
1

u
 man is alive ⇝ max 2

p (dist
2

p ([u1 | man
2

p {u1}, alive
2

p {u1}])) 

We need one last thing to translate the antecedent in (2a). The donkey indefinite a 

man receives a strong reading, i.e. the conditional in (2a) is interpreted as asserting that 

every (and not only some) man that is alive must have a pleasure. Thus, the antecedent of 

(2a) is translated in IP-CDRT as shown in (24) below8. 

                                                

8 Thus, I assume that the strong reading associated with the indefinite a man is contributed by the indefinite 
article itself and not by the modal verb must (and / or the morpheme if). I have chosen this analysis because 
it is parallel to the analysis of weak / strong readings of relative-clause donkey sentences in chapter 5

above. However, it might very well be that modal verbs in modalized conditionals might bind certain 
indefinites in the antecedent of the conditional, i.e. they might be instances of multiply selective 

quantification. See, for example, Chierchia (1995) for the use of the notion of dynamic multiply selective 
quantification in the analysis of extensional conditionals with adverbs of quantification like always, usually
etc.  

It seems clear to me that the analysis of conditional donkey sentences like If a man buys a book on 
amazon.com and has a credit card, he always / usually uses it to pay for it should allow for more readings than the 
corresponding relative-clause donkey sentences, i.e. Every man who buys a book on amazon.com and has a 
credit card uses it to pay for it / Most men who buy a book on amazon.com and have a credit card use it to pay for it. 
The usually donkey sentence has a reading in which we consider most cases in which a man buys a book, 
while the most donkey sentence seems to lack this reading – or, in any case, it is a lot less clear that the most
donkey sentence has such a reading (see also the contrast between If a farmer owns a donkey, he usually beats it
and Most farmers who own a donkey beat it). 

Since conditional donkey sentences allow for more readings than the corresponding relative-clause donkey 
examples, it seems clear that this is due to the conditional structure itself, i.e. to the adverb of quantification 
together with the morpheme if – and I am inclined at this point to allow for a multiply selective analysis of 
such donkey conditionals in which the adverb binds indefinites in the antecedent (the analysis of always
proposed in chapter 6 can be fairly easily extended to accomplish this).

It is not as clear to me that modal verbs in modalized conditionals should receive a similar, multiply 
selective interpretation, i.e. it is not at all clear to me that modal verbs and adverbs of quantification should 
be analyzed in parallel (I am indebted to Maribel Romero, p.c., for emphasizing the importance of this 
issue). Heim (1982), for example, proposes such a parallel analysis; note also that such a parallel analysis is 
an almost immediate consequence of a situation-based D-/E-type approach to donkey anaphora, since the 
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24. if 2
p
 astr: 

1
u  man is alive ⇝ max 2

p (dist
2

p (max 1
u ([man

2
p {u1}, alive

2
p {u1}]))) 

The IP-CDRT representation in (24) provides the empirical motivation for the 

introduction of selective distributivity: we need the dist
2

p  operator over and above the 

unselective distributivity built into the atomic conditions because, in the standard Kripke-

style modal system that I assume, the same individual may exist in multiple worlds 

(though not necessarily in all of them). Therefore, it can be possible for a man to be alive 

in two distinct possible worlds – in which case, we want to introduce this man with 

respect to each of the possible worlds in which he is alive – and this is what the selective 

distributivity operator over the modal dref p2 achieves: dist
2

p  ensures that we separately 

consider every possible world stored in p2 and relate it to all the men that are alive in it. 

Should we omit the selective distributive operator, we could introduce all the men that 

are alive in some world or other, but we might fail to introduce each man with respect to 

each possible world in which he is alive. 

Thus, at least for the particular example we are considering, the need for selective 

distributivity is partly due to the assumed underlying ontology9. However, the 

introduction of selective distributivity has a more general motivation, namely the parallel 

treatment of the dynamics of values and structure in PCDRT and IP-CDRT. More 

precisely, maximization together with selective distributivity enables us to 'dynamize' λ-

abstraction over structure as well as over values: one the one hand, selective distributive 

operators, e.g. dist
2

p  in (24) above, enable us to λ-abstract one value at a time; on the 

other hand, selective maximization operators make it possible to extract the desired set 

and, when we maximize under the scope of a selective distributive operator, e.g. 

                                                                                                                                                

same domain of situations is used for modal quantification (see Kratzer 1989) and anaphora (see Heim 
1990 among others). 

However, conditionals with adverbs of quantification are intuitively extensional, while conditionals with 
modal verbs are intensional, so it is not obvious that we should have a parallel analysis of the two. 
Unfortunately, I have to leave the investigation of these crucial issues for future research. 

9 Had we used a counterpart-based system of the kind proposed by Lewis (see Lewis 1968 among others), 
we wouldn't have needed selective distributivity over modal dref's because, in such a system, an individual 
exists in exactly one possible world. 
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dist
2

p (max 1
u (…)) in (24) above, we are able to extract the full u1-structure associated 

with each single p2-value. 

4.2. Modals 

We have seen in the previous section how to extract the content of the antecedent of 

the conditional and store it in a propositional dref p2. We turn now to the second notion 

needed for the interpretation of the conditional in (2a), namely the definition of a 

dynamic notion of structured subset of a set of worlds. We need a notion of structured 

inclusion because:  

• the modal must and the donkey pronoun he in the consequent of (2a) are 

simultaneously anaphoric to the p2-worlds and the u1-men and we need to preserve 

the structured dependencies between them;  

• the modally subordinated antecedent of the conditional in (2b) is also anaphoric to 

p2 and u1 in a structured way.  

In the spirit of van den Berg's (extensional) Dynamic Plural Logic, who makes use 

of a dummy / 'undefined' individual #, I will assume that there is a dummy world # (of 

type w) relative to which all lexical relations are false (the dummy world # can be 

thought of as the world in which no individual whatsoever exists) and I will use this 

world to define the structured inclusion condition in (25) below 10. 

25. p⋐p' := λIst. I≠Ø ∧ ∀is∈I(pi=p'i ∨ pi=#).  

However, unlike van den Berg, who makes use of the dummy individual # within a 

partial logic (the dummy individual yields undefinedness), we will continue to work with 

a classical (bivalent, total) type logic and assume that the dummy world # yields falsity 

(i.e. any lexical relation of the form Rw(x1, …, x2) is false if w is #). We can think of the 

dummy world #w as the world where no individual whatsoever exists, hence all the 

                                                

10 The corresponding notion of structured inclusion in the individual domain is defined and justified in 
section 3.2 of chapter 6 above. 
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lexical relations are false because a relation between individuals obtains at a particular 

world only if the individuals exist in that possible world. 

The dummy world # is used to signal that an 'assignment' i such that pi=# is 

irrelevant for the evaluation of conditions, so we need to slightly modify the definition of 

atomic conditions as shown in (26) below. The matrix in (27) represents an info state I

that satisfies the structured inclusion requirement p⋐p' and the atomic condition 

manp{u}. The shaded rows i2 and i4 represent the 'assignments' that are discarded in the 

evaluation of the atomic condition manp{u} – and they are discarded because they both 

assign the dummy world # to the propositional dref p, i.e. pi2=pi4=#. 

26. Atomic conditions.       

manp{u} := λIst. Ip≠#≠Ø ∧ ∀is∈Ip≠#(manpi(ui)),    

  where Ip≠# := {is∈I: pi≠#}. 

27. Info state I: 

p⋐p' and manp{u}

p'                            
(superset worlds) 

p                                 
(subset worlds) 

u                          
(men) 

i1 w1 (=p'i1) w1 (=pi1) x1 (=ui1) 

i2 w1 (=p'i2) # (=pi2) x2 (=ui2)

i3 w1 (=p'i3) w1 (=pi3) x3 (=ui3)

i4 w2 (=p'i4) # (=pi4) x1 (=ui4)

i5 w2 (=p'i5) w2 (=pi5) x4 (=ui5)

In a similar vein, we need to slightly modify the way we make use of selective 

distributivity: we will discard the 'dummy' partition cell Ip=# when we distributively 

update with the DRS D, which is formally captured by the first conjunct in definition (28) 

below, which requires the equality of the input and output 'dummy' partition cells. The 

second conjunct Ip≠#≠Ø is needed to rule out the degenerate case in which the distributive 

update distp(D)Ip≠#Jp≠# is vacuously satisfied. 

28. Selective distributivity modulo the dummy world #w.    

p(D) := λIstλJst. Ip=#=Jp=# ∧ Ip≠#≠Ø ∧ distp(D)Ip≠#Jp≠#    
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  where Ip=# := {is∈I: pi=#}, Ip≠# := {is∈I: pi≠#},   

  p is of type s := sw and D is of type t := (st)((st)t) 11. 

Finally, we also need to slightly modify the definition of the maximization operator, 

as shown in (29) below. 

29. Selective maximization modulo the dummy world #w.    

max
p(D) := λIst.λJst. ([p]; D)IJ ∧ ∀Kst(([p]; D)IK → pKp≠#⊆pJp≠#) 

We are now ready to give the lexical entries for modal verbs. The modal verb must

is interpreted in terms of a modal condition necp,µ,ω(p', p''), defined in (30) below. The 

condition is relativized to: (i) a propositional dref p storing the content of the entire 

modal quantification, (ii) an modal base dref µ  and (iii) an ordering source dref ω. 

30. necp,µ,ω(p', p'') := λIst. Ip≠#≠Ø ∧        

   ∀w∈pIp≠#(NEC
, {#}I p wµ µ= ≠ , ω ,ω {#}I p w= ≠

(p'Ip=w,p'≠#, p''Ip=w,p''≠#) ∧

          (p''⊑p')Ip=w) 

The definition crucially relies on the notion of structured inclusion defined in (25) 

above. However, we need to strengthen this notion of structured inclusion as shown in 

(31) below. The reason is that the notion of structured inclusion in (25) merely requires 

the subset dref to store only the superset structure, but modal quantifications in general 

additionally require the subset dref to store all the superset structure – which is what the 

second conjunct in (31) ensures. To see that we need to store all the superset structured, 

consider example (32) below, which is interpreted as asserting that, in every deontically 

                                                

11 Strictly speaking, we should also modify the translation of the indicative morpheme from the one in (17) 
above to the one in (i) below, which makes use of the p*(…) operator. However, I will ignore this 
complication throughout most of the chapter (more precisely, until section 6, where the parallel between 
singular pronouns and the indicative morpheme is explicitly captured). This simplification will not affect 
any of the analyses in this chapter. Indeed, the translation in (17) and the one in (i) below are equivalent 
with respect to any input info state I such that p*I is a singleton set, namely the singleton set containing 
only the actual world, i.e. {w*}. We can in fact achieve this (and therefore preserve the simpler translation 
of the indicative morpheme in (17)) by assuming that any discourse starts with a default update of the form 

[p* | p*=w*], where p*=w* := λIst. p*Ip*≠#={w*}.  

(i) [indp*] C
⇝ λ st. p*( (p*)). 
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ideal world among the worlds in which there is a murder, for each and every murder (and 

not merely some of the murders) in said ideal world, the murder is investigated in that 

world12. 

31. Structured inclusion for dynamic modal quantification.     

p''⊑p' := λIst. (p''⋐p')I ∧ ∀i∈I(p'i∈p''Ip''≠# → p'i=p''i) 

32. Ifp' there is au murder, itu mustp
p''⊑p' be investigated. 

Both µ and ω are dref's for sets of worlds, i.e. they are of type s(wt)13, a significant 

simplification compared to the type of static modal bases and ordering sources in Kratzer 

(1981), i.e. w((wt)t). We can simplify these types in IP-CDRT because we have plural 

info states: every world w∈pI is associated with a sub-state Ip=w and we can use this sub-

state to associate a set of propositions with the world w, e.g. the set of propositions {µi: 

is∈Ip=w}, where each µi is of type wt. A similar procedure enables us to associate an 

ordering source ω with each p-world. 

NEC is the static modal relation, basically defined as in Lewis (1973) and Kratzer 

(1981). In particular, the dref's µ and ω in (30) above associate with each p-world two 

sets of propositions M and O of type (wt)t: for each world w∈pIp≠#, the set of propositions 

M is the modal base {µi: i∈Ip=w} and the set of propositions O is the ordering source {ωi: 

i∈Ip=w}. The set of propositions O induces a strict partial order <O on the set of all 

possible worlds as shown in (33) below. 

33. w<Ow' iff ∀Wwt∈O(w'∈W → w∈W) ∧ ∃Wwt∈O(w∈W ∧ w'∉W) 

 I assume that all the strict partial orders of the form <O satisfy the Generalized 

Limit Assumption in (34) – therefore, the Ideal function in (35) is well-defined. This 

function extracts the subset of O-ideal worlds from the set of worlds W. 

                                                

12 See the corresponding strengthened notion of structured inclusion in the individual domain defined in 
section 3.2 of chapter 6 above and its parallel justification. 

13 I take the dummy value for modal base and OS dref's to be the singleton set whose member is the dummy 
world, i.e. {#}. 
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34. Generalized Limit Assumption.        

For any proposition Wwt and ordering source O(wt)t,  

∀w∈W∃w'∈W((w'<Ow ∨ w'=w ) ∧ ¬∃w''∈W(w''<Ow')) 

35. The Ideal function.          

For any proposition Wwt and ordering source O(wt)t:     

IdealO(W) := {w∈W: ¬∃w'∈W(w'<Ow)} 

Possibility modals are interpreted in the same way, we only need to replace the 

static modal relation NEC with POS; both static modal relations are defined in (36) 

below. The definition of the dynamic modal relation pos, parallel to the definition of the 

dynamic relation nec in (30) above, is given in (37). 

36. NECM,O(W1, W2) := W2=IdealO((∩M)∩W1)        

POSM,O(W1, W2) := W2≠Ø ∧ W2⊆IdealO((∩M)∩W1) 

37. posp,µ,ω(p', p'') := λIst. Ip≠#≠Ø ∧        

   ∀w∈pIp≠#(POS
, {#}I p wµ µ= ≠ , ω ,ω {#}I p w= ≠

(p'Ip=w,p'≠#, p''Ip=w,p''≠#) ∧  

          (p''⊑p')Ip=w) 

The dref p' is the restrictor of the dynamic modal quantification and the dref p'' is 

the nuclear scope, containing the ideal worlds among the p'-worlds – this is ensured by 

the second conjunct in (30) and (37) above, which takes care of the values (i.e. sets of 

worlds) associated with the dref's p' and p''. The third and fourth conjuncts make sure that 

we associate the correct structure with these dref's: the third conjunct (i.e. structured 

inclusion) requires that p'' (the set of ideal worlds) stores only the p'-structure, while the 

fourth conjunct ensures that p'' stores all the p'-structure associated with the ideal worlds, 

i.e. for any assignment i such that p'i is an ideal world, we require p'' to store the same 

ideal world, thereby ruling out the possibility that p'' stores the dummy world #. 

The structural requirements are necessary if we want to capture donkey anaphora 

between the nuclear scope, i.e. the consequent, and the restrictor, i.e. the antecedent of 

the modalized conditional in (2a): storing in p'' all and only the structure in p' boils down 
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in this case to the requirement that each ideal world should be associated with all the men 

that are alive in it. 

The matrix in (38) below shows an info state I satisfying the modal relation 

nec , ,ω1p µ (p2, p3): w1 is an ideal world among the p2-worlds, so p3 inherits all the p2-rows 

(i.e. 'assignments') that store w1, i.e. p3 inherits all the structure associated with w1 by the 

dref p2. In contrast, w2 is not an ideal world among the p2-worlds, so p3 stores the 

'dummy' world in all the p2-rows that store w2; all these rows are shaded because we 

discard all of them when we compute atomic conditions that contain the dref p3. 

38. Info state I:

nec , ,ω1p µ (p2, p3)

p2                 
(antecedent worlds) 

u1                      
(men) 

p3                             
(consequent worlds,   

i.e. ideal worlds) 

i1 w1 (=p2i1) x1 (=u1i1) w1 (=p3i1)

                                             

  
1 1

man x is alive in world w

14444244443

i2 w1 (=p2i2) x2 (=u1i2) w1 (=p3i2)

i3 w1 (=p2i3) x3 (=u1i3) w1 (=p3i3)

i4 w2 (=p2i4) x2 (=u1i4) # (=p3i4)

i5 w2 (=p2i5) x4 (=u1i5) # (=p3i5)

… … … … 

Thus, the modal verb must in (2a) above is translated as shown in (39) below. Note 

that the type of its denotation is (st)t, which is parallel to the type of modal quantifiers in 

static Montague semantics. 

39. must 3 2
p pô

, ,
1

p µ ω ⇝ λ st. [µ, ω | circumstantialp*{p1, µ}, empty{p1, ω}];   

         [p3 | nec , ,
1

p µ ω (p2, p3)]; 
3

p ( (p3)) 
14

                                                

14 I assume, for simplicity, that the modal base and ordering source dref's µ and ω are introduced by the 
modal verb must. As Kratzer (1981) argues, they are in fact contextually supplied, i.e. the modal must is, in 

this respect, very much like the deictic pronouns discussed in section 3.7 of chapter 6 above. The update [µ, 

ω | circumstantialp*{p1, µ}, empty{p1, ω}] is, therefore, either contributed by the 'deixis' associated with 
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Let us examine the translation in (39) in more detail. First, we introduce the modal 

base µ and the ordering source ω and relate them to the dref p1 (which stores the content 

of the entire modalized conditional) by the circumstantial and empty conditions defined 

in (40) below. The circumstantialp*{p1, µ} condition is context-dependent, i.e. it is 

relativized to the dref for the actual world p*; we need this because the argument put 

forth by Aquinas in discourse (1/2) goes through only if we add another premise to the 

one explicitly stated, namely that pleasures are either spiritual or carnal.  

