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Abstract

Providing a compositional interpretation procedure for discourses
in which descriptions of complex dependencies between interre-
lated objects are incrementally built is a key challenge for natu-
ral language semantics. This paper focuses on the interactions
between the entailment particle therefore, modalized conditionals
and modal subordination. It shows that the dependencies be-
tween individuals and possibilities that emerge out of such inter-
actions can receive a unified compositional account in a system
couched in classical type logic that integrates and simplifies van
den Berg’s Dynamic Plural Logic and the classical Lewis-Kratzer
analysis of modal quantification. The main proposal is that modal
quantification is a composite notion, to be decomposed in terms of
discourse reference to quantificational dependencies that is multi-
ply constrained by the various components that make up a modal
quantifier. The system captures the truth-conditional and anaphoric
components of modal quantification in an even-handed way and,
unlike previous accounts, makes the propositional contents con-
tributed by modal constructions available for subsequent discourse
reference.

1 Introduction

Providing a compositional interpretation procedure for sentences and
discourses in which complex descriptions of dependencies between mul-
tiple, interrelated objects are incrementally built has proved to be a key
challenge for formal theories of natural language interpretation. Con-
sider, for example, the following discourse, part of the text of an LSAT
logic puzzle.1

(1) [Preamble] An amusement park roller coaster includes five cars,
numbered 1 through 5 from front to back. Each car accommo-
dates up to two riders, seated side by side. Six people – Tom,

1Available online at http://www.west.net/~stewart/lwsample%5Bq%5D.htm.
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Gwen, Laurie, Mark, Paul and Jack – are riding the coaster at
the same time. Laurie is sharing a car. Mark is not sharing a car
and . . .

The first sentence sets up the basic situation we are invited to consider,
namely a roller coaster that has five cars. The text contains two quan-
tificational expressions – the singular indefinite a roller coaster and the
cardinal indefinite five cars, the first of which takes scope over the sec-
ond.

The second sentence elaborates on these objects. The quantifier each
car refers back to the five cars and further constrains the information we
have about them: any one of these five cars can accommodate up to two
riders. Yet again, the first quantifier (the distributive universal each car)
takes scope over the second one (the modified cardinal indefinite up to
two riders).

Against the background information provided by the first two sen-
tences, the third sentence invites us to consider a more specific situa-
tion: six people are riding the coaster (which was introduced in the first
sentence) at the same time. Ignoring the apposition that enumerates the
names of the just mentioned six people, this sentence relates three sets
of objects, contributed by the three nominal expressions in the sentence:
six people, the anaphorically-retrieved roller coaster and the six periods
of time that each person rides the coaster. The non-anaphoric definite
the same time has narrow scope with respect to the indefinite six people
and, thereby, requires these six periods of time to be identical.

The remaining sentences of the preamble provide additional infor-
mation about how the six people and the five cars in our scenario are
related. The preamble is then further elaborated upon by questions like
(2a) through (2d) below.

(2) a. [Q1] Which of the following groups of riders could occupy
the second car? (a) Laurie only. (b) . . .

b. [Q2] If Gwen is riding immediately behind Laurie’s car and
immediately ahead of Tom’s car, all of the following must be
true except: (a) Gwen is riding in the fourth car. (b) . . .

c. [Q3] Which one of the following statements cannot be true?
. . .

d. [Q4] If Paul is riding in the second car, how many different
combinations of riders are possible for the third car?

These questions invite us to consider alternative scenarios featuring the
previously mentioned entities. Q1 above focuses on the second car and
the hypothetical scenarios featuring different people (from our set of
six) that ride in that car. Q2 invites us to consider a scenario in which

2



three of the six people ride in consecutive cars etc. That is, our descrip-
tion relating a roller coaster, its five cars and its six riders (at a particular
time) is enriched now by the fact that we consider various possibilities
(i.e., hypothetical scenarios) and how these possibilities relate to the
previously mentioned objects.

Moreover, the propositional contents of the sentences in the pream-
ble must also be available in subsequent discourse. We need to be
able to pool them together in a modal base (to use the terminology of
Kratzer 1981) relative to which the modal verb cannot in Q3 above is in-
terpreted. Furthermore, this discourse-contributed modal base can be
subsequently updated with additional contents. For example, in Q4,
the content of the conditional antecedent if Paul is riding in the second car
is temporarily added and we are asked to identify certain possibilities
compatible with the resulting modal base.

To successfully solve logic puzzles like this one, i.e., to correctly an-
swer their questions, we need to have a precise understanding of the
sets of objects and the relations between them that are incrementally
described by the quantifiers, modals, pronouns etc. occurring in the
text of the puzzle. That is, we need to be able to associate such natural-
occurring texts with precisely-specified meanings, which, in turn, can
form the basis for subsequent logical reasoning. As Lev (2007:10) ob-
serves, “whereas for humans the language understanding part of logic
puzzles is trivial but the reasoning is difficult, for computers it is clearly
the reverse.”