Thus, the condition circumstantialp*{p1, µ} is meant to contrain the modal 

quantification expressed by the modalized conditional in (2a) so that it is evaluated only 

with respect to worlds whose circumstances are identical to the actual world w* in the 

relevant respects – in particular, the proposition in (41) below has to be true in all the p1-

worlds just as it is in w*. 

40. circumstantialp{p', µ} := λIst. Ip≠#,p'≠#≠Ø ∧      

       ∀w∈pIp≠#(∀w'∈p'Ip=w,p'≠#(circumstantialw(w',µIp=w,p'=w')) 

empty{p, ω} := λIst. Ip≠#≠Ø ∧ ∀is∈I(ωi={#})      

empty{p, µ} := λIst. Ip≠#≠Ø ∧ ∀is∈I(µi={#}) 

41. {ww: ∀xe(pleasurew(x) → spiritualw(x) ∨ carnalw(x))} 

The remainder of the lexical entry in (39) ensures that the propositional dref p3

stores all and only the ideal p2-worlds and then checks that the dynamic proposition 

contributed by the consequent of the conditional in (2a) is satisfied in each such ideal 

world. 

In sum, the modalized conditional in (2a) above is translated in IP-CDRT as shown 

in (42) below. Since the contrast between the weak and the strong reading of the 

                                                                                                                                                

the use of the modal verb must or, alternatively, it is accommodated to satisfy the requirements that this 
'deixis' places on its (local) discourse context. 
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indefinite a pleasure is irrelevant for the discourse as a whole15, I will take the indefinite 

to have the formally simpler weak reading. 

42. if 2
p
 a

str: 
1

u
 man is alive, he

1
u  must 3 2

p pô
, ,

1
p µ ω  have a

wk: 
2

u
 pleasure    

⇝ max 2
p (

2
p (max 1

u ([man
2

p {u1}, alive
2

p {u1}])));     

       [µ, ω | circumstantialp*{p1, µ}, empty{p1, ω}];    

       [p3 | nec , ,
1

p µ ω (p2, p3)]; 
3

p ([u2 | pleasure
3

p {u2}, have
3

p {u1, u2}]) 16

The IP-CDRT representation in (42) encodes the following sequence of updates:  

consider all the worlds in which at least one man is alive and consider all the men that are 

alive in these worlds; store them in p2 and u1 respectively. Now consider a circumstantial 

modal base µ and an empty ordering source ω. Then, every p2-world that is ideal relative 

to µ and ω (these ideal worlds are stored in p3) is such that each of its corresponding u1-

men have some pleasure or other.  

4.3. Therefore 

Like must, the particle therefore introduces a necessity quantificational structure, as 

shown in (43) below. Since therefore expresses logical consequence, both its modal base

µ* and its ordering source ω* are empty. 

43. therefore 4 1
p pô

, ,p* * *µ ω ⇝ λ st. [µ*, ω* | empty{p*, µ*}, empty{p*, ω*}];  

          [p4 | nec , ,p* * *µ ω (p1, p4)]; 
4

p ( (p4))  

The effect of the update is that the dref p4 is identical to p1 both in its value and in 

its structure, i.e., if J is the output state after processing the nec condition in (43) above, 

                                                

15 The weak vs. strong constrast is irrelevant in this case because there is no subsequent anaphora to the 
indefinite a pleasure and both readings yield the same truth-conditions for the discourse as a whole. 

16 The use of the operator p(…) in the definition of modal quantification builds an existential commitment 
into its meaning – see the corresponding discussion for individual-level quantification in section 3.4 of 

chapter 6. The revised definition of modal quantification in section 6 below will employ the operator 〈p〉(…) 
and solve this problem. 
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we have that p1j=p4j for any 'assignment' j∈J. Consequently, p1 can be freely substituted 

for p4 and we can simplify the translation of therefore as shown in (44) below 17. 

44. therefore 4 1
p pô

, ,p* * *µ ω ⇝ λ st. 
1

p ( (p1)) 

I assume that the anaphoric nature of the entailment particle therefore, which 

requires a propositional dref p1 as the restrictor of its quantification, triggers the 

accommodation of a covert  'content-formation' morpheme if 1
p  that takes scope over the 

entire modalized conditional in (2a), i.e. the premise of the Aquinas argument, and stores 

its content in p1. 

5. Modal Subordination in IP-CDRT 

The conditional in (2b) is different from the one in (2a) in three important respects. 

First, given that (2b) elaborates on the modal quantification in (2a), the modal verb must

in (2b) is anaphoric to the previously introduced modal base µ (circumstantial) and 

ordering source ω (empty), so it is translated as shown in (45) below. 

45. must 6 5
p pô

, ,
1

p µ ω ⇝ λ st. [p6 | nec , ,ω1p µ (p5, p6)]; 
6

p ( (p6)) 

Second, the negation in the antecedent of (2b) is translated as in table (45) above, 

i.e. not⇝ λ st. λqs. [~ (q)].  

Finally and most importantly, the modally subordinated antecedent in (2b) is 

translated in terms of an update requiring the newly introduced dref p5 to be a maximal 

structured subset of p2, as shown in (46) below. Thus, modal subordination is capture by 

establishing a modal anaphoric connection that is parallel to the individual-level anaphora 

between the pronoun he in the antecedent of (2b) and the strong donkey indefinite a man

in the antecedent of (2a). 

                                                

17 See the parallel simplification of the meaning of the generalized quantifier every in chapter 6, section 4.1, 
definition (65). 
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46. if 5 2
p pÐ 

⇝ λ st. max 5 2
p pÐ (

5
p ( (p5))) 

The crucial component of the modally subordinated, i.e. modally anaphoric, if 5 2p pÐ

is the maximization operator max 5 2
p pÐ , which is defined in (47) below and which 

maximizes both value and structure. This makes the max
p⋐p' operator crucially different 

from the simpler max
p operator defined in (19) above and which maximizes only values. 

47. max
p⋐p'(D) := λIst.λJst. ∃H([p | p⋐p']IH ∧ DHJ ∧      

          ∀Kst([p | p⋐p']IK ∧ ∃Lst(DKL) → Kp≠#⊆Hp≠#)) 

We need structure maximization over and above value maximization in the analysis 

of modal subordination because the antecedent of the modalized conditional in (2b) is 

interpreted as quantifying over all the p2-worlds in which there is at least one u1-man 

without spiritual joys and over all such u1-men, i.e. over the maximal structure associated 

with these p2-worlds that satisfies the antecedent of (2b). 

The effect of the max 5 2
p pÐ  operator is represented by the matrix in (48) below. 

Note that we can keep in p5 some of the rows (i.e. 'assignments') associated with a 

particular possible world and shade (i.e. discard) other rows associated with the same 

world. This contrasts with the structured inclusion required by dynamic modal relations 

(see in particular the matrix in (38) above) where, if a row with a given possible world is 

shaded / discarded, then all the other rows in the matrix with that possible world also 

have to be shaded / discarded18. 

                                                

18 Why do we need to use maxp⋐p'(D) instead of the simpler maxp([p⋐p']; D)? The reason is that the latter 

has value maximization (due to maxp) and structured inclusion (due to p⋐p'), but it does not also have 

structure maximization, which we get in (47) by the info state inclusion requirement Kp≠#⊆Hp≠#. And, to 
derive the correct truth-conditions for (15b), we need structure (and not only value) maximization: if a man 
is alive and he doesn't have any spiritual pleasure, he must have a carnal pleasure, i.e. we look at every p2-

world and at every u1-man in it that is deprived of spiritual joys, then we select the ideal subset among these 
worlds and check that every u1-man in each ideal world has a carnal pleasure. Thus, the antecedent of the 
conditional in (15b) has to introduce all the p2-worlds where some u1-man is alive and without spiritual joy 
and all the structure associated with these worlds, i.e., all the u1-men in question, so that we can check in 
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48. Info state I
p2                      

(premise worlds) 
u1                      

(men) 

p5                             
(conclusion worlds, i.e. 

modally subordinated 
worlds) 

i1 w1 (=p2i1) x1 (=u1i1) w1 (=p3i1)

                                             

  
1 1

man x is alive in world w

14444244443

i2 w1 (=p2i2) x2 (=u1i2) w1 (=p3i2)

i3 w1 (=p2i3) x3 (=u1i3) # (=p3i3)

i4 w2 (=p2i4) x2 (=u1i4) w2 (=p3i4)

i5 w2 (=p2i5) x4 (=u1i5) # (=p3i5)

… … … … 

In sum, the antecedent of the modalized conditional in (2b) is translated as shown in 

(49) below. Just as before, the weak vs. strong contrast is otiose with respect to the 

indefinite any spiritual pleasure, so I interpret it as weak. 

49. if 5 2
p pÐ  he

1
u  doesn't have anywk: 

3
u  spiritual pleasure      

⇝ max 5 2
p pÐ (

5
p ([~[u3 | spiritual

5
p {u3}, pleasure

5
p {u3}, have

5
p {u1, u3}]])) 

The translation of the consequent of (2b) is parallel to the translation of the 

consequent of (2a) – hence, the entire modalized conditional in (2b) is translated in IP-

CDRT as shown in (50) below. The representation in (50) shows that modal 

subordination is basically analyzed in IP-CDRT as quantifier domain restriction via 

structured modal anaphora; that is, the antecedent of (2b) is simultaneously anaphoric to 

the set of worlds and the set of individuals introduced by the the antecedent of (2a) and, 

also, to the quantificational dependency established between these two sets.

                                                                                                                                                

the consequent that each and every such man has a carnal pleasure. The update maxp([p⋐p']; D) would 
introduce all the relevant p2-worlds, but only some of the relevant u1-men.  

Moreover, the update maxp([p⊑p']; D) would also be inadequate because it would store in p only the 
worlds in which each and every u1-man that is alive has no spiritual pleasure, while incorrectly discarding 
all the worlds in which only some of the u1-men that are alive have no spiritual pleasure, but not all of 
them. 
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50. if 5 2
p pÐ  he

1
u  doesn't have anywk: 

3
u  spiritual pleasure, he

1
u  must 6 5

p pô
, ,

1
p µ ω  have 

awk: 
4

u  carnal pleasure            

⇝ max 5 2
p pÐ (

5
p ([~[u3 | spiritual

5
p {u3}, pleasure

5
p {u3}, have

5
p {u1, u3}]]));          

      [p6 | nec , ,
1

p µ ω (p5, p6)]; 
6

p ([u4 | carnal
6

p {u4}, pleasure
6

p {u4}, have
6

p {u1, u4}]) 

One final observation before providing the IP-CDRT translation of the entire 

Aquinas discourse: the IP-CDRT analysis of modal subordination requires us to assign 

two different translations to the antecedent of the conditional in (2a) and the modally 

subordinated antecedent in (2b). Note, however, that the discourse-initial antecedent in 

(2a) can also be assigned a translation of the form max
p⋐p'(D); since the conditional is 

discourse initial, the superset dref p' will have to be accommodated and it will be 

completely unrestricted, i.e. it will store the set of all possible worlds Dw
M 19. Hence, this 

more complex translation will ultimately be equivalent to the simpler one in (23) above. 

The entire translation of the Aquinas discourse is provided in (51) below. The reader 

can check that, given the PCDRT definition of truth, which is repeated in (52), we assign 

the intuitively correct truth-conditions to this discourse. And, according to the translation 

in (51), the argument does indeed go through: the premise (2a) establishes that the set of 

ideal worlds among the p2-worlds is such that any man x has at least one pleasure y. The 

conclusion follows because in all the ideal p2-worlds pleasures are spiritual or carnal (just 

as in the actual world w*) and any man has at least one pleasure: hence, if a man x has no 

spiritual pleasure, he must have at least one carnal pleasure y. 

51. If 2
p
 a

str: 
1

u
 man is alive, he

1
u  must 3 2

p pô
, ,

1
p µ ω  have a

wk: 
2

u
 pleasure.    

Therefore 4 1
p pô

, ,p* * *µ ω , if 5 2
p pÐ  he

1
u  doesn't have anywk: 

3
u  spiritual pleasure, he

1
u  

must 6 5
p pô

, ,
1

p µ ω  have awk: 
4

u  carnal pleasure       

⇝ max 1
p (

1
p (max 2

p (
2

p max 1
u ([man

2
p {u1}, alive

2
p {u1}])));     

                                                

19 We can make sure that p' stores the set of all possible worlds Dw
M if we introduce it by means of an 

update maxp'(p'([p'⋐p'])). 



300

      [µ, ω | circumstantialp*{p1, µ}, empty{p1, ω}];    

      [p3 | nec , ,
1

p µ ω (p2, p3)]; 
3

p ([u2 | pleasure
3

p {u2}, have
3

p {u1, u2}]);  

     
1

p (max 5 2p pÐ
(

5
p ([~[u3 | spiritual

5
p {u3}, pleasure

5
p {u3}, have

5
p {u1, u3}]])));  

      [p6 | nec , ,
1

p µ ω (p5, p6)]; 
6

p ([u4 | carnal
6

p {u4}, pleasure
6

p {u4}, have
6

p {u1, u4}]) 

52. Truth: A DRS D (type t) is true with respect to an input info state Ist iff ∃Jst(DIJ). 

6. A Parallel Account of Modal and Quantificational Subordination 

In this section, I will slightly revise the analysis of modal quantification proposed in 

section 4 above and make it parallel to the analysis of individual-level quantification 

proposed in chapter 6. The benefit of the revised analysis is that we can give a 

compositional account of modal subordination examples like the one in (53) below 

(based on an example in Roberts 1989) that is completely parallel to the analysis 

proposed in chapter 6 of the quantificational subordination example in (54) below (from 

Karttunen 1976). 

53. a. Au wolf might come in. b. Itu would attack Harvey first. 

54. a. Harvey courts au girl at every convention.        

b. Sheu always comes to the banquet with him.            

[c. Theu girl is usually also very pretty.] 

Under its most salient interpretation, discourse (53) asserts that, for all the speaker 

knows, it is a possible that a wolf comes in. Moreover, for any such epistemic possibility 

of a wolf coming in, the wolf attacks Harvey first.

The modal subordination discourse in (53) is parallel to the quantificational 

subordination discourse in (54) because the interaction between the indefinite au wolf and 

the modal might on the one hand and the singular pronoun itu and the modal would on the 

other hand is parallel to the interaction between au girl-every convention and sheu-always. 
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6.1. Redefining Modal Quantification 

This section introduces the main definitions and abbreviations needed for the 

revised definition of dynamic modal quantification. They are point-for-point parallel to 

the definitions given in chapter 6 for individual-level quantification (see appendix 0 of 

chapter 6). 

As already indicated in section 4.2 above, we need a notion of structured inclusion 

to define dynamic modal quantification and we need to introduce a dummy / exception 

world #w to be able to define structured inclusion. The dummy world #w makes every 

lexical relation false, much like the dummy / exception individual #e introduced in 

chapter 6 yields falsity. 

Just as before, the new definition of intensional atomic conditions – provided in (55) 

below – relies on static lexical relations Rw(x1, …, xn) of the expected intensional type 

e
n(wt)20. The definition in (55), however, is different from the corresponding definition of 

lexical relations in section 3 because now we also have to take into account the dummy 

individual #e over and above the dummy world #w (since the intensional system 

introduced in this section builds on the extended PCDRT system in chapter 6, which 

makes use of the dummy / exception individual #e). 

The definitions in (56) through (61) are identical to the corresponding definitions 

introduced in section 4 above and they are repeated here only to make the comparison 

with the individual-level definitions in chapter 6 easier. 

55. Rp{u1, ..., un} := λIst. I #, #, ..., #1 np u u≠ ≠ ≠ ≠ Ø ∧      

            ∀is∈I #, #, ..., #1 np u u≠ ≠ ≠ (Rpi(u1i, …, uni)) 

56. [p] := λIstJst. ∀is∈I(∃js∈J(i[p]j)) ∧ ∀js∈J(∃is∈I(i[p]j))) 

57. p'⋐p := λIst. ∀is∈I(p'i=pi ∨ p'i=#) 

58. p'⊑p := λIst. (p'⋐p)I ∧ ∀is∈I(pi∈p'Ip'≠# → pi=p'i) 

                                                

20 Where enτ (for any type τ) is defined as in Muskens (1996): 157-158, i.e. e0τ := τ and em+1τ := e(emτ). 
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59. max
p(D) := λIst.λJst. ([p]; D)IJ ∧ ∀Kst(([p]; D)IK → pKp≠#⊆pJp≠#) 

60. max
p'⊑p(D) := max

p'([p'⊑p]; D) 

61. distp(D) := λIst.λJst. ∀ww(Ip=w≠Ø ↔ Jp=w≠Ø) ∧ ∀ww(Ip=w≠Ø → DIp=wJp=w),  

 i.e. distp(D) := λIstJst. pI=pJ ∧ ∀ww∈pI(DIp=wJp=w). 

The most important novelties introduced in this section are the definition of modal 

quantification and the definition of the indicative mood in (68) and (69) below.  

Just as the generalized determiners in chapter 6 above relate dynamic properties P, 

P' etc. of type et, modal verbs relate dynamic propositions , ' etc. of type st, as shown 

in (68).  

Moreover, just as a singular pronoun anaphorically retrieves an individual dref, 

requires it to be unique and makes sure that a dynamic property holds of that dref (see the 

translation of heu in chapter 6), the indicative mood anaphorically retrieves p*, which is 

the designated dref for the actual world, requires it to be unique (since there is a unique 

actual world) and makes sure that a dynamic proposition holds of p*, as shown in (69). 

62. p(D) := λIst.λJst. Ip=#=Jp=# ∧ Ip≠#≠Ø ∧ distp(D)Ip≠#Jp≠#

63. 〈p〉(D) := λIst.λJst. Ip=#=Jp=# ∧ (Ip≠#=Ø → I=J) ∧ (Ip≠#≠Ø → distp(D)Ip≠#Jp≠#) 

64. unique{p} := λIst. Ip≠#≠Ø ∧∀is,i's∈Ip≠#(pi=pi') 

65. MODALq,µ,ω{p, p'} := λIst. Iq=#=Ø ∧ unique{q}I ∧      

           MODALµI≠{#},ωI≠{#}{pIp≠#, p'Ip'≠#},   

 where µ and ω (dref's for a modal base and an ordering source  

 respectively) are of type s(wt)21. 

                                                

21 Note that the first two conjuncts in (65), i.e. Iq=#=Ø ∧ unique{q}I, entail that qI is a singleton set {w}, 
where w cannot be the dummy world #w.  

The third conjunct in (65) is of the form MODALM,O{W, W'}, where w is a possible world (of type w), M
and O are sets of sets of worlds (of type (wt)t), i.e. a modal base and ordering source respectively, and W
and W' are sets of possible worlds (of type wt), i.e. the restrictor and the nuclear scope of the modal 
quantification. The formula MODALM,O{W, W'} is defined following the Lewis (1973) / Kratzer (1981) 
semantics for modal quantification (see section section 4.2 above for more details). 
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66. Example – the necessity condition (type (st)t):      

NECq,µ,ω{p, p'} := λIst. Iq=#=Ø ∧ unique{q}I ∧ NECµI≠{#},ωI≠{#}{pIp≠#, p'Ip'≠#},  

 where NECM,O(W1, W2) := IdealO((∩M)∩W1)⊆W2
22

67. Example – the possibility condition (type (st)t):      

POSq,µ,ω{p, p'} := λIst. Iq=#=Ø ∧ unique{q}I ∧ POSµI≠{#},ωI≠{#}{pIp≠#, p'Ip'≠#}, 

 where POSM,O(W1, W2) := IdealO((∩M)∩W1)∩W2≠Ø 

68. ifp + modalµ,ωp'⊑p ⇝          

    λ st.λ 'st.λqs. max
p(〈p〉( (p))); max

p'⊑p(〈p'〉( '(p'))); [MODALq,µ,ω{p, p'}] 

69. indicativep* ⇝ λ st. [unique{p*}]; p*( (p*)),      

 where p* is the dref for the actual world. 

Note that the definition in (68) can be easily modified to allow for the kind of modal 

quantification instantiated by the second conditional in our Aquinas discourse (i.e. by the 

conditional in (2b) above). As shown in (70) below, we only need to make use of the 

maximization operator max
p⋐p'(D) introduced in section 5 above, whose definition is 

repeated in (71) for convenience.  

70. if p⋐p'' + modalµ,ωp'⊑p ⇝          

           λ st.λ 'st.λqs. max
p⋐p''(〈p〉( (p))); max

p'⊑p(〈p'〉( '(p'))); [MODALq,µ,ω{p, p'}] 

71. max
p⋐p'(D) := λIst.λJst. ∃H([p | p⋐p']IH ∧ DHJ ∧      

          ∀Kst([p | p⋐p']IK ∧ ∃Lst(DKL) → Kp≠#⊆Hp≠#)) 

The most important difference between the definition of modal quantification in 

(68) and the definition in section 4 above is that we now introduce the maximal nuclear 

scope set of worlds unrestricted / not parametrized by a modal base or an ordering 

source. The modal parametrization comes in only later on, in the modal condition relating 

                                                

22 The definitions of NECM,O(W1, W2) and POSM,O(W1, W2) differ slightly from the corresponding 
definitions in section 4.2 above, but they still rely on the Ideal function defined in that section. 
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the unparametrized maximal restrictor set and the unparametrized maximal nuclear scope 

set. 

In contrast, the definition in section 4 introduces only the maximal restrictor set of 

worlds and, if the modal relation is necessity (NEC), it also introduces the maximal set of 

ideal worlds among the restrictor worlds. That is, the old definition introduces a maximal 

nuclear scope set only in some cases and, even then, it is a parametrized nuclear scope set 

(parametrized by a modal base and an ordering source).  

Thus, what distinguishes the definition of dynamic modal quantification in (68) 

from the previous one – and, to my knowledge, from any other analysis of modal 

quantification in the previous dynamic literature23 – is that: (i) it introduces maximal 

restrictor and nuclear scope sets and (ii) these maximal sets are unparametrized by modal 

bases or ordering sources. As we will see in the next section, the new definition has 

several theoretical and empirical advantages over the definition in section 4 above and 

the definitions in the previous dynamic semantics literature. 

6.2. Advantages of the Novel Definition 

The novel definition of modal quantification, which introduces the maximal 

unparametrized (i.e. not restricted by any modal base or ordering source) nuclear scope 

set of worlds over and above the maximal restrictor set of worlds, has several advantages 

over the definition in section 4 above (which introduces only the maximal restrictor set) – 

and over various other definitions proposed in the previous dynamic semantics literature. 

For ease of comparison, I will restate the old definition of dynamic modal 

quantification using the new format (i.e. the format of the definition in (68) above), as 

shown in (72) below. 

                                                

23 Most previous analyses of modal quantification differ from the new IP-CDRT analysis because either 
they did not have any modal dref's at all (Roberts 1987, 1989) or, if they had, the dref's had dynamic 
objects as values, e.g. <world, variable assignment> pairs (see, for example, Geurts 1995/1999 and Frank 
1996 among others). Stone (1999) does propose an analysis of modal quantification that relates dref's for 
static objects (in particular, dref's for accessibility relations of type s(w(wt)), but his restrictor and nuclear 
scope sets, which are introduced by means of an if-update (see Stone 1999: 17, (34)), are parametrized – 
their maximality is relativized to a Lewis-style similarity ordering source built into the if-update. 
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72. The previous definition of modal quantification (see section 4 above).   

ifp + modalµ,ωp'⊑p ⇝          

    λ st.λ 'st.λqs. max
p(〈p〉( (p))); [p' | p'⊑p, MODALq,µ,ω{p, p'}]; 〈p'〉( '(p')) 

The definition in (72) is formally simpler than the one in (68) because it has only 

one maximization operator. But the additional complexity of (68) is both theoretically 

and empirically motivated. 

The theoretical advantage of the new definition in (68) over the previous definition 

in (72) is that the new definition systematically and explicitly captures the parallel 

between modal quantification and individual-level quantification as analyzed in chapter 

6. For convenience, I repeat the definition of individual-level quantification in (73) 

below. The reader can easily check that it is point-for-point parallel to the definition in 

(68) above. 

73. detu,u'⊑u ⇝ λPet.λP'et. max
u(〈u〉(P(u))); max

u'⊑u(〈u'〉(P'(u'))); [DET{u, u'}] 

Empirically, the new definition is better than the previous one in at least two 

respects. As we will see, these two empirical advantages are a direct consequence of the 

parallel between the dynamic definition of modal quantification and its individual-level 

counterpart in (73) above. Let us examine them in turn. 

First, the new definition generalizes to downward monotonic modal quantifiers (i.e. 

to modal determiners / modal relations that are downward monotonic in their right 

argument) like impossible, improbable, unlikely etc. To see this, note that, just as the 

individual-level quantification in (74) below is incompatible with (75) (i.e. Few men left

entails that It is not the case that most men left), the modal quantification in (76) is 

incompatible with (77) (i.e. Given the available evidence, it is improbable / unlikely that 

it will rain entails that It is not the case that, given the available evidence, it is  probable / 

likely that it will rain). 

74. Few men left. 

75. Most men left. 

76. Given the available evidence, it is improbable / unlikely that it will rain. 
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77. Given the available evidence, it is probable / likely that it will rain. 

This shows that, when computing the meaning of updates containing (individual-

level or modal) determiners that are downward monotonic in their right argument, we 

need to have access to the maximal nuclear scope set (of individuals or possible worlds). 

To see this, consider the definition of dynamic individual-level quantification in (78) 

below, which does not introduce the maximal nuclear scope set and which is parallel to 

the old definition of modal quantification in (72) above. 

78. A definition of individual-level quantification that fails for determiners that 

are downward monotonic in their right argument:    

detu,u'⊑u ⇝ λPet.λP'et. max
u(〈u〉(P(u))); [u' | u'⊑u, DET{u, u'}]; 〈u'〉(P'(u')) 

The definition in (78) captures the meaning of upward monotonic quantifiers, e.g. 

Most men left is correctly interpreted as: introduce the maximal set u of individuals that 

satisfies the restrictor dynamic property, i.e. the maximal set of men; then, 

nondeterministically introduce some subset u' of the restrictor set u that is a most-subset 

(i.e. it is more than half of the restrictor set). If there is at least one such non-

deterministically introduced subset u' that also satisfies the nuclear scope dynamic 

property, then the most-quantification is successful. 

However, the definition in (78) fails to capture the meaning of downward 

monotonic quantifiers, e.g. Few men left is incorrectly interpreted as: introduce the 

maximal set u of individuals that satisfies the restrictor dynamic property, i.e. the 

maximal set of men; then, nondeterministically introduce some subset u' of the restrictor 

set u that is a few-subset (i.e. it is less than half of the restrictor set, possibly the empty 

set). If there is at least one such non-deterministically introduced subset u' that also 

satisfies the nuclear scope dynamic property (let us assume that the empty set vacuously 

satisfies any property), then the few-quantification is successful. 

This meaning for few fails to capture the fact that Few men left is incompatible with 

Most men left because, even if we are successful in introducing a few-subset that satisfies 

the nuclear scope property, it can still be the case that a most-subset, for example, also 

satisfies that property, i.e. a successful update with Few men left does not rule out a 
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successful update with Most men left (this is a direct consequence of the proposition 

relating witness sets and quantifier monotonicity in Barwise & Coopeer 1981: 10424; for 

a closely related discussion, see fn. 15 in section 3.3 of chapter 6). 

And, just as the definition of individual-level quantification in (78) above fails to 

account for the fact that Few men left is incompatible with Most men left, the parallel 

definition of modal quantification in (72) above fails (mutatis mutandis) to account for 

the fact that Given the available evidence, it is improbable that it will rain is 

incompatible with Given the available evidence, it is probable that it will rain. 

The second advantage of the new definition of dynamic modal quantification over 

the previous one is that we predict without any additional stipulation that anaphora to the 

nuclear scope set of a modal quantification is always maximal – which is exactly what we 

need to account for the standard case of modal subordination in (53) above (i.e. Au
 wolf 

might come in. Itu would attack Harvey first) and, also, for the more complex example 

involving interactions between therefore and modal subordination in (9) above (i.e. A
u

wolf might enter the cabin. Itu would see John
u'
. Therefore, itu would notice himu'). 

In more detail: recall that, under its most salient interpretation, discourse (53) is 

interpretating as asserting that: (i) for all the speaker knows, it is a possible that a wolf 

comes in, and, in addition, (ii) for any such epistemic possibility of a wolf coming in, the 

wolf attacks Harvey first. That is, the modal would is anaphoric to all the epistemically 

accessible worlds in which a wolf comes in and not only to some of them.  

However, according to the old definition, the modal verb might introduces only 

some (and not necessarily all) the epistemically accessible worlds in which a wolf comes 

in. Consequently, we would need an additional stipulation to the effect that, at least in 

discourse (53), might introduces the maximal set of epistemically accessible worlds 

satisfying the nuclear scope. 

I can think of two ways of justifying the additional maximality stipulation 

associated with anaphora to might in discourse (53), namely: (i) modal anaphora is 

                                                

24 Page references to Partee & Portner (2002). 



308

parallel to donkey anaphora and, in discourse (53), we have an instance of strong donkey-

like modal anaphora and (ii) modal anaphora is parallel to plural anaphora and plural 

anaphora is always maximal. 

However, as we will presently see, these two justifications do not hold under 

scrutiny. In contrast, the fact that the novel definition of modal quantification in (68) 

introduces the maximal unparametrized nuclear scope set of worlds is independently 

motivated by the need to capture the meaning of downward monotonic modal quantifiers. 

Moreover, this explanation for the maximality of modal anaphora – i.e. the fact that 

the maximality of modal anaphora (analyzed as structured anaphora to quantifier 

domains) emerges as a consequence of independently justified meanings for dynamic 

generalized quantifiers – is parallel to the explanation provided in section 3.3 of chapter 6

above for the maximality of E-type anaphora in the invidual domain (recall the Evans 

examples Few
u
 congressmen admire Kennedy and theyu are very junior and Harry 

bought some
u
 sheep. Bill vaccinated themu). 

Let us examine the first suggestion above, namely the idea that modal anaphora is, 

in general, parallel to donkey anaphora (and not parallel to E-type anaphora to quantifier 

domains) and that discourse (53) is basically an instance of strong donkey anaphora in the 

modal domain.  

This hypothesis derives the intuitively correct truth-conditions for discourse (53) 

since the modal might in (53a) has a strong donkey reading and, therefore, introduces the 

maximal set of epistemically accessible possible worlds in which a wolf comes in (see the 

PCDRT analysis of weak / strong donkey ambiguities in chapter 5). The modal anaphor 

would in (53b) will then retrieve this maximal set of worlds and further elaborate on 

them, much like the anaphor itu in Every farmer who owns a
str:u

 donkey beats itu retrieves 

all the donkeys owned by any particular farmer. 

The problem with this hypothesis is that we expect to find instances of modal 

anaphora that have weak donkey-like readings – and I am not aware of any examples of 

this kind. All the examples of cross-sentential modal anaphora to might of the same form 

as discourse (53) above seem to require maximality – and the same maximality 
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requirement seem to be obligatory in cases in which might occurs embedded in 

conditional structures. Consider, for example, the conditional in (79) below, where the 

(putatively donkey-like) modal might occurs in the antecedent of a conditional and the 

purpose infinitival clause to kill it in the consequent is (presumably) anaphoric to the 

epistemically accessible possible worlds introduced by might. 

79. If you think a rat might come in, you should bring some poison to kill it. 25

80. If you think a rat might come in, then you should bring some poison so that:   

if a rat does come in, you'll have a way to kill it / #you might have a way to kill it. 

As the intuitively correct paraphrase in (80) above shows, the modal anaphora does 

not have a weak reading: the infinitival clause is anaphoric to all the worlds in which a rat 

comes in and not only to some of the (epistemically accessible) worlds in which a rat 

comes in. 

The second suggestion made above is that modal anaphora is parallel to plural 

anaphora and, given that plural anaphora is always maximal, this explains why modal 

anaphora to might is always maximal. Much like the previous hypothesis, this one also 

derives the intuitively correct truth-conditions for discourse (53). But it ultimately faces 

the same problems as the "modal anaphora as donkey anaphora" idea – and this is 

because plural anaphora is in fact not always maximal / strong. 

Plural donkey anaphora to some does indeed seem to always be maximal / strong, 

both in cross-sentential cases (the Evans example: Harry bought some
u
 sheep. Bill 

vaccinated themu
26) and in the case of intra-sentential plural donkey anaphora – see for 

example (81) below. 

81. Every person who has someu dimes will put themu in the meter. 

However, the maximality effect in all these cases seems to be due to the determiner 

some, because plural anaphora to cardinal indefinites can very well be non-maximal / 

                                                

25 This example incorporates several modifications suggested to me by Jessica Rett (p.c.). 

26 Based on Evans (1980): 217, (8) (page references are to Evans 1985). 
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weak, as shown by the cross-sentential example and the donkey sentence in (82) and (83) 

below. 

82. Harry bought twou sheep and Bill vaccinated themu.      

But Bill didn't vaccinate all the sheep that Harry bought on the same occasion / 

But Bill didn't vaccinate the three other sheep that Harry bought on the same 

occasion. 

83. Every person who has twou dimes will put themu in the meter. 

Thus, the idea that modal anaphora is parallel to individual-level plural anaphora is 

problematic for the same reason as the "modal anaphora as donkey anaphora" hypothesis, 

because there seem to be no non-maximal instances of modal anaphora to might – which 

is exactly what we would expect under the "modal anaphora as anaphora to quantifier 

domains" view pursued throughout this section. 

6.3. Conditional Antecedents vs. Modal Bases 

As (68) indicates, I take modal generalized determiners to have a composite, 

conditional-like structure. The observation that antecedents of conditionals contribute to 

the restrictor, i.e. the modal base, of a modal quantification goes back at least to Kratzer 

(1981). A typical example (which, incidentally, provides an argument for ordering 

sources over an above modal bases) is given in (84) below. 

84. Ifp there is astr:u murder, theu murderer mustµ,ω
p'⊑p go to jail. 

The modalized conditional in (84) is interpreted as a modal quantification 

relativized to a contextually provided empty modal base µ and a contextually provided 

deontic ordering source ω (e.g. in view of the law in the actual world). 

The antecedent of the conditional contributes the set p of all worlds where there is 

some murder or other. The modalized conditional is true if the consequent of the 

conditional is satisfied in all the deontically ideal worlds among the p-worlds intersected 

with the modal base worlds; since, in this case, the modal base is empty (hence it is 
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vacuously satisfied in any possible world), the restrictor of the quantification is just the 

set of p-worlds. 

However, despite the fact that antecedents and modal bases should be lumped 

together in the evaluation of a modal quantification (as Kratzer 1981 has it), they should 

in fact be distinguished for anaphoric purposes: as example (84) shows, we can have 

donkey anaphora between the definite theu murderer in the consequent and the indefinite au 

murder in the antecedent. This is the reason for the systematic distinction between the 

conditional antecedent (i.e. the restrictor stricto sensu) and the modal base in the 

definition of dynamic modal quantification in (68) above. 