The goal of this paper is to argue that we can make good progress on
the first front, i.e., formally specifying precise meanings for discourses
in which intricate descriptions of interrelated objects are incrementally
constructed, if we generalize the classical Tarskian semantics for first-
order logic in two ways.

First, we will take our contexts of evaluation to be modeled by a set
of assignments G instead of a single assignment g. In the Montagovian
tradition, the variable assignment is an essential part of the context of
evaluation, storing the referents of anaphoric pronouns, past tense etc.
Given that we want to elaborate on sets of referents and relations be-
tween them, we take our context of evaluation to consist of a set of
assignments. In this way, we will be able to elaborate on the relations
between the sets of values associated with variables over individuals x,
y etc. and the set of possibilities associated with variables over possible
worlds w etc. Such a set of assignments G can be represented as a ma-
trix, exemplified in (3) below. The rows of the matrix represent variable
assignments g1, g2, g3 etc. The columns represent variables x, y, w etc.
The objects in the cells of the matrix are values that assignments assign
to variables: car1 = g1(x), car2 = g2(x), rider1 = g1(y), rider2 = g2(y),
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v1 = g1(w), v2 = g2(w) etc.

(3) G . . . x y . . . w . . .
g1 . . . car1 rider1 . . . v1 . . .
g2 . . . car2 rider2 . . . v2 . . .
g3 . . . car3 rider3 . . . v3 . . .
. . . . . . . . . . . . . . . . . . . . .

or simply:

. . . x y . . . w . . .

. . . car1 rider1 . . . v1 . . .

. . . car2 rider2 . . . v2 . . .

. . . car3 rider3 . . . v3 . . .

. . . . . . . . . . . . . . . . . .

The second generalization is going from a static semantics, where ex-
pressions are interpreted relative to a single context of evaluation G, to a
dynamic semantics, where expressions are interpreted relative to a pair
of contexts of evaluation 〈G, H〉 – see, e.g., Discourse Representation
Theory (DRT; Kamp 1981, Kamp & Reyle 1993), File Change Semantics
(FCS; Heim 1982) and Dynamic Predicate Logic (DPL; Groenendijk &
Stokhof 1991).

The first member of the pair, i.e., G, is the input context relative to
which natural language expressions are interpreted. This part is ex-
actly as in static semantics. The second member of the pair, i.e., H, is
the output context, which is the context that results after natural lan-
guage expressions are interpreted. Interpreting natural language ex-
pressions relative to such pairs of contexts, i.e., as programs that in-
crementally update the discourse context, enables us to incrementally
build the complex descriptions of interrelated objects needed for the
interpretation of logic puzzles (among other things).

The present paper develops a formal semantics along these lines,
building on van den Berg (1996) (see also Krifka 1996 and Nouwen
2003), and shows how discourses involving quantifiers, indefinites, modal
verbs and pronouns can be compositionally interpreted, where compo-
sition is understood in the classical Fregean / Montagovian sense.

The focus is on modal expressions and their interactions with each
other and with individual-level anaphora in discourse. The main pro-
posal is that quantifiers over individuals and possible worlds should be
decomposed into smaller, atomic components that manipulate contexts
of evaluation in simple ways – and which together conspire to associate
quantifiers, modal verbs, conditionals etc. with their intuitively correct
truth conditions and anaphoric potential.
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Thus, the intra- and cross-sentential interactions between quantifica-
tion and anaphora in the modal and individual domains receive a uni-
fied compositional account in a system couched in classical type logic
that integrates and simplifies van den Berg’s Dynamic Plural Logic and
the classical Lewis-Kratzer analysis of modal quantification. The sys-
tem captures the truth-conditional and anaphoric components of modal
quantification in an even-handed way and, unlike previous accounts,
makes the propositional contents contributed by modal constructions
available for subsequent discourse reference.

1.1 Relating Variables / Discourse Referents and Vari-
able Assignments

We can think of variables, a.k.a. discourse referents (drefs), and variable
assignments in two ways. Classical static and dynamic semantics takes
variables to be basic entities and variable assignments to be composite
objects, namely functions from variables to appropriate values. Taking
variables to be the basic building blocks is pre-theoretically appealing:
as Karttunen (1976) and Webber (1978) first argued, natural language
interpretation involves an irreducible notion of discourse-level refer-
ence and the referents that are introduced, constrained and related to
each other in discourse are distinct from the actual referents.