The necessity to distinguish between conditional antecedents and modal bases is 

further supported by the discourses in (85) and (86) below (based on examples (7) and 

(10) in Stone 1999: 4-5), where we have instances of cross-sentential (modally 

subordinated) anaphora to dref's introduced in antecedents of conditionals27. 

85. a. If au wolf came in, John could escape (from itu). b. Itu might eat Mary though. 

86. a. If au wolf came in, John could not legally kill itu. b. But he still would have to. 

6.4. Anaphoric Modal Quantifiers 

Finally, just as quantifiers like always in (54b) above anaphorically retrieves its 

restrictor (more exactly: it is anaphoric to the nuclear scope dref introduced by the 

determiner every in (54a)), the modal quantifier would in (53b) anaphorically retrieves its 

restrictor – and, in a parallel way, would in (53b) is anaphoric to the nuclear scope dref 

introduced by the modal verb might in (53a). The general format for the translation of 

such anaphoric modal quantifiers is provided in (87) below. 

87. modalµ,ω,p
p'⊑p ⇝ λ st.λqs. max

p'⊑p(〈p'〉( (p'))); [MODALq,µ,ω{p, p'}] 

                                                

27 Unlike the Aquinas discourse in (1/2) above, where the modally subordinated pronoun is located in the 
restrictor of the modal quantification, the modally subordinated pronoun in discourses (85) and (86) is 
located in the nuclear scope.  
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This concludes our brief survey of the version of Intensional PCDRT (IP-CDRT) 

that builds on the extended PCDRT system introduced in chapter 628.  

6.5. Subordination across Domains 

We finally turn to the IP-CDRT analysis of the modal subordination discourse in 

(53). As desired, this analysis is the exact modal counterpart of the analysis of 

quantificational subordination in section 4 of chapter 6. 

Under its most salient interpretation, discourse (53) asserts that, for all the speaker 

knows, it is a possible that a wolf comes in and that, for any such epistemic possibility of 

a wolf coming in, the wolf attacks Harvey first. Thus, we are interested in the "narrow-

scope indefinite" reading of discourse (53), wherein the indefinite a wolf in (53a) has 

narrow scope relative to the modal might and sentence (53b) preserves and elaborates on 

this de dicto reading.  

The meanings for the two modal quantifiers might in (53a) and would in (53b) are 

provided in (88) and (89) below. Given that the modal relation POS contributed by might

has a built-in existential commitment, i.e. there must be a non-empty restrictor set of 

worlds p of a non-empty nuclear scope set of worlds p' (see the definition in (67) above), 

we can simplify the meaning of might by replacing the operators 〈p〉(…) and 〈p'〉(…) with 

p(…) and p'(…). The same applies to the meaning of anaphoric would because, according 

to definition (66) above, if the restrictor set of would (i.e. p') is non-empty, then so must 

be its nuclear scope set p'' (given that would is parametrized by the same modal base as 

might). 

                                                

28 For completeness, I provide below the revised intensional meanings for dynamic properties, generalized 
determiners, indefinite articles, pronouns and proper names. 

(i) girl ⇝ λve.λqs. [girlq{v}] 

(ii) detu,u'⊑u ⇝ λPe(st).λP'e(st).λqs. maxu(〈u〉(P(u)(q))); maxu'⊑u(〈u'〉(P'(u')(q))); [DET{u, u'}] 

(iii) awk:u ⇝ λPe(st).λP'e(st).λqs. [u]; u(P(u)(q)); u(P'(u)(q)) 

(iv) astr:u ⇝ λPe(st).λP'e(st).λqs. maxu(u(P(u)(q)); u(P'(u)(q))) 

(v) heu ⇝ λPe(st).λqs. [unique{u}]; u(P(u)(q)) 

(vi) Harveyu ⇝ λPe(st).λqs. [u | u⋐Harvey]; u(P(u)(q)),   where Harvey := λis. harveye. 
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88. mightµ,ω
p,p'⊑p

⇝ λ st.λ 'st.λqs. max
p(p( (p))); max

p'⊑p(p'( '(p'))); [POSq,µ,ω{p, p'}] 

89. wouldµ,ω,p' 
p''⊑p'

⇝ λ st.λqs. max
p''⊑p'(p''( (p''))); [NECq,µ,ω{p', p''}] 

The contextually supplied modal base µ (of type s(wt)) for both might and would is 

epistemic, e.g. it associates with each q-world the set of propositions that the speaker 

believes in that q-world. The contextually supplied ordering source ω is empty29, which 

means that it does not contribute anything to the meaning of the two modal 

quantifications – and we will henceforth ignore it.

Given that the might quantification is discourse initial, we have to accommodate a 

restrictor proposition st – and a natural choice is the trivial dynamic proposition λqs. 

[q⋐q]. This ensures that the restrictor dref p introduced by might stores the set of all 

possible worlds (since the restrictor DRS is max
p(p([p⋐p]))), which in turn entails that 

we quantify over each and every world compatible with the epistemic modal base µ – and 

this is intuitively correct: when uttered out of the blue, sentence (53a) is interpreted as 

asserting that, for all the speaker knows, it is possible that a wolf comes in. 

Finally, both modal quantifications in (53a) and (53b) are interpreted relative to the 

actual world, since the epistemic modal base µ for both quantifications is in fact the set 

propositions believed by the actual speaker in the actual world. I will capture this means 

of an indicative mood morpheme taking scope over the modal verbs. Thus, I will assume 

that sentences (53a) and (53b) have the logical forms provided in (90) and (91) below; 

the logical forms are followed by their compositionally derived IP-CDRT translations30. 

                                                

29 Emptiness can be required by a condition of the form empty{ω} := λIst. ∀is∈I(ωi={#}), i.e., throughout 

the plural info state I, we assign to the dref ω of type s(wt) the dummy object of type wt, which is the 
singleton set of the dummy world {#w}. 

30 I employ the notational abbreviations and equivalences introduced in chapter 6 above (see appendix 0 of 
chapter 6 for the entire list), in particular: 

(i) p(C) := λIst. Ip≠#≠Ø ∧ ∀w∈pIp≠#(CIp=w),   where C is a condition (of type (st)t) 

(ii) p(α1, …, αn) := λIst.λJst. Ip=#=Jp=# ∧ Ip≠#[α1, …, αn]Jp≠#,      

 where p∉{α1, ..., αn} and [α1, ..., αn] := [α1]; ...; [αn] 

(iii) p([C1, …, Cm]) = [p(C1), …, p(Cm)] 
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90. indp*( mightµp,p'⊑p (λqs.[q⋐q]) (awk:u wolf come in) )      

[unique{p*}]; p*(max
p(p([p⋐p])); max

p'⊑p([p'(u) | p'(wolfp'{u}), p'(come_inp'{u})]); 

       [POSp*,µ{p, p'}])  

91. indp*( wouldµ,p' p''⊑p'  (itu attack Harvey first) )       

[unique{p*}]; p*(max
p''⊑p'([p''(unique{u}), p''(attackp''{u, Harvey})]);  

      [NECp*,µ{p', p''}]) 

Intuitively, the DRS in (90) instructs us to update the default info state {i#} as 

follows. First, since the entire modal quantification is relativized to the actual world and 

the epistemic modal base provided by the speaker's beliefs, we need to introduce the 

actual world dref p* and the epistemic modal base dref µ. These updates are default start-

up updates for any discourse whatsoever, i.e. they are what Stalnaker (1978) refers to as 

"commonplace" updates that "will include any information which the speaker assumes 

his audience can infer from the performance of the [assertion] speech act" (Stalnaker 

1978; see also the related discussion about deictic pronouns in section 3.7 of chapter 6

above). Thus, I will assume that the DRS in (90) is in fact preceded by the start-up update 

in (92) below. 

92. [p*, µ | p*=w*, epistemicp*{µ}],        

 where p*=w* := λIst. p*Ip*≠#={w*} 

We are now able to test that the dref p* contains a unique non-dummy world (in 

particular, the actual world w*), as the first update in (90) instructs us to do. 

Then, we introduce the dref p relative to the actual world dref p* and store in it the 

set of all possible worlds (given that the condition p⋐p is vacuously satisfied). The next 

update instructs us to introduce the dref p' and store in it the maximal subset of p-worlds 

                                                                                                                                                

(iv) p([α1, …, αn | C1, …, Cm]) = [p(α1, …, αn) | p(C1), …, p(Cm)]). 
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that contain a wolf u that comes in. Given that p is the set of all possible worlds, p' will in 

fact store the set of all worlds that contain a wolf u that comes in. 

We finally test that the nuclear scope p' is a µ-epistemic possibility relative to the 

restrictor p, which basically means that there is at least one possible world w which is 

both a p-world and a µ-world and which, in addition, is also a p'-world. In other words, 

the DRS in (90) is true iff there is an epistemic possibility of a wolf coming in. 

The DRS in (91) instructs us to update the info state that we have obtained after 

processing (90) as follows. First, we test again that the dref p* contains a unique non-

dummy world, which we know is true (we have performed the same test in (90)). Then, 

we introduce the nuclear scope dref p'', which stores the maximal subset of the p'-worlds 

relative to which we have introduced a unique u-wolf and in which said wolf attacks 

Harvey first. 

We finally test that the nuclear scope p'' is a µ-epistemic necessity relative to the 

restrictor p', which basically means that any possible world w which is both a p'-world 

and a µ-world is also a p''-world. In other words, the DRS in (91) is true iff any

epistemically accessible possible world in which a wolf comes in is such that the wolf 

attacks Harvey first.  

Thus, the IP-CDRT representation in (90) + (91) captures the intuitively correct 

truth-conditions for the modal subordination discourse in (53) above. Moreover, as 

desired, the representation in (90) + (91) is parallel to the corresponding PCDRT 

representation that captures the "narrow-scope indefinite" reading of the quantificational 

subordination discourse in (54) above. For convenience, I repeat this representation in 

(93) below (see 4.3 section of chapter 6 for more discusssion). 

93. max 1
u ([convention{u1}]); [

1
u (u2)]; [

1
u (girl{u2}), 

1
u (court_at{Harvey, u2, u1})];  

[
1

u (unique{u2}), 
1

u (come_to_banquet_of{u2, u1})] 

The differences between the two representations are only an artifact of the fact that, 

in the analysis provided in (93), we have conflated the restrictor and nuclear scope dref's 

for both the determiner every in (54a) and the anaphoric adverb always in (54b). This 
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simplification is, however, not possible for the modal representation in (90) + (91) 

because, unlike individual-level quantification, modal quantification is parametrized by a 

non-empty modal base and the restrictor and nuclear scope dref's of might and would

cannot be conflated. The conflation is possible only of both the modal base and the 

ordering source are empty, as it was the case for the entailment particle therefore analyzed 

in section 4.3 of the present chapter and whose translation was simplified in much the 

same way as the translations of every and always in chapter 6. 

Thus, anaphora and quantification in the individual and modal domains are analyzed 

in a systematically parallel way in IP-CDRT, from the types of the dref's to the general 

format of the meanings associated with quantificational and anaphoric expressions.The 

fact that this formal feature is empirically and theoretically desirable has been repeatedly 

observed in the literature – see Stone (1997, 1999), Frank (1996), Geurts (1999), Bittner 

(2001), Schlenker (2005) among others, extending the parallel between the individual and 

temporal domains argued for in Partee (1973, 1984).

IP-CDRT – which builds on and unifies Muskens (1996), van den Berg (1996a) and 

Stone (1999) – is, to my knowledge, the first dynamic system that systematically captures 

the anaphoric and quantificational parallels between the individual and modal domains 

while, at the same time, keeping the underlying logic classical and preserving the 

Montagovian approach to compositionality. 

6.6. De Re Readings 

Consider the discourses in (94) and (95) below. In both cases, the only intuitively 

available reading for the indefinite au wolf is a de re reading, that is, the anaphoric 

pronoun itu in the indicative sentences (94b)/(95b) rules out the "narrow-scope indefinite" 

reading mightµp,p'⊑p>>au wolf for sentence (94a/95a). 

94. a. Awk:u wolf mightµ
p,p'⊑p come in.         

b. Itu escaped yesterday from the zoo.31

                                                

31 Or: A wolf might come in. It's the wolf that escaped yesterday from the zoo. 
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95. a. Awk:u wolf mightµ
p,p'⊑p come in.         

b. John saw itu yesterday night standing dangerously close to the cabin. 

Discourses (94) and (95) are parallel to the first discourse from Karttunen (1976) 

analyzed in chapter 6, repeated in (96) below. Much as in (94) and (95) above, the 

anaphoric pronoun sheu in sentence (96b) rules out the "narrow-scope indefinite" reading 

everyu' convention>>awk:u girl for sentence (96a). 

96. a. Harvey courts awk:u girl at everyu' convention.      

b. Sheu is very pretty. 

According to the analysis in section 4.2 of chapter 6 above, this is a consequence of 

the fact that the two readings of sentence (96a) are effectively conflated by the condition 

unique{u} condition contributed by the singular number morphology on the pronoun 

sheu. The PCDRT representations of the entire discourse in (96), derived on the basis of 

the two (conflated) quantifier scopings of (96a), are repeated in (97) and (98) below. 

97. awk:u girl>>everyu' convention:          

[u | girl{u}]; u(max
u'([convention{u'}])); [u(court_at{Harvey, u, u'})];   

[unique{u}, very_pretty{u}] 

98. everyu' convention>>awk:u girl:         

max
u'([convention{u'}]); [u'(u) | u'(girl{u}), u'(court_at{Harvey, u, u'})];   

[unique{u}, very_pretty{u}] 

This analysis, however, does not generalize to the modal case – and for a simple 

reason. The de re reading of the modal discourses in (94) and (95) above requires the 

common noun wolf to be interpreted relative to the dref for the actual world p* over and 

above the fact that the indefinite au wolf in (94a/95a) brings to salience a single individual. 

The unique{u} condition contributed by the pronoun itu in (94b)/(95b) can constrain only 

the cardinality of the set of individuals introduced by the indefinite au wolf – but it cannot 

require them to be wolves in the actual world, i.e. to satisfy the condition wolfp*{u}. 

To see the problem more clearly, consider the two IP-CDRT representations of 

discourse (94) above provided in (99) and (100) below. For simplicity, I ignore the 
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unique{p*} condition and the p*(…) operator contributed by the indicative mood indp* (as 

the reader can check, nothing crucial rests on this assumption). 

99. au wolf>>mightµp,p'⊑p, i.e. indp*( [awk:u wolf]v mightµp,p'⊑p (λqs.[q⋐q]) (tv come in) ):   

[u | wolfp*{u}]; u(max
p(p([p⋐p])); max

p'⊑p([come_inp'{u}]); [POSp*,µ{p, p'}]);  

[unique{u}, escape_from_zoop*{u}] 

100. mightµp,p'⊑p>>au wolf, i.e. indp*( mightµp,p'⊑p (λqs.[q⋐q]) (awk:u wolf come in) ):   

max
p(p([p⋐p])); max

p'⊑p([p'(u) | p'(wolfp'{u}), p'(come_inp'{u})]); [POSp*,µ{p, p'}];  

[unique{u}, escape_from_zoop*{u}] 

The representation in (99) provides the intuitively available de re reading: there is a 

u-individual that is a wolf in the actual p*-world and there are some p'-worlds in which 

the u-individual comes in and that are µ-epistemic possibilites relative to the actual p*-

world. Note that we do not require the u-individual to be a wolf in these p'-worlds, but we 

can assume that, in all the relevant µ-accessible p'-worlds, the u-individual is a wolf 

because, on the one hand, it is a wolf in the actual p*-world and, on the other hand, the µ-

accessible worlds are also relativized to the actual p*-world 32. 

It is the representation in (100) that is problematic. Intuitively, the de dicto reading 

mightµp,p'⊑p>>au wolf should be ruled out, but the IP-CDRT representation in (100) 

incorrectly predicts that discourse (94) could have the following unavailable de dicto

reading: there are some p'-worlds that are µ-epistemic possibilites relative to the actual 

p*-world and there is this unique u-individual that is a wolf in each of the p'-worlds and 

that comes in in each of the p'-worlds. Moreover, the u-individual under consideration is 

such that it escaped from the zoo in the actual p*-world. Note, in particular, that the u-

individual can be a mouse or a giraffe in the actual world – and not necessarily a wolf. 

                                                

32 Note that a similar reasoning can be used to account in IP-CDRT for the discourse in (i) below, due to 
Stone (1999): 8, (18), and which, as Stone (1999): 8-10 shows, poses significant problems for most 
alternative dynamic approaches to modal quantification (including Geurts 1995/1999, Frank 1996 and 
Frank & Kamp 1997). 

(i) a. Au wolf might walk in. b. We would be safe because John has au' gun. c. He would use itu' to shoot itu. 
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Thus, we observe that IP-CDRT over-generates with respect to modal subordination 

discourses like (94) above because it allows for an intuitively unavailable de dicto

reading. However, the over-generation is not due to a peculiarity of the IP-CDRT system, 

but to the fact that the scopal interaction between a modal and an individual-level 

quantifier is more complex than the interaction between two individual-level quantifiers. 

In turn, this complexity is a consequence of the fact that the lexical relations contributed 

by a DP are always relativized to a modal dref and can, therefore, interact with a modal 

quantifier in a way that is independent from the interaction between that modal quantifier 

and the determiner heading the DP under consideration. 

I will now briefly suggest a solution to this problem, following a proposal in Stone 

(1999). Stone (1999): 21 derives the infelicity of the example in (101) below by 

associating a presupposition of existence relative to a particular modal dref with every 

pronoun. This presupposition is of the form given in (102) below (Stone's actual 

implementation is different, but the basic proposal is the same as the one in (102), which 

is formulated in IP-CDRT terms). 

101. a. John mightp' be eating au cheesesteak. b. #Itu isp* very greasy.     

 (Stone 1999: 21, (40)) 

102. u exists in p := λIst. Iu≠#,p≠#≠Ø ∧ ∀is∈Iu≠#,p≠#(ui exists in pi),   

  where exists in is a constant of type e(wt)33.     

  Abbreviation: in := exists in,        

  i.e. we omit 'exists',  e.g. u in p, x in w etc. 

The basic proposal in Stone (1999) (various technical details are, again, different) is 

that the pronoun itu in (101b) contributes such a presupposition of existence relative to the 

actual world dref p*, i.e. u in p*. This presupposition, however, is not satisfied because 

the indefinite au cheesesteak in (101a) receives a narrow scope, de dicto reading and 

introduces the u-individual only relative to the epistemically accessible p'-worlds 

                                                

33 This particular format for 'relativizing' the domain of individuals to possible worlds is due to Muskens 
(1995b). I use it in IP-CDRT only for its formal simplicity – and without any particular commitment to the 
possibilist (as opposed to the actualist) approach to quantified modal logic.  
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contributed by mightp', i.e. u in p'. Consequently, the u-individual exists in the p'-

epistemically accessible worlds, but not necessarily in the actual p*-world, which makes 

the discourse in (101) infelicitous. 

The discourse in (101) is infelicitous because the most salient reading for sentence 

(101a) is the de dicto, "narrow-scope indefinite" one, while sentence (101b) requires a de 

re, "wide-scope indefinite" reading to satisfy the existence presupposition contributed by 

the pronoun itu. In contrast, the discourse in (94) above is felicitous because the de re, 

"wide-scope indefinite" reading for sentence (94a) is salient enough – but the same 

presuppositional mechanism that accounts the infelicity of (101) enables us to account for 

the fact that the only available reading for discourse (94) as a whole is the de re one. 

More precisely, I propose to revise the IP-CDRT translations for indefinite articles 

and pronouns as shown in (103), (104) and (105) below. The new translations are 

identical to the ones proposed above (see fn. 28 in section 6.4 above) except for the 

addition of Stone-style existence conditions of the form u in p. The presuppositional 

status of such conditions when contributed by pronouns is indicated by underlining. A 

simplified version of the translation for pronouns – which is good enough for our current 

purposes – is provided in (106). 

103. awk:u ⇝ λPe(st).λP'e(st).λqs. [u | u in q]; u(P(u)(q)); u(P'(u)(q)) 

104. astr:u ⇝ λPe(st).λP'e(st).λqs. max
u([u in q]; u(P(u)(q)); u(P'(u)(q))) 

105. itu,p ⇝ λPe(st).λqs. [u in p, q⋐p]; [unique{u}]; u(P(u)(q)) 34

106. itu ⇝ λPe(st).λqs. [u in q]; [unique{u}]; u(P(u)(q)) 

For concreteness, I will assume that the presuppositional conditions u in q

contributed by pronouns have to be satisfied as such in discourse, i.e. a condition of the 

                                                

34 Alternatively (or: in addition), we can associate every lexical relation Rq{v1, ..., vn} with a family of 
existence presuppositions of the form given in (i) below. For our current purposes, the simplified form in 
(ii) is sufficient. Just as before, underlining indicates presuppositional status. 

(i) λvn…λv1.λq. [v1 in p1, …, vn in pn, q⋐p1, …, q⋐pn]; [Rq{v1, ..., un}] 

(ii) λvn…λv1.λq. [v1 in q, …, vn in q]; [Rq{v1, ..., un}]. 
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form u in q has to be available (and 'accessible') in the representation of the previous 

discourse35. The revised (compositionally derived) IP-CDRT representations of discourse 

(94) are provided in (107) and (108) below. The presupposition u in p* contributed by the 

pronoun itu in (94b) is satisfied in the de re representation in (107), but not in the de dicto

representation in (108) – hence, we correctly predict that the only available reading for 

discourse (94) as a whole is the de re one. 

107. au wolf>>mightµp,p'⊑p, i.e. indp*( [awk:u wolf]v mightµp,p'⊑p (λqs.[q⋐q]) (tv come in) ): 

 [u | u in p*, wolfp*{u}];         

u(max
p(p([p⋐p])); max

p'⊑p([come_inp'{u}]); [POSp*,µ{p, p'}]);   

 [u in p*]; [unique{u}, escape_from_zoop*{u}] 

108. mightµp,p'⊑p>>au wolf, i.e. indp*( mightµp,p'⊑p (λqs.[q⋐q]) (awk:u wolf come in) ):  

max
p(p([p⋐p])); max

p'⊑p([p'(u) | u in p', p'(wolfp'{u}), p'(come_inp'{u})]);  

 [POSp*,µ{p, p'}];         

 [u in p*]; [unique{u}, escape_from_zoop*{u}] 

7. Comparison with Alternative Approaches 

Summarizing various points made throughout the present chapter (chapter 7) and 

the previous two (chapters 5 and 6), Intensional PCDRT differs from most previous 

dynamic approaches in at least three respects. The first difference is conceptual: PCDRT 

captures the idea that reference to structure is as important as reference to value and that 

the two should be treated in parallel (contra van den Berg 1996a, Krifka 1996b and 

Nouwen 2003 among others). 

The second difference is empirical: the motivation for plural information states is 

provided by singular and intra-sentential donkey anaphora, in contrast to the previous 

                                                

35 This is more in line with the binding / presupposition-as-anaphora theory of presupposition (van der 
Sandt 1992, Geurts 1995/1999, Kamp 2001 among others) rather than with the satisfaction theory 
(Karttunen 1974, Heim 1983b, 1992 among others), but I expect the solution to also be compatible with 
(some form of) the satisfication theory. See Krahmer (1998), Geurts (1995/1999) and Beaver (2001) for 
comparative evaluations of the two theories. 
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literature (see van den Berg 1996a, Krifka 1996b and Nouwen 2003) which relies on 

plural and cross-sentential anaphora. 

Finally, from a formal point of view, Intensional PCDRT accomplishes two non-

trivial goals for the first time.  

On the one hand, it is not obvious how to recast van den Berg's Dynamic Plural 

Logic in classical type logic, given that, among other things, the former logic is partial 

and it conflates discourse-level plurality (i.e. the use of plural information states) and 

domain-level plurality (i.e. non-atomic individuals) (see chapter 8 below for more 

discussion about this distinction).  

On the other hand, previous dynamic reformulations of the analysis of modal 

quantification in Lewis (1973) / Kratzer (1981), e.g. the ones in Geurts (1995/1999), 

Frank (1996) and Stone (1999), are not satisfactory insofar as they fail to associate modal 

quantifications with contents (i.e. the propositions such quantifications express in a 

particular context) and cannot account for the fact that the entailment particle therefore

can relate such contents as, for example, in the Aquinas discourse analyzed in the present 

chapter (see section 7.2 below for more details). 

In general, the previous dynamic approaches to modal subordination fall into three 

broad categories based on the way in which they encode the quantificational 

dependencies between possible scenarios (e.g. the epistemically accessible possibilities of 

a wolf coming in) and the individuals that feature in these scenarios (e.g. whichever wolf 

enters in a particular epistemically accessible possibility): 

• accommodation accounts, e.g. Roberts (1987, 1989, 1995, 1996), where there are no 

modal dref's of any kind and the associations between possible scenarios and the 

individuals that feature in them is captured at the level of logical form, i.e. by 

accommodating / copying the DRS's that introduce the relevant individual-level 

dref's into the restrictor or nuclear scope DRS's of another modal operator; 

• analyses like the ones proposed in Kibble (1994, 1995), Portner (1994), Geurts 

(1995/1999), Frank (1996), Frank & Kamp (1997) and van Rooy (2001), which take 

modal quantifiers to relate dynamically-valued dref's, i.e. (in the simplest case) 
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dref's for information states, where, following Heim (1983b), an information state is 

basically represented as a set of <world, variable assignment> pairs; in these 

approaches, the dependency between possibilities and individuals is encoded in the 

dref's for information states: every <world, assignment> pair is such that the 

assignment stores the individual-level dref's that have been introduced with respect 

to that world; these approaches to modal subordination are parallel to the 

"parametrized sum individuals" approaches to donkey anaphora and quantificational 

subordination in Rooth (1987) and Krifka (1996b): instead of summing atomic 

individuals that are each parametrized with a variable assignment, these approaches 

'sum' possible worlds that are each parametrized with a variable assignment; 

• encapsulated quantification accounts, e.g. Stone (1997, 1999) and Bittner (2001, 

2006), where modal quantifiers relate dref's for static objects (unlike Geurts 

1995/1999, Frank 1996 and van Rooy 2001), namely dref's for accessibility 

relations. Thus, modal dref's in such accounts are of type s(w(wt)) and individual-

level dref's are of type s(we), i.e. they are dref's for individual concepts. The 

quantificational dependency between possibilities and individuals is encoded in the 

complex static objects that these dref's have as values. For example, in a sentence 

like A wolf might come in, the modal might introduces a dref of type s(w(wt)) 

which, with respect to a given 'assignment' is, stores a function of type w(wt) that 

maps (the current candidates for) the actual world to the set of epistemically 

accessible worlds in which a wolf comes in; at the same time, the indefinite a wolf

introduces a dref of type s(we) which, relative to a given 'assignment' is, stores a 

function mapping every epistemically accessible world w in which a wolf comes in 

to the wolf that comes in in w. 

Intensional PCDRT (IP-CDRT) makes use of a fourth way of capturing the 

quantificational dependencies between possibilities and individuals, namely plural 

information states. Just as in encapsulated quantification accounts, the IP-CDRT dref's 

for possibilities have static objects as values – in particular, they are of type sw, storing a 

possible world w relative to each 'assignment' i. The dref's for individuals have the usual 

type se. But, unlike in encapsulated quantification accounts, the quantificational 

dependencies between possibilities and individuals are stored in the plural info states that 
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are incrementally updated in discourse and not in the static objects that the modal and 

individual-level dref's have as values. 

For example, in a sentence like A wolf might come in, the modal might introduces a 

dref p of type sw which, with respect to a plural info state Ist, stores the set of worlds pI := 

{pi: i∈I} in which a wolf comes in. The indefinite a wolf introduces a dref u of type se

which, with respect to each world w in which a wolf comes in, stores the wolf or wolves 

that come in in w. That is, for every world w, the sub-state Ip=w := {i∈I: pi=w} (which 

stores only the world w relative to p) stores the corresponding wolf or wolves relative to 

u, i.e. the set of wolves associated with w is uIp=w := {ui: i∈Ip=w}. Thus, the dependency 

between worlds and wolves is stored in the plural info state Ist in a pointwise manner: for 

each is∈I, the wolf ui comes in in world pi.  

The subset of the p-worlds that are epistemically accessible from the actual world 

w* are also accessed via the the quantificational dependencies stored in the plural info 

state Ist. First, we have that the dref for the actual world p* stores only the actual world 

w* relative to the entire plural info state Ist, i.e. we have that p*I={w*} – consequently, 

the plural info state I is the same as Ip*=w*. Second, following the proposal in Kratzer 

(1981), IP-CDRT assumes that an epistemic modal base µ is contextually supplied: µ is a 

dref of type s(wt)36 and the dref µ stores a set of propositions µIp*=w* := {µi: i∈Ip*=w*} 

relative to the current plural info state Ip*=w*, hence relative to the actual world w*. 

The differences between IP-CDRT and previous approaches stem from the two 

main features of its account of modal subordination: (i) the use of modal dref's that have 

static objects as values; (ii) the use of plural info states to encode quantificational 

dependencies. 

7.1. Statically vs. Dynamically Valued Modal Dref's  

The first feature, namely using modal dref's with static objects as values, is shared 

with encapsulated quantification accounts. Using modal dref's with static objects as 

                                                

36 Note the simplification in type relative to the modal bases in Kratzer (1981), which have type w((wt)t). 
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values has several advantages relative to the first two categories of approaches, i.e. 

accommodation approaches and approaches that use dref's with information states as 

values. Stone (1999) (see pp. 5-11 in particular) provides a lucid review of these two 

categories of approaches and a persuasive argument for using modal dref's with static 

objects as values, which I will not iterate here. I will only summarize the two main 

arguments – the first one is empirical, while the second is more theoretical in nature. 

Empirically, the first two categories of approaches to modal subordination have 

difficulties accounting for discourses that involve multiple inter-related possible 

scenarios like the one in (109) below. 

109. a. Au wolf might walk in.        

b. We would be safe because John has au' gun.     

c. He would use itu' to shoot itu.       

 (Stone 1999: 8, (18)) 

As Stone (1999) puts it: 

"[The discourse in (109)] describes two situations: an actual present situation, in 
which John has a gun; and a possible future development of that situation, in 
which a wolf walks in. The last sentence of [(109)] illustrates that the speaker 
may refer both to the possible wolf and to John’s gun in a description of that 
possible future. […] In previous dynamic approaches, scenarios are interpreted as 
sets of DYNAMIC objects, in which possible worlds are paired with assignments 
that indicate what entities are available for reference there. (Entities are 
introduced into a sequence of evolving SCENARIOS rather than into evolving 
representations of the DISCOURSE.)        
Because scenario referents explicitly inventory available referents, we can only 
refer to a gun in a scenario in which a gun has been explicitly added. This is 
incompatible with the pattern of reference in [(109)]. First, the discourse describes 
a possible elaboration of what we know, where a wolf comes in (and we are safe). 
Then the discourse evokes a further elaboration of our information which includes 
a gun. Although this elaboration describes reality, it nevertheless leaves the 
original hypothetical scenario unchanged. There is therefore no gun to refer to in 
the wolf-scenario."          
(Stone 1999: 8-9) 

For more details, see Stone (1999): 9-11.  
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In contrast, encapsulated quantification approaches and IP-CDRT (see in particular 

the account of de re readings in section 6.6 above) can account for such discourses 

because they model possible scenarios as ordinary static objects and can relate multiple 

scenarios and the individuals featured in them in very much the same way as classical 

DRT / FCS / DPL approaches introduce and relate multiple individual dref's. 

The theoretical argument in Stone (1999) against the first two kinds of approaches 

to modal subordination is that they fail to capture the anaphoric and quantificational 

parallels between the individual and modal domains argued for in Stone (1997, 1999), 

Bittner (2001, 2006) and Schlenker (2003, 2005b) among others. In contrast (as shown by 

the parallel analysis of quantificational and modal subordination in section 6 above), the 

theoretical architecture of IP-CDRT enables us to give a point-for-point parallel account 

of anaphora and quantification in the individual and modal domains, from the types 

assigned to the modal and individual dref's to the translations compositionally associated 

with anaphoric and quantificational expressions. 

7.2. Plural Info States vs. Encapsulated Quantification 

Let us turn now to the second feature of the IP-CDRT account of modal 

subordination, namely the use of plural info states to capture quantificational 

dependencies. This is the feature that distinguishes IP-CDRT from encapsulated 

quantification accounts (e.g. Stone 1997, 1999 and Bittner 2001, 2006). 

There is one argument that seems to recommend the use of plural info states to 

encode quantificational dependencies as opposed to the use of encapsulated 

quantification: encapsulated quantification approaches (which, in a broad sense, include 

approaches that make use of choice functions and / or Skolem functions to account for 

donkey anaphora and quantificational subordination – see section 6 of chapter 5 above) 

do not store quantificational dependencies introduced in discourse in the database that is 

meant to store discourse-related information, i.e. in the information states, but in the 

meaning of the lexical items, be they the indefinite-like items that introduce new dref's or 

the pronoun-like items that retrieve them. 
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The point (already made in van den Berg 1994, 1996a with respect to individual-

level plural anaphora) can be more easily clarified if we consider the quantificational 

subordination examples in (110) and (111) below. The modal subordination based 

argument is similar. 

110. a. Everyu man loves au' woman.       

b. Theyu bring themu' flowers to prove this.     

 (van den Berg 1996a: 168, (16)) 

111. a. Everyu boy bought au' flower and gave itu' to au'' girl.    

b. Theyu'' thanked themu for theu' very nice gifts. 

Consider (110) first. Sentence (110a) establishes a twofold dependency between 

men and the women that they love and sentence (110b) further elaborates on this 

dependency. Encapsulated quantification approaches have to make use of functions from 

individuals to individuals of type ee (or relations between individuals of type e(et)) to 

capture the intuition that sentence (110b) elaborates on the dependency introduced in 

sentence (110a). That is, either the quantifiers (everyu man and au' woman) or the pronouns 

(theyu and themu') – or both – have to have such functions as (part of) their semantic value. 

Now consider discourse (111). Sentence (111a) establishes a threefold dependency 

between boys, flowers and girls and sentence (111b) further elaborates on this 

dependency. In this case, encapsulated quantification approaches need to make use of 

functions and / or relations that are more complex than the ones needed for discourse 

(110). Therefore, the semantic values assigned to quantifiers and / or pronouns will have 

to be more complex in the case of (111), despite the fact that the very same lexical items 

are used. 

That is, quantifiers and / or pronouns denote functions / relations of different arities 

depending on the discourse context, i.e. depending on how many simultaneous anaphoric 

connections are established in a particular discourse. And these functions / relations 

become a lot more complex as soon as we start to explicitly represent anaphora to and 

quantification over possible worlds, times, locations, eventualities, degrees etc. 
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Summarizing, the (mostly theoretical) argument for plural info states as opposed to 

encapsulated quantification approaches is the following: since the arity of the functions / 

relations denoted by pronouns and / or quantifiers is determined by the discourse context, 

we should encode this context dependency in the info state (the purpose of which is to 

store precisely this kind of discourse information) and not in the representation of the 

lexical items themselves. 