However, we want to make our discourse-interpretation procedure
compositional at the sub-clausal level – and we can preserve the Mon-
tagovian solution to the problem of compositionality if we change our
perspective on the relationship between variables and assignments and
take assignments to be the basic building blocks and variables to be the
composite, functional objects. The idea is to think of variables as pro-
jection functions over assignments (following Landman 1986): instead
of a variable assignment g taking the variables x, y, w etc. as arguments
and assigning them an individual or a possible world as values, we
‘type-lift’ variables and think of them as projection functions that take
assignments / sequences of objects as arguments and return individu-
als or possible worlds as values.2

To reflect this change in perspective, we will use u1, u2, u, u′ etc. to
denote ‘type-lifted’ variables / drefs for individuals and p1, p2, p, p′ etc.
to denote ‘type-lifted’ variables / drefs for possible worlds. Also, we
will use i, j, i1, i2, i′, i′′ etc. to denote variable assignments. The value
of a dref u1 at an assignment i is obtained by applying the function
denoted by the dref to the atomic entity denoted by the assignment:

2For more discussion of these issues, see Groenendijk & Stokhof (1990), Chier-
chia (1995), Muskens (1996), Sternefeld (2001), Szabolcsi (2003) and Brasoveanu (2008)
among others.
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u1(i) – or u1i for short. A suitable set of axioms ensures that the atomic
entities i, j etc. behave as variable assignments; see Muskens (1996) and
Brasoveanu (2008) among others for more discussion.

Viewed in this way, i.e., as functions from variable assignments to
individuals, variables become parallel to Montagovian individual con-
cepts – and open the way for defining a compositional dynamic system
in the tradition of Montague semantics. For example, the individual u1i
is the individual that the dref u1 denotes relative to the assignment i and
the possible world p1i is the world that the dref p denotes relative to i,
much like the individual concept fchair denoted by the definite descrip-
tion the chair of the linguistics department associates different individuals
fchair(t), fchair(t′) etc. with different times of evaluation t, t′ etc.

The values, i.e., the objects in the cells of a matrix, remain the same,
only this time they are the actual referents that drefs have relative to
different variable assignments: car1 = u1i1, car2 = u1i2, rider1 = u2i1,
rider2 = u2i2, v1 = p1i1, v2 = p1i2 etc. This is shown in (4) below,
which is identical to (3) above except for the notational changes we just
introduced.

(4) I . . . u1 u2 . . . p1 . . .
i1 . . . car1 rider1 . . . v1 . . .
i2 . . . car2 rider2 . . . v2 . . .
i3 . . . car3 rider3 . . . v3 . . .
. . . . . . . . . . . . . . . . . . . . .

or simply:

. . . u1 u2 . . . p1 . . .

. . . car1 rider1 . . . v1 . . .

. . . car2 rider2 . . . v2 . . .

. . . car3 rider3 . . . v3 . . .

. . . . . . . . . . . . . . . . . .

A dref stores a set of values relative to a set of assignments I – or, as
we will call it following the dynamic semantics tradition, relative to a
plural info state I. These sets of values are represented in the columns
of matrices like (4) above. For example, the set of individuals u1 I :=
{u1i : i ∈ I} is the u1 column of matrix I above and the set of possible
worlds (i.e., the proposition) p1 I := {p1i : i ∈ I} is the p1 column. Thus,
columns associated with drefs for possible worlds encode propositional
contents, i.e., classical truth conditions – and rows encode anaphoric
information about values and about dependencies between values that
determine these truth conditions.

Under this view, natural language sentences and discourses denote
programs incrementally updating such plural info states. The seman-
tic values of sentences and discourses are, therefore, binary relations
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between an input plural info state I – the info state that is updated –
and an output plural info state J – the info state that is the result of the
update.

Quantification over individuals and possible worlds is defined in
terms of matrices instead of single assignments and the semantics of
the non-quantificational part (lexical items like car, ride etc.) consists of
rules for how to fill out a matrix.

This paper is dedicated to the detailed analysis of several discourses
involving quantifiers, modals and anaphora that exemplify the ways
in which these expressions interact to incrementally build complex de-
scriptions of relations between sets of objects. These (mostly constructed)
discourses will perforce be shorter and sketchier than the naturally-
occurring logic puzzle texts. This will enable us to focus exclusively
on the analysis of modals, quantifiers and pronouns. The remainder of
this section introduces these discourses and briefly discusses them.

1.2 Quantificational and Modal Subordination

Quantifiers like every convention in (5a/6a) below (from Karttunen 1976)
are typical examples of expressions that introduce – and elaborate on
previously introduced – dependencies. In all examples, subscripts in-
dicate the anaphors and superscripts their antecedents, following the
notational convention in Barwise (1987).

(5) a. Harvey courts au woman at every convention.
b. Sheu is very pretty.

(6) a. Harvey courts au woman at every convention.
b. Sheu always comes to the banquet with him.
c. [Theu woman is usually also very pretty.]