Turning now to more empirical considerations, IP-CDRT and encapsulated 

quantification approaches seem to have a similar empirical coverage as far as the English 

phenomena considered in this chapter are concerned (although see the observations in 

sections 7.4 and 7.5 below). However, only future research will decide if IP-CDRT based 

approaches can also scale up to account for typologically different languages (e.g. 

Kalaallisut), which have been successfully analyzed in an encapsulated quantification 

dynamic framework (see for example Bittner 2006). 

Note, however, that the two frameworks are not incompatible, since IP-CDRT can 

also make use of dref's that have more complex modal objects as values, e.g. the dref's for 

modal bases and ordering sources used in this chapter. But, even in such cases, the use of 

plural info states enables us to simplify the types of such dref's – much like the types of 

modal and individual-level dref's in Stone (1999) are simplified in IP-CDRT: we only 

need to use dref's for possible worlds of type sw in IP-CDRT as opposed to the dref's for 

accessibility relations of type s(w(wt)) in Stone (1999); also, we only need to use dref's 

for individuals of type se in IP-CDRT instead of the dref's for individual concepts of type 

s(we) used in Stone (1999). 

I will conclude this section with three more observations about the differences 

between IP-CDRT and the encapsulated quantification system in Stone (1999). 

First, for simplicity, Stone (1999) treats modal bases and ordering sources as static 

objects (see the definitions for necessity and possibility in Stone 1999: 27, (47)). IP-

CDRT introduces dref's for modal bases and ordering sources, thus providing a dynamic 

treatment for all the contextually dependent components of modal quantification argued 

for in Kratzer (1981). 
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Second, IP-CDRT employs maximal unparametrized restrictor and nuclear scope 

sets in the definition of modal quantification, in contrast to Stone (1999), who introduces 

restrictor and nuclear scope sets for modal quantifiers by means an if-update with a 

Lewis-style similarity ordering source built in (see Stone 1999: 17, (34)). To see that the 

built-in parametrization is too restrictive, consider the deontic conditional in (112) below 

(based on Kratzer 1981): (112) does not seem to involve a similarity ordering source 

because the conditional simply states that, according to the law, the deontically ideal 

worlds among the set of worlds where there is a murder are such that the murderer goes 

to jail. The deontic quantification is not restricted to the set of worlds where there is a 

murder and which are as similar as possible to the actual world since many of the facts in 

the actual world are orthogonal to the legal requirement specified by (112). 

112. If there is au murder, theu murderer must go to jail. 

Finally, in contrast to the IP-CDRT definitions, the definitions of necessity and 

possibility in Stone 1999: 27, (47) do not associate contents with modal quantifications, 

so they cannot account for the therefore discourses in (1/2) and (9) above, in which 

therefore relates contents and not meanings (i.e. context-change potentials); for more 

discussion, see section 2.2 of the present chapter. 

7.3. Conjunctions under Modals 

Roberts (1996) (see also Roberts 1995) presents the following challenge for 

dynamic / anaphoric accounts of modal subordination. Consider the two discourses in 

(113) and (114) below (example (19) in Roberts 1996: 224 and example (3) in Roberts 

1996: 216 respectively). 

113. a. You should buy au lottery ticket and put itu in a safe place.    

 [b. You're a person with good luck.]       

c. Itu might be worth millions. 

114. a. You should buy au lottery ticket and put itu in a safe place.    

b. #Itu's worth a million dollars. 
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Note that the might modal quantification in (113c) is restricted by the content of the 

first conjunct below the modal should in (113a), i.e. it is interpreted as asserting that, 

given that you're a generally lucky person, if you buy a lottery ticket, it might be worth 

millions. Crucially, (113c) is not restricted by the content of both conjuncts in (113a) or 

by the set of deontically ideal worlds contributed by should. 

The challenge for dynamic approaches is to show that they do not under-generate, 

i.e. that they can account for the felicitous discourse in (113), and that they do not over-

generate, i.e. that they can account for the infelicitous discourse in (114). In this section, I 

will briefly sketch how IP-CDRT can account for the first, felicitous example and derive 

the infelicity of the second. In the process, we will see that example (113) provides 

another empirical argument for the explicit introduction of contents in discourse. 

The discourse in (113) is analyzed like the Aquinas discourse in (1/2) above, i.e. in 

terms of structured anaphora to propositions. The only component we need to add is a 

translation for and that introduces and relates the contents of its conjuncts, much like the 

analysis of conjunction in classical modal logic. A suitable translation is provided in 

(115) below, which, just as the translation for modal quantifiers in section 6.1 above, 

relies on structured inclusion to capture the anaphoric connections between the first and 

the second conjunct in (113a) above. Also, note that the conjunction and relates two 

maximal unparametrized sets of possible worlds – again, just like the definition of modal 

quantification in section 6.1 above. 

115. andp,p'⊑p ⇝ λ st.λ 'st.λqs. max
p(p( (p))); max

p'⊑p(p'( '(p'))); [q⊑p'] 

The translation for the modal should in (113a) is provided in (116) below; it is the 

expected one, modulo the fact that we omit the distributivity operator p'(…) over the 

nuclear scope update37. 

                                                

37 This is needed to ensure that the structural dependencies introduced within the two conjuncts are properly 
inherited by the nuclear scope dref p' – and it can be seen as the limit case (no distributivity operator at all) 
of the variability with respect to nuclear scope distributivity operators argued for in section 6.2 of chapter 6
above. 
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116. ifp + shouldµ,ωp'⊑p ⇝          

             λ st.λ 'st.λqs. max
p(p( (p))); max

p'⊑p( '(p')); [NECq,µ,ω{p, p'}] 

In (116), µ is an epistemic modal base, ω is a deontic ordering source, the 

antecedent  is accommodated as λqs. [q⋐q] (due to the fact that (113a) is discourse 

initial – see section 6.5 above for more discussion) and the consequent ' is the 

conjunction you buy a lottery ticket and you put it in a safe place, i.e. the dynamic 

proposition in (117) below. The final representation of (113a) has the form given in (118) 

below, which can be simplified as shown in (119), i.e. by omitting the dref p2. 

117. λqs. max 1
p (

1
p ( 1(p1))); max 2 1

p pô (
2

p ( 2(p2))); [q⊑p2],     

 where 1 is "you buy au lottery ticket" and 2 is "you put itu in a safe place". 

118. max p([p⋐p]); max
p'⊑p(max 1

p (
1

p ([u | lottery_ticket
1

p {u}, you_buy
1

p {u}])); 

       max 2 1
p pô (

2
p ([you_put_in_safe_place

2
p {u}])); [p'⊑p2]); 

 [NECp*,µ,ω{p, p'}],         

  where p* is the dref for the actual world. 

119. max p([p⋐p]); max 1
p pô (

1
p ([u | lottery_ticket

1
p {u}, you_buy

1
p {u}]));  

max '
1

p pô (p'([you_put_in_safe_placep'{u}])); [NECp*,µ,ω{p, p'}] 

Informally, the update in (119) instructs us to do the following operations on the 

default input info state {i#}. First, given that the modal verb is contextually dependent 

(much like deictic pronouns), we need to accommodate an update that introduces the dref 

for the actual world p*, the epistemic modal base µ and the deontic ordering source ω. 

Then, we process the first update in (119), namely max p([p⋐p]), which instructs us to 

add a p column to the input info state and store in it the set of all possible worlds.  

The next update instructs us to add a p1 column and store in it all the p worlds in 

which you buy a lottery ticket; also, we add a u column and store in it the lottery ticket(s) 

that you buy in each corresponding p1-world. Then, we add a p' column and store in it all 

the p1-worlds in which you put in a safe place the corresponding u-lottery ticket(s). 
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Finally, we test that all the ω-deontically ideal worlds among the µ-epistemically 

accessible p-worlds are included in p'. That is, since p stores the set of all possible 

worlds, we simply test that all the ω-deontically ideal worlds among the µ-epistemically 

accessible worlds are such that you buy a lottery ticket and put it in a safe place. 

Crucially, at the end of the update contributed by sentence (113a), we have access to 

the set of p1-worlds satisfying the first conjunct below the modal should, i.e. we have 

access to all the worlds in which you buy a lottery ticket. We will therefore be able to 

interpret sentence (113c) in the usual way, i.e. as simultaneously anaphoric to the modal 

dref p1 and the individual-level dref u. Thus, IP-CDRT is able to capture all the structured 

anaphoric connections established in discourse (113) and derive the intuitively correct 

truth-conditions associated with it. 

The IP-CDRT account of the infelicitous discourse in (114) is basically the same as 

the account of the infelicitous discourse in (101) above (see section 6.6 of the present 

chapter). 

7.4. Weak / Strong Ambiguities under Modals 

Donkey anaphora in modalized conditionals exhibits weak / strong ambiguities just 

as it does in (extensional) relative-clause donkey sentences. In particular, the conditional 

in (2a) above, repeated in (120) below, provides an instance of strong donkey anaphora, 

while the conditional in (121) below, due to Partee (1984), provides an instance of weak 

donkey anaphora. 

120. If au man is alive, heu must find something pleasurable. 

121. If you have au credit card, you should use itu here instead of cash.   

 (Partee (1984): 280, fn. 12)  

Given the analysis of the weak / strong ambiguity in chapter 5 above, it should be 

clear that IP-CDRT can account for both examples: the indefinite au man in (120) receives 

a strong reading (see section 4.1 of the present chapter), while the indefinite au credit card

in (121) receives a weak reading. The intuitively correct truth-conditions for both 

discourses are derived in the usual way. 
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Weak / strong donkey ambiguities pose problems for all three categories of 

alternative approaches mentioned above. Accommodation-based approaches like Roberts 

(1987, 1989) can account only for strong donkey readings – a feature they inherit from 

the underlying classical DRT framework. 

Approaches that use dref's for information states can also account only for strong 

readings. For example, the definitions of info state dref update in Frank (1996): 98, (36) 

and Geurts (1905/1999): 154, (43b) update a set F of <world, assignment> pairs with a 

DRS K (the denotation of which is a binary relation between <world, assignment> pairs) 

by taking the image of the set F under the relation denoted by K. That is, the output set G

of <world, assignment> pairs obtained after updating F with K is the set G = {<w', g'>: 

∃<w, g>∈F(<w, g>K<w', g'>)}. This kind of update predicts that, by the time we have 

processed the antecedent of the conditional in (121), the output set of <world, 

assignment> pairs will contain all the credit cards that you have, which in turn predicts 

that the conditional in (121) counter-intuitively requires you to use all your credit cards. 

Finally, the encapsulated quantification approach in Stone (1999) can account only 

for weak donkey readings because indefinites introduce dref's for individual concepts 

(they are functions of type s(we)), hence, for each possible world, the dref will store 

exactly one individual. Such dref's are, basically, dref's for choice functions: given a 

world w, the individual concept will choose a particular entity that is a credit card you 

have in that world.  

Thus, Stone (1999) can account for the weak reading conditional in (121) as 

follows: the indefinite in the antecedent (arbitrarily) chooses a credit card relative to each 

world w in which you have a non-empty set of credit cards; the consequent elaborates on 

this by requiring all the deontically ideal worlds w to be such that you use the 

corresponding card instead of cash. 

By the same token, Stone (1999) cannot account for the strong reading conditional 

in (120), where the indefinite in the antecedent needs to introduce all the men that are 

alive in any given world w. An easy fix that would enable Stone (1999) to account for the 

strong donkey conditional in (120) would be to introduce dref's for properties, i.e. dref's 
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of type s(w(et)) which, relative to a given world w, would store the set of all men that are 

alive in w. However, for the reasons mentioned in section 1 of chapter 5 above, this 

strategy would fail for more complex examples involving multiple strong indefinites. 

7.5. Uniqueness Effects under Modals 

Modal subordination discourses exhibit the same kind of uniqueness effects (and 

variability thereof) as quantificational subordination discourses. Consider again examples 

(2) (If au
 man is alive, heu must find something pleasurable. Therefore, if heu doesn't have 

any spiritual pleasure, he must have a carnal pleasure), (53) (Au
 wolf might come in. Itu

would attack Harvey first), and (86) (If au
 wolf came in, John could not legally kill itu. But 

he still would have to) above. 

Discourse (53) seems to exhibit relativized uniqueness effects: it is (preferably) 

understood as talking about epistemic possibilities featuring a unique wolf coming in. In 

contrast, discourses (2) and (86) do not exhibit any uniqueness effects: (2) is not talking 

only about worlds / possibilities in which exactly one man is alive and (86) is interpreted 

as asserting that, if he wants to obey the law, John cannot kill any wolf or wolves that 

come in and, in addition, if he wants to survive, John has to kill any wolf or wolves that 

come in – neither the law, nor John's survival instinct are particularly geared towards 

possible scenarios in which a unique wolf comes in.

IP-CDRT can capture the relativized uniqueness effects associated with discourse 

(53) in much the same way as it captures the relativized uniqueness effects associated 

with quantificational subordination (see section 6.1 of chapter 6). That is, if we use a 

strong / maximized indefinite article, the (relativized) uniqueness emerges from the 

interaction between the max
u operator contributed by the strong indefinite astr:u wolf and 

the unique{u} condition contributed by the singular pronoun itu. 

The lack of uniqueness effects associated with discourses (2) and (86) can be 

captured in the same way as the lack of uniqueness effects associated with donkey 

anaphora (see section 6.2 of chapter 6 for details), i.e. by means of suitable distributivity 

operators that neutralize / vacuously satisfy the unique conditions contributed by singular 

pronouns. 
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Thus, IP-CDRT can capture the wavering nature of the uniqueness implications 

associated with modal subordination in much the same way as it captures the wavering 

nature of the uniqueness effects associated with quantificational subordination and 

donkey anaphora.  

It is not obvious to me how the alternative approaches mentioned above can capture 

the behavior of uniqueness effects in modal subordination discourses – so, I will leave 

this issue as a topic for future investigation and discussion. 

Appendix 

A1. Intensional PCDRT: Definitions and Translations

122. New Dref's, Structured Inclusion, Maximization and Distributivity.   

a. [p] := λIstJst. ∀is∈I(∃js∈J(i[p]j)) ∧ ∀js∈J(∃is∈I(i[p]j)))     

b. p'⋐p := λIst. ∀is∈I(p'i=pi ∨ p'i=#)        

c. p'⊑p := λIst. (p'⋐p)I ∧ ∀is∈I(pi∈p'Ip'≠# → pi=p'i)      

d. max
p(D) := λIst.λJst. ([p]; D)IJ ∧ ∀Kst(([p]; D)IK → pKp≠#⊆pJp≠#)   

e. max
p'⊑p(D) := max

p'([p'⊑p]; D)        

f. max
p⋐p'(D) := λIst.λJst. ∃H([p | p⋐p']IH ∧ DHJ ∧      

     ∀Kst([p | p⋐p']IK ∧ ∃Lst(DKL) → Kp≠#⊆Hp≠#)) 
38  

                                                

38 This operator, more precisely maxu'⋐u, is independently required to analyze the example in (i) below 
within the revised PCDRT system of chapter 6. This example can be easily analyzed within the system of 
chapter 5 (the only difference is that, to obtain the intuitively correct truth-conditions, we need the 
indefinite a son to be weak, not strong), but (i) poses problems for the revised definition of generalized 
quantification in chapter 6, repeated in (ii) below for convenience. The problem is that (i) is falsified by any 
parent who has a son in high school and who has lent him the car on a weeknight even if said parent has 
another son who never got the car. This problem is posed by any determiner that is downward monotonic in 
his right argument, e.g. Few parents with a son still in high school lend him the car on weekends is 
intuitively falsified if most parents are such that they have a son in high school and they lent him the car on 
a weeknight even if, at the same time, all parents have at least one son who never got the car. 

(i) Nou,u'⋐u parent with astr:u'' son still in high school has ever lent himu'' the car on a weeknight.    

     (Rooth 1987: 256, (48)) 

(ii) detu,u'⊑u ⇝ λPet.λP'et. maxu(〈u〉(P(u))); maxu'⊑u(〈u'〉(P'(u'))); [DET{u, u'}] 
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g. distp(D) := λIst.λJst. ∀ww(Ip=w≠Ø ↔ Jp=w≠Ø) ∧ ∀ww(Ip=w≠Ø → DIp=wJp=w), 

  i.e. distp(D) := λIstJst. pI=pJ ∧ ∀ww∈pI(DIp=wJp=w)     

h. p(D) := λIst.λJst. Ip=#=Jp=# ∧ Ip≠#≠Ø ∧ distp(D)Ip≠#Jp≠#     

i. 〈p〉(D) := λIst.λJst. Ip=#=Jp=# ∧ (Ip≠#=Ø → I=J) ∧ (Ip≠#≠Ø → distp(D)Ip≠#Jp≠#)  

j. p(C) := λIst. Ip≠#≠Ø ∧ ∀w∈pIp≠#(CIp=w),   where C is a condition (of type (st)t)  

k. p(α1, …, αn) := λIst.λJst. Ip=#=Jp=# ∧ Ip≠#[α1, …, αn]Jp≠#,     

  where p∉{α1, ..., αn} and [α1, ..., αn] := [α1]; ...; [αn] 

                                                                                                                                                

The definition in (ii) is problematic for the following reason. First, note that, if the indefinite a son is weak, 
we obtain intuitively incorrect truth-conditions for (i) because, if the indefinite introduces only the u''-son 
who never got the car relative to the corresponding u-parent, the NO{u, u'} condition is verified and we 
incorrectly predict that (i) is true in such a situation. Second, note that, if the indefinite a son is strong, i.e. 
we introduce both the u''-son that got the car and the u''-son that didn't get it with respect to the 

corresponding u-parent, then the maxu'⊑u operator used to extract the nuclear scope will discard this parent, 
i.e. this u-parent will not be stored in u', because it is not the case that this u-parent lends the car to all the 
corresponding u''-sons. Hence, yet again, the NO{u, u'} condition is verified and we incorrectly predict that 
(i) is true in such a situation. 

However, using the maxu'⋐u operator to provide the alternative translation in (iii) below for (certain 
occurrences of) determiners that are downward monotonic in their right argument yields the intuitively 

correct truth-conditions for example (i) if the indefinite a son is strong. The reason is that the maxu'⋐u

update will retain any u-parent that lent the car to at least one son – and the the NO{u, u'} condition (or the 
FEW{u, u'} condition etc.) will not be verified anymore.  

(iii) detu,u'⋐u ⇝ λPet.λP'et. maxu(〈u〉(P(u))); maxu'⋐u(〈u'〉(P'(u'))); [DET{u, u'}] 

Given that the maxp'⋐p operator is associated, in the modal domain, with conditional antecedents, which are 
also downward monotonic, a fairly general procedure for translating individual-level and modal 

determiners seems to emerge: the right upward monotone determiners det↑ (every, most etc.) should receive 

the detα,α'⊑α type of translation in (ii), while the right downward determiners det↓ (no, few etc.) should 

receive the detα,α'⋐α type of translation in (iii). Also, if the restrictor of a determiner is anaphoric to another 

dref α'', then, for left upward determiners ↑det, they should be translated as detα⊑α'',α'⊑α (if they are right 

upward monotone) or detα⊑α'',α'⋐α (if they are right downward monotone). If the determiners are left 

downward monotone, i.e. ↓det (every, if etc.) and their restrictor is anaphoric to a dref α'', they should be 

translated as detα⋐α'',α'⊑α (if they are right upward monotone) or detα⋐α'',α'⋐α (if they are right downward 
monotone). For instance, the if+must determiner in the second conditional (i.e. the conclusion) of the 

Aquinas argument in (1/2) receives the detp⋐p'',p'⊑p translation in (iv) below. 

(iv) det p⋐p'',p'⋐p ⇝ λ st.λ 'st. maxp⋐p''(〈p〉( (p))); maxp'⊑p(〈p'〉( '(p'))); [DET{p, p'}]. 

I leave the investigation of this suggestion – as well as the problem posed by the translation of non-
monotonic determiners (e.g. exactly n) – for future research. 
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123. Distributivity-based Equivalences.       

a. p([C1, …, Cm]) = [p(C1), …, p(Cm)]        

b. p([α1, …, αn | C1, …, Cm]) = [p(α1, …, αn) | p(C1), …, p(Cm)]) 

124. Atomic Conditions.          

a. Rp{u1, ..., un} := λIst. I #, #, ..., #1 np u u≠ ≠ ≠ ≠ Ø ∧      

      ∀is∈I #, #, ..., #1 np u u≠ ≠ ≠ (Rpi(u1i, …, uni))    

b. unique{p} := λIst. Ip≠#≠Ø ∧∀is,i's∈Ip≠#(pi=pi')      

c. MODALq,µ,ω{p, p'} := λIst. Iq=#=Ø ∧ unique{q}I ∧     

     MODALµI≠{#},ωI≠{#}{pIp≠#, p'Ip'≠#},   

  where µ (modal based dref) and ω (ordering source dref) are of type s(wt)  

d. NECq,µ,ω{p, p'} := λIst. Iq=#=Ø ∧ unique{q}I ∧ NECµI≠{#},ωI≠{#}{pIp≠#, p'Ip'≠#},  

  where NECM,O(W1, W2) := IdealO((∩M)∩W1)⊆W2,     

   where W1 and W2 are of type wt      

   and M (modal base) and O (ordering source) are of type (wt)t  

e. POSq,µ,ω{p, p'} := λIst. Iq=#=Ø ∧ unique{q}I ∧ POSµI≠{#},ωI≠{#}{pIp≠#, p'Ip'≠#}, 

  where POSM,O(W1, W2) := IdealO((∩M)∩W1)∩W2≠Ø,    

   where W1 and W2 are of type wt      

   and M (modal base) and O (ordering source) are of type (wt)t  

f. Generalized Limit Assumption.       

  For any proposition Wwt and ordering source O(wt)t:    

   ∀w∈W∃w'∈W((w'<Ow ∨ w'=w ) ∧ ¬∃w''∈W(w''<Ow'))   

g. The Ideal function.        

  For any proposition Wwt and ordering source O(wt)t:    

   IdealO(W) := {w∈W: ¬∃w'∈W(w'<Ow)} 

125. Translations.          

a. ifp + modalµ,ωp'⊑p ⇝          

     λ st.λ 'st.λqs. max
p(〈p〉( (p))); max

p'⊑p(〈p'〉( '(p'))); [MODALq,µ,ω{p, p'}]  

b. modalµ,ω,p
p'⊑p ⇝ λ st.λqs. max

p'⊑p(〈p'〉( (p'))); [MODALq,µ,ω{p, p'}]   

c. if p⋐p'' + modalµ,ωp'⊑p ⇝          
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           λ st.λ 'st.λqs. max
p⋐p''(〈p〉( (p))); max

p'⊑p(〈p'〉( '(p'))); [MODALq,µ,ω{p, p'}]  

d. indicativep* ⇝ λ st. [unique{p*}]; p*( (p*)),      

  where p* is the dref for the actual world      

e. girl ⇝ λve.λqs. [girlq{v}]         

f. detu,u'⊑u ⇝           

   λPe(st).λP'e(st).λqs. max
u(〈u〉(P(u)(q))); max

u'⊑u(〈u'〉(P'(u')(q))); [DET{u, u'}]  

g. awk:u ⇝ λPe(st).λP'e(st).λqs. [u]; u(P(u)(q)); u(P'(u)(q))     

h. astr:u ⇝ λPe(st).λP'e(st).λqs. max
u(u(P(u)(q)); u(P'(u)(q)))     

i. heu ⇝ λPe(st).λqs. [unique{u}]; u(P(u)(q))       

j. Harveyu ⇝ λPe(st).λqs. [u | u⋐Harvey]; u(P(u)(q)),     

  where Harvey := λis. harveye        

k. mightµ,ω
p,p'⊑p

⇝          

     λ st.λ 'st.λqs. max
p(p( (p))); max

p'⊑p(p'( '(p'))); [POSq,µ,ω{p, p'}]  

l. wouldµ,ω,p' 
p''⊑p'

⇝ λ st.λqs. max
p''⊑p'(p''( (p''))); [NECq,µ,ω{p', p''}] 
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Chapter 8. Conclusion 

This chapter contains a summary of the dissertation and briefly outlines two future 

extensions of the present work.  

Summary 

Handling the semantic connections established and elaborated upon in extended 

discourse represents a key challenge for understanding the notion of meaning involved in 

natural language interpretation. Devising a precise compositional interpretation procedure 

is particularly difficult for discourses involving complex descriptions of multiple related 

objects (individuals, events, times, propositions etc.), as for example, the discourses in 

(1), (2) and (3) below. 

1. Every person who buys au computer and has au' credit card uses itu' to pay for itu. 

2. a. Harveyu courts au' girl at everyu'' convention.       

b. Sheu' alwaysu'' comes to the banquet with himu.      

(Karttunen 1976) 

3. a. Ifp au man is alive, heu mustp find something pleasurable.     

b. Therefore, ifp
p' heu doesn't have any spiritual pleasure, heu mustp' have a carnal  

    pleasure.           

(based on Thomas Aquinas) 

The main achievement of this dissertation is the introduction of a representation 

language couched in classical type logic in which we can compositionally translate 

natural language discourses like (1), (2) and (3) above and capture their truth-conditions 

and the intricate anaphoric dependencies established in them. 

The dissertation argues that discourse reference involves two equally important 

components with essentially the same interpretive dynamics, namely reference to values, 

i.e. (non-singleton) sets of objects (individuals and possible worlds), and reference to 

structure, i.e. the correlation / dependency between such sets, which is introduced and 

incrementally elaborated upon in discourse. 
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To define and investigate structured discourse reference, a new dynamic system 

couched in classical (many-sorted) type logic is introduced which extends Compositional 

DRT (Muskens 1996) with plural information states, i.e. information states are modeled 

as sets of variable assignments (following van den Berg 1996), which can be can be 

represented as matrices with assignments (sequences) as rows – as shown in the table in 

(4) below. A plural info state encodes both values (the columns of the matrix store sets of 

objects) and structure (each row of the matrix encodes a correlation / dependency 

between the objects stored in it). 

4. Info State I … u u' p p' … 

i1 … x1    (i.e. ui1) y1    (i.e. u'i1) w1    (i.e. pi1) v1    (i.e. p'i1) … 

i2 … x2    (i.e. ui2) y2    (i.e. u'i2) w2    (i.e. pi2) v2    (i.e. p'i2) … 

i3 … x3    (i.e. ui3) y3    (i.e. u'i3) w3    (i.e. pi3) v3    (i.e. p'i3) … 

… … … … … … … 

Values (sets of individuals 
or worlds): {x1, x2, x3, …},  
{w1, w2, w3, …} etc. 

Structure (relations between individuals and / or worlds): {<x1, y1>, 
<x2, y2>, <x3, y3>, …}, {<x1, y1, w1>, <x2, y2, w2>, <x3, y3, w3>, …}, {<w1, 
v1>, <w2, v2>, <w3, v3>, …} etc. 

In Plural Compositional DRT (PCDRT), sentences denote relations between an 

input and an output plural info state. Indefinites and conditional antecedents non-

deterministically introduce both values and structure, i.e. they introduce structured sets of 

individuals and possible worlds respectively; pronouns, verbal moods and modal verbs 

are anaphoric to such structured sets. Quantification over individuals and over possible 

worlds is defined in terms of matrices instead of single assignments and the semantics of 

the non-quantificational part becomes rules for how to fill out a matrix. 

Given the underlying type logic, compositionality at sub-clausal level follows 

automatically and standard techniques from Montague semantics (e.g. type shifting) 

become available. 

PCDRT enables us to account for a variety of phenomena, including: (i) mixed 

reading (weak & strong) relative-clause donkey sentences (chapter 5), instantiated by 

example (1) above, (ii) quantificational subordination (chapter 6), exemplified by 

discourse (2), and (iii) the complex interactions between entailment particles (i.e. 
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therefore), modal anaphora and modal subordination exhibited by discourse (3) above 

(chapter 7).  

In more detail, example (1) is a mixed reading (weak & strong) relative-clause 

donkey sentence which is interpreted as follows: for any person that is a computer buyer 

and credit card owner, for every (strong) computer s/he buys, s/he uses some (weak) 

credit card of her/his to pay for the computer. In particular, note that the weak indefinite 

au' credit card co-varies with, i.e. is dependent on, the strong indefinite au computer (I can 

buy my Dell desktop with a MasterCard and my Toshiba laptop with a Visa) despite the 

fact that the two indefinites are syntactically trapped in their respective VP-conjuncts. 

The notion of plural info state employed in PCDRT enables us to capture this kind of 

non-local structured anaphoric dependencies (i) across VP-conjuncts and (ii) across 

clauses, i.e. between the two indefinites in the restrictor of the quantification in (1) and 

the two pronouns in the nuclear scope.  

The PCDRT account successfully generalizes to the mixed reading DP-conjunction 

donkey sentences in (5) and (6) below, where the same pronoun is intuitively interpreted 

as having two distinct indefinites as antecedents – and the two indefinites have different 

readings (one is weak and the other is strong). 

5. (Today's newspaper claims that, based on the most recent statistics:)   

Everyu company who hired astr:u' Moldavian man, but nou'' company who hired 

awk:u' Transylvanian man promoted himu' within two weeks of hiring. 

6. (Imagine a Sunday fair where people come to sell their young puppies before they 

get too old and where the entrance fee is one dollar. The fair has two strict rules: 

all the puppies need to be checked for fleas at the gate and, at the same time, the 

one dollar bills also need to be checked for authenticity because of the many faux-

monnayeurs in the area. So:)        

Everyoneu who has astr:u' puppy and everyoneu'' who has awk:u' dollar brings itu' to 

the gate to be checked. 

The above mixed reading DP-conjunction donkey sentences pose problems for the 

family of D-/E-type approaches to donkey anaphora because such approaches locate the 
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weak / strong donkey ambiguity at the level of the donkey pronouns. However, there is 

only one pronoun in both (5) and (6) above – and two distinct donkey readings associated 

with it. The PCDRT account, which locates the ambiguity at the level of the donkey 

indefinites, seems more plausible. 

Furthermore, the PCDRT account predicts that the same indefinite cannot be 

interpreted as strong with respect to one pronoun (or any other kind of anaphor, e.g. a 

definite) and weak with respect to another pronoun – and this prediction seems to be 

borne out. By the same token, D-/E-type approaches predict the exact opposite: according 

to them, the same indefinite should be able to be interpreted as strong with respect to one 

pronoun and as weak with respect to another – which seems to be an incorrect prediction. 

Discourse (2) is an instance of quantificational subordination. Crucially, its 

interpretation contrasts with the interpretation of discourse (7) below, whose first 

sentence is identical to (2a) above. Sentence (2a/7a) is ambiguous between two quantifier 

scopings: Harvey courts the same girl vs. a possibly different girl at every convention. 

Discourse (7) as a whole allows only for the "same girl" reading, while discourse (2) is 

compatible with both readings. 

7. a. Harveyu courts au' girl at everyu'' convention. b. Sheu' is very pretty.    

(Karttunen 1976) 

The non-local, cross-sentential interaction between quantifier scope and anaphora, 

in particular the fact that a singular pronoun in the second sentence can disambiguate 

between the two readings of the first sentence, can be captured in PCDRT because plural 

information states enable us to store both quantifier domains (i.e. values) and 

quantificational dependencies (i.e. structure), pass them across sentential boundaries and 

further elaborate on them, e.g. by letting a pronoun constrain the cardinality of a 

previously introduced quantifier domain.  

The contrast between the two Karttunen examples is derived by giving a suitable 

dynamic reformulation of the independently motivated static meanings for generalized 

quantifiers and singular number morphology. In the process, we see how generalized 
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quantifiers enter anaphoric connections as a matter of course, usually functioning 

simultaneously as both indefinites and pronouns. 

Finally, adding (discourse referents for) possible worlds to PCDRT enables us to 

account for discourse (3) above, which is a more explicit version of the naturally 

occurring discourse in (8) below. 

8. [A] man cannot live without joy. Therefore, when he is deprived of true spiritual 

joys, it is necessary that he become addicted to carnal pleasures.    

(Thomas Aquinas) 

Discourse (3) exhibits complex interactions between entailment particles (i.e. 

therefore), modal anaphora and modal subordination: on the one hand, therefore relates the 

propositional contents (formalized as sets of possible worlds) contributed by the premise 

(3a) and the conclusion (3b) and tests that they stand in an entailment relation; on the 

other hand, the premise and the conclusion themselves are modal quantifications and, 

consequently, relate a restrictor and a nuclear scope set of possible worlds.  

Moreover, the propositional contents of the two modalized conditionals in (3a) and 

(3b) can be determined only if we are able to capture: (i) the donkey anaphoric 

connection between the indefinite au man in the antecedent of (3a) and the pronoun heu

consequent of (3a) and (ii) the fact that the antecedent of the conditional in (3b) is 

modally subordinationated to the antecedent of (3a), i.e. (3b) is interpreted as if the 

antecedent of (3a) is covertly repeated, i.e. as if a man is alive and he doesn't have any 

spiritual pleasure, he must have a carnal pleasure. 

The discourse is analyzed in PCDRT as a network of structured anaphoric 

connections and the meaning (and validity) of the Aquinas argument emerges as a 

consequence of the intertwined individual-level and modal anaphora. Moreover, modal 

subordination is basically analyzed as quantifier domain restriction via structured modal 

anaphora; that is, the antecedent of (3b) is simultaneously anaphoric to the set of worlds 

and the set of individuals introduced by the the antecedent of (3a) and, also, to the 

quantificational dependency established between these two sets. 
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The dissertation is located at the intersection of two major research programs in 

semantics that have gained substantial momentum in the last fifteen years: (i) the 

development of theories and formal systems that unify different semantic frameworks 

and (ii) the investigation of the semantic parallels between the individual, temporal and 

modal domains. As the dissertation shows, one of the outcomes of bringing together these 

two research programs is a novel compositional account of non-local (modal and 

individual-level) quantificational dependencies as anaphora to structure. 

The unification of different semantics frameworks, in particular Montague 

semantics, situation semantics and dynamic semantics (see Janssen 1986, Groenendijk & 

Stokhof 1990 and Muskens 1995a, 1995b, 1996 among others) enables us to incorporate 

the generally complementary strengths of these different frameworks and allows for an 

easy cross-framework comparison of alternative analyses of the same phenomenon. 

Building on the Compositional DRT (CDRT) of Muskens (1996), chapters 2

through 4 of the dissertation incrementally develop a formal system couched in classical 

type logic which unifies dynamic semantics, in particular its account of basic kinds of 

cross-sentential / cross-clausal anaphora, and Montague semantics, in particular its 

compositional interpretation procedure and its account of generalized quantification. 

The resulting CDRT+GQ system can compositionally account for a variety of 

phenomena, including cross-sentential anaphora, bound-variable anaphora, quantifier 

scope ambiguities and a fairly diverse range of relative-clause and conditional donkey 

sentences. Moreover, the analysis of donkey anaphora avoids the proportion problem and 

can account for simple instances of weak / strong donkey ambiguities. But CDRT+GQ 

cannot account for the three phenomena instantiated in (1), (2) and (3) above, i.e. mixed 

reading (weak & strong) relative-clause donkey sentences, quantificational subordination 

and the interaction between quantifier scope and number morphology on cross-sentential 

anaphora and modal anaphora, modal subordination and their interaction with entailment 

particles. 

Plural Compositional DRT (PCDRT) pushes the framework unification program 

further and unifies in classical type logic the compositional analysis of selective 
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generalized quantification in Montague semantics, its account of quantifier scope 

ambiguities and singular number morphology with Dynamic Plural Logic (van den Berg 

1994, 1996a, b). A novel, compositional account of mixed reading relative-clause donkey 

sentences (chapter 5) and an account of quantificational subordination and its interaction 

with singular anaphora (chapter 6) are some of the immediate benefits of this unification. 

The introduction of (dref's for) possible worlds enables us to further extend PCDRT 

and unify it with the static Lewis (1973) / Kratzer (1981) analysis of modal 

quantification. The resulting Intensional PCDRT (IP-CDRT) system enables us to capture 

structured modal anaphora and modal subordination (chapter 7).  

The account brings further support to the idea that the dynamic turn in natural 

language semantics does not require us to abandon the classical approach to meaning and 

reference: I show that the classical notion of truth-conditional content (as opposed to 

meaning, which I take to be context-change potential) can be recovered within IP-CDRT 

and this enables us to analyze the entailment particle therefore as involving structured 

discourse reference to (propositional) contents, contributed by the premise(s) and the 

conclusion of an argument.  

At the same time, Intensional PCDRT (IP-CDRT) pushes further the second 

research program, namely the investigation of anaphoric and quantificational parallels 

across domains.  

The anaphoric (and quantificational) parallels between the individual and temporal 

domains have been noticed at least since Partee (1973, 1984) and they have been 

extended to the modal domain by Stone (1997, 1999) and, subsequently, by Bittner 

(2001, 2006) and Schlenker (2003, 2005b) among others. 

IP-CDRT extends this research program and brings further support to the conjecture 

that our semantic competence is domain neutral by providing a point-for-point parallel 

account of quantificational and modal subordination. For example, the quantificational 

subordination discourse in (2) above is analyzed in the same way as the modal 

subordination discourse in (9) below; in particular, the interaction between au girl-every 
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convention and sheu-always in (2) is captured in the same way as the interaction between au 

wolf-might and itu-would in (9).  

9. Au wolf mightp come in. Itu wouldp attack Harvey first.     

(based on Roberts 1989) 

IP-CDRT – which builds on and unifies Muskens (1996), van den Berg (1996a) and 

Stone (1999) – is, to my knowledge, the first dynamic system that systematically captures 

the anaphoric and quantificational parallels between the individual and modal domains 

(from the types of the discourse referents to the form that the translations of anaphoric 

and quantificational expressions have) while, at the same time, keeping the underlying 

logic classical and preserving the Montagovian approach to compositionality. 

PCDRT differs from most previous dynamic approaches in at least three respects. 

The first difference is conceptual: PCDRT captures the idea that discourse reference to 

structure is as important as discourse reference to value and that the two have the same 

dynamics and should therefore be treated in parallel (contra van den Berg 1996a among 

others). 

The second difference is empirical: the motivation for plural information states is 

provided by singular and intra-sentential donkey anaphora, in contrast to the previous 

literature which relies on plural and cross-sentential anaphora (see van den Berg 1996a, 

Krifka 1996b and Nouwen 2003 among others). 

Finally, from a formal point of view, PCDRT accomplishes two non-trivial goals for 

the first time. On the one hand, it is not obvious how to recast van den Berg's Dynamic 

Plural Logic in classical type logic, given that, among other things, the former logic is 

partial and it conflates discourse-level plurality, i.e. plural information states, and 

domain-level plurality, i.e. non-atomic individuals (for more on this distinction, see the 

discussion of plural anaphora and quantification below).  

On the other hand, previous dynamic analyses of modal quantification in the spirit 

of Lewis (1973) / Kratzer (1981), e.g. the ones in Geurts (1995/1999), Frank (1996) and 

Stone (1999), are not completely satisfactory insofar as they fail to associate modal 

quantifications with the propositional contents that they express (in a particular context) 
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and they fail to explicitly introduce these contents in discourse. Consequently, within 

these approaches, we cannot account for the fact that the entailment particle therefore

relates such contents (across sentences), as shown, for example, by the Aquinas discourse 

in (3) above. 

Two Extensions 

The mostly foundational research pursued in this dissertation can be extended in 

various directions. I will outline here only two of them, namely: 

• a cross-linguistic analysis of the interpretation and distribution of verbal moods 

when they occur under (particular kinds of) attitude verbs and in (particular kinds 

of) conditional structures; 

• extending PCDRT with an account of plural anaphora and quantification. 

De Se Attitudes and the Romanian Subjunctive B Mood

Intensional PCDRT seems to provide a suitable framework for a cross-linguistic 

investigation of aspect / tense / mood systems. I will illustrate the kind of issues that arise 

by briefly examining the interpretation and distribution of the subjunctive B mood in 

Romanian.  

Romanian is the most widely spoken Romance language in the Balkan Sprachbund. 

Its distinctive position in the Indo-European spectrum has provided Romanian with a rich 

verbal morphology system, including two subjunctive (i.e. non-indicative finite) moods. 

The moods' distribution in intensional contexts is clearly interpretation-driven and the 

fine-grained distinctions drawn between different kinds of attitude reports and conditional 

structures suggest the existence of previously unnoticed semantic universals. 

We will focus on the interpretation of the Romanian subjunctive B mood when 

embedded under attitude verbs like crede (believe), as shown in example (10) below. The 

main idea of the analysis is that subjunctive B is temporally and propositionally de se – 

thus extending the parallel between pronouns, tenses and moods to de se readings. 
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10. Maria crede   că ar  fi în pericol.   

Mary believe.ind.pres.3s   that subjB.3s be in danger.   

Mary believes that she is in danger. 

 Thus, the contrast between indicative and subjunctive B in Romanian is parallel to 

the contrast between overt pronouns (e.g. John hopes that he will win) and null PRO (e.g. 

John hopes to win) in the individual domain: as Chierchia (1989) and Schlenker (2003) 

observe, overt pronouns are compatible with both the de se and non-de se readings, while 

null PRO allows only for a de se reading. In particular, subjunctive B is parallel to PRO, 

in that it requires a temporally and propositionally de se reading, while indicative can, but 

does not have to receive such a reading. 

Temporal de se means that the reported belief of being in danger is temporally 

located at the internal now of the believer, e.g., in (10) above, at the time at which Mary 

(correctly or not) thinks she entertains the belief that she is in danger. Propositional de se

means that the believer has an attitude towards a 'self-referential' kind of content similar 

to the self-referential experience contents proposed by Searle (1983). For example, the 

content of my visual experience of seeing a yellow station wagon is that: (a) there is a 

yellow station wagon there and (b) the fact that there is a yellow station wagon there is 

causing this very visual experience. This 'self-referentiality' is the expression of the 

common sense intuition that having an experience or an attitude is assuming a particular 

point of view / perspective on the content of the experience or of the attitude. 

Intuitively, a belief report with subjunctive B mood is propositionally de se insofar 

it explicitly encodes in the believed content this perspectival component inherent in any 

attitude; the form of such a report is basically I believe that: p and p is what I believe. Its 

redundancy is crucial in deriving two surprising empirical generalizations: on the one 

hand, in a report of the form x believes that not p, subjunctive B always takes wide scope 

with respect to embedded negation1; on the other hand, unlike the indicative mood, 

subjunctive B is incompatible with the adverb probabil (probably) in reports of the form 

x believes that probably p. 

                                                

1 See Brasoveanu (2006a) for the clarification of what "wide scope" means in this particular context. 
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The interpretation of Romanian subjunctive B motivates a new analysis of attitude 

reports in terms of centered propositions as opposed to centered worlds (as in Lewis 

1979a, Creswell & von Stechow 1982, Abusch 1997 among others). Moreover, these 

centered propositions have an essentially dynamic behavior: in a report of the form x 

believes that p, they are contributed by the matrix clause 'x believes…' and then 

anaphorically retrieved and elaborated on by the embedded clause '…that p'. 

The analysis of de se and de re belief in Lewis (1979a) involves three ingredients: 

• centered worlds: the believed content is not a proposition, i.e. a set of worlds (as the 

standard analysis would have it2), but a property, or, equivalently, a set of centered 

worlds3. A centered world is a pair <w, xself>, where w is a world and xself, the center 

of world w, is the individual that Neo takes himself to be in w, i.e. the belief-internal 

'self'; 

• self ascription: the verb believe is interpreted as a relation between an individual and 

a set of centered worlds (and not as a relation between an individual and a 

proposition). That is, we replace the function doxw*,x* that returns a set of worlds 

(the set of x*'s doxastic alternatives to world w*) with a function self_ascribew*,x*, 

which returns a set of centered worlds <w, x
self>. Crucially, given the "two god" 

argument in Lewis (1979a), we might have two distinct self-ascribed pairs <w, xself> 

and <w, yself> that contain the same world w but different individuals xself and yself; 

• acquaintance relations: the reported belief is about an individual with whom the 

belief-internal 'self' is acquainted in a particular way. In the de se case, the 

acquaintance relation is the most intimate relation the belief-internal 'self' can have 

with any individual whatsoever, namely the identity relation. 

The analysis of temporal de se / de re is parallel to the analysis of individual de se / 

de re. Following Abusch (1997), we only extend centered worlds with a variable for time: 

Heimson is self-ascribing in world w* at time t* a set of centered worlds that are now 

represented as triples <w, x
self, t

now>, where x
self is the individual that Heimson takes 

                                                

2 See for example Hintikka (1969). 

3 See for example Creswell & von Stechow (1982) for more discussion. 
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himself to be in w and tnow is the time that Heimson takes his internal 'now' to be in w. 

Moreover, we will also have acquaintance relations relative to time intervals. 

The incompatibility between subjunctive B and probabil in reports of the form x 

believes that probably q suggests that centered worlds should be generalized to centered 

propositions, i.e. to triples of the form <p, fself, gnow>, where: 

• p is a set of possible worlds (of type wt), i.e. the set of x's doxastic alternatives; 

• f
self is a relation4 between worlds and individuals (of type w(et)) that specifies, for 

each doxastic alternative w∈p, what individual(s) x takes himself to be in w; 

• g
now is a relation between worlds and time-intervals (of type w(τt)5). 

The basic idea of the centered-propositions analysis is that, in a belief report of the 

form x believes + embedded clause, the matrix clause x believes sets up the context for 

the interpretation of the embedded clause by contributing a centered proposition relative 

to which the embedded clause is interpreted. The matrix clause basically introduces a 

centered proposition discourse referent (more exactly, three suitably related discourse 

referents – for p, fself and gnow), which is (are) anaphorically accessed by the embedded 

clause. 

The incompatibility between subjunctive B and probabil is a consequence of the 

fact that subjunctive B is anaphoric to the set of doxastic alternatives p and requires the 

proposition q expressed by the embedded clause to be true in every doxasatic alternative 

w in p, while probabil implicates that that there must be at least one world w in p where q

is false (see Brasoveanu 2006a for more discussion). 

This analysis is independently motivated by the fact that a subsequent matrix clause 

with a subjunctive B mood can also be interpreted relative to the same centered 

proposition (in fact: it has to be interpreted in this way) – as shown by (11) below. The 

                                                

4
f
self and g

now are relations between worlds and individuals / times and not functions from worlds to 
individuals / times because of the "two god" argument in Lewis (1979a). 

5 Where τ is whatever type we decide to assign to temporal intervals, e.g. it might be a basic type or a 
characteristic function of convex sets of temporal instants etc. 
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subjunctive B sentence in (11b) has to be interpreted as a further elaboration on Mary's 

beliefs6 and cannot be interpreted as stating that John has beautiful eyes in the actual 

world. 

11. a. Maria crede  că Ion ar   fi chipeş.   

Mary  believes that  John  subjB.3s be handsome.   

Mary believes that John is handsome.       

b. Ar  avea ochi frumoşi.       

subjB.3s  have eyes beautiful.       

[She believes that] he has beautiful eyes. 

The fact that plural information states are basically designed to store and pass on 

information about quantificational dependencies between multiple objects makes IP-

CDRT an ideal framework for the formalization of de se reports in terms of anaphora to 

centered propositions.  

Basically, a verb like believe would introduce three discourse referents: p (a modal 

dref of type sw), uself (an individual-level dref of type se) and χnow (a temporal dref of 

type sτ). The correlation between worlds, individuals and times and anaphora to it is just 

another instance of discourse reference and anaphora to structure and, as expected, it will 

be store in a plural info state Ist. That is, instead of having to build the quantificational 

dependencies into complex functions (see the triples <p, f
self, g

now> above), the 

dependencies emerge as a consequence of the independently motivated account of 

structured discourse reference in IP-CDRT: for each 'assignment' is in info state I, uself
i is 

the individual that Heimson takes himself to be in world pi and χnow
i is the time that 

Heimson takes his internal 'now' to be in world pi. 

                                                

6 We can even have modal subordination, as shown in (i) below. 

(i) a. Maria crede că  ar fi vampiri în LA. 

         Mary believes that there are (subjB) vampires in LA. 

     b. Ar intra noaptea în case şi ar ataca oamenii în somn. 

          [She believes that] they break (subjB) into houses at night and attack (subjB) people in their sleep. 
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Given that IP-CDRT is couched in type logic, we preserve the static, compositional 

analysis of attitude reports while, at the same time, being able to account for the 

possibility of structured cross-sentential anaphora to centered propositions (see (11) 

above) and for the interpretation and distribution of the Romanian subjunctive B mood. 

The analysis of subjunctive B sketched above raises at least the following three 

questions, which I leave for future research: 

• how is subjunctive B located within the mood system of Romanian, in particular, 

how does its interpretation and distribution differ from indicative and subjunctive A 

(analyzed in Farkas 1985, 1992)?  

• what are the similarities and differences between the Romanian subjunctive A and B 

moods and the non-indicative moods of other Indo-European and non-Indo-

European languages, e.g. the French subjunctive investigated Schlenker (2005a) 

(among others), the German reportive subjunctive analyzed in Fabricius-Hansen & 

Saebø (2004), the English subjunctive (see Frank 1996, Stone 1997, Condoravdi 

2001, Ippolito 2003 among others) or the Kalaallisut dependent moods analyzed in 

Bittner (2006)? 

• can we successfully generalize IP-CDRT to capture the entire verbal mood system 

in Romanian and to accommodate a broader range of aspect / tense / mood systems 

attested in other languages? 

Plural Anaphora and Quantification

Given that the main arguments for plural information states are based on 

morphologically singular anaphora and not on plural anaphora (as in the previous 

dynamic literature), the following question arises: what is the relationship between plural 

information states and the pluralities involved in morphologically plural anaphora? 

My answer to this question is that the two notions of plurality are distinct, which 

goes against the seemingly received wisdom in the literature (see van den Berg 1996a, 

Krifka 1996b and Nouwen 2003 among others). Morphologically plural anaphora 

involves domain-level plural reference, i.e. non-atomic individuals of the kind 

countenanced in Link (1983) among many others. In contrast, plural information states 



353

formalize a notion of discourse-level plural reference (more precisely: a notion of plural 

discourse reference), which encodes discourse reference to quantificational dependencies 

established and elaborated upon in discourse between (non-singleton) sets of objects, be 

they atomic and / or non-atomic individuals. 

This systematic distinction and the ensuing extension of PCDRT with non-atomic 

individuals (see Brasoveanu 2006c) enable us to provide a unified account of several 

phenomena. 

First, we can account for the fact that singular donkey anaphora can involve non-

singleton sets of atomic individuals while being incompatible with collective predicates, 

as shown in (12) below. 

12. #Every farmer who owns au donkey gathers itu around the fire at night.   

(based on Kanazawa 2001) 

Second, we can capture the intuitive parallel between multiple singular and plural 

donkey anaphora exhibited by the examples in (13) and (14) below (see chapter 5 for the 

PCDRT analysis of (13)). 

13. Every boy who bought au gift for au' girl in his class asked heru' deskmate to wrap 

itu. 

14. Every parent who gives au balloon to twou' boys expects themu' to end up fighting 

(each other) for itu.          

(based on an example due to Maria Bittner, p.c.) 

The parallel between singular and plural donkey anaphora also covers weak donkey 

readings – see (15) and (16) below – and 'sage plant' example – see (17) and (18) below. 

15. Every person who has au dime will put itu in the meter.     

(Pelletier & Schubert 1989) 

16. Every person who has twou dimes will put themu in the meter. 

17. Everybody who bought au sage plant here bought eight others along with itu.  

(Heim 1982/1988) 



354

18. Everybody who bought twou sage plants here bought seven others along with 

themu. 

The novel distinction between plural reference and plural discourse reference as 

well as the (partly novel) empirical observations above hardly begin to explore three 

important issues. 

First, what are the necessary ontological (i.e. domain-level) commitments for an 

adequate treatment of plurality in natural language? 

Second, what is the relationship between the instances of anaphora in the examples 

above that are both morphologically and semantically plural and morphologically 

singular anaphora that (usually) is semantically plural of the kind instantiated by 

quantificational subordination and telescoping discourses (see (19) and (20) below) – 

which were analyzed in chapter 6 above? 

19. Every chess set comes with au spare pawn. Itu is taped to the top of the box.  

(Sells 1984, 1985) 

20. Eachu candidate for the space mission meets all our requirements. Heu has a PhD 

in Astrophysics and extensive prior flight experience.     

(Roberts 1987) 

Finally, is there any cross-linguistic variation in the morphological realization of 

semantically plural anaphora and quantification and, if so, what are the parameters of 

variation and what is their significance for the current theories of domain-level and 

discourse-level plurality? 
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