Consider, for example, the initial sentence (5a/6a) in the two discourses
above. This sentence is ambiguous between two quantifier scopings: it
“can mean that, at every convention, there is some woman that Harvey
courts or that there is some woman that Harvey courts at every conven-
tion. [. . . ] Harvey always courts the same [woman] [. . . ] [or] it may be
a different [woman] each time” (Karttunen 1976:377). The contrast be-
tween (5b) and (6b) is that the former allows only for the ‘same woman’
reading of sentence (5a/6a), while the latter is also compatible with the
‘possibly different women’ reading.

Discourse (5) raises the following question: how can we capture the
fact that a singular pronoun in sentence (5b) can interact with and dis-
ambiguate quantifier scopings in sentence (5a)?
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The fact that number morphology on the pronoun sheu is crucial
is shown by the discourse in (7) below, where the (preferred) relative
scoping of every convention and au woman is the opposite of the one in
discourse (5).

(7) a. Harvey courts au woman at every convention.
b. Theyu are very pretty.

We can see that it is indeed quantifier scopings that are disambiguated
if we replace the indefinite au woman in (5a) with exactly oneu woman.
This yields two truth-conditionally independent scopings: (i) exactly
oneu woman>>every convention, which is true in situation in which Har-
vey courts more than one woman per convention as long as there is ex-
actly one that he never fails to court, and (ii) every convention>>exactly
oneu woman, where Harvey courts exactly one woman per convention,
but the woman can be different from convention to convention.

Discourse (6) raises the following questions. First, why is it that
adding an adverb of quantification, i.e., always / usually, preserves both
readings of sentence (6a) and makes them available for the discourse as
whole? Moreover, on the newly available reading of sentence (6a), i.e.,
the every convention>>au woman scoping, how can we capture the intu-
ition that the singular pronoun sheu and the adverb always in sentence
(6b) elaborate on the quantificational dependency between conventions
and women introduced in sentence (6a), i.e., how can we capture the
intuition that we seem to have simultaneous anaphora to the two quan-
tifier domains and the quantificational dependency between them?

Thus, quantifiers are not the only kind of expressions that can intro-
duce and elaborate on dependencies. Pronouns, e.g., sheu in (5b/6b),
and indefinites, e.g., au woman in (5a/6a), can also do this and interact
with the dependencies introduced by quantificational expressions.

The kind of interaction between quantifiers, indefinites and mor-
phologically singular anaphora exemplified in discourses (5) and (6)
above has become known under the label of quantificational subordina-
tion (see Heim 1990:139,(2)). Quantificational subordination phenom-
ena suggest that the notion of generalized quantification involved in
natural language interpretation should in fact be decomposed into at
least two components:

(i) a static generalized quantifier component relating sets of individ-
uals (as in Barwise & Cooper 1981 among many others)

(ii) one or more components operating over plural info states that reg-
ulate the dynamics of dependencies

Decomposing quantification along these lines enables us to account for
the contrast between discourses (5) and (6) while preserving the Mon-
tagovian solution to the compositionality problem. The basic idea is
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that plural info states enable us to store both quantifier domains (in
the columns of the matrix) and quantificational dependencies (in the
rows of the matrix), pass them across sentential boundaries and further
elaborate on them – for example, by letting a singular pronoun like she
constrain the cardinality of a previously introduced quantifier domain.

This account of quantificational subordination generalizes to modal
subordination. The resulting analysis of the modal-subordination dis-
course in (8) below (based on Roberts 1989) is point-for-point paral-
lel to the analysis of the quantificational-subordination discourse in (6)
above. We are, therefore, able to capture the anaphoric and quantifi-
cational parallels between the individual and modal domains argued
for in Geurts (1995/1999), Frank (1996), van Rooy (1998), Stone (1999),
Bittner (2001) and Schlenker (2005) among others (building on Partee
1973, 1984).

(8) a. Au wolf might come in.
b. Itu would eat Harvey first.

1.3 Entailment Particles

In addition, we want to be able to analyze the more complex interac-
tions between modal and individual-level anaphora exhibited by dis-
courses like (9) below (attributed to Thomas Aquinas).

(9) a. [A] man cannot live without joy.
b. Therefore, when he is deprived of true spiritual joys, it is

necessary that he become addicted to carnal pleasures.

We will focus on only one of the meaning dimensions of this discourse,
namely the entailment relation established by therefore between the modal
premise (9a) and the modal conclusion (9b).

First, we want to capture the meaning of the entailment particle
therefore, which relates the content of the premise (9a) and the content of
the conclusion (9b) and requires the latter to be entailed by the former.
We will take the content of a sentence to be truth-conditional in nature,
i.e., to be the set of possible worlds in which the sentence is true, and
entailment to be content inclusion, i.e., (9a) entails (9b) iff for any world
w, if (9a) is true in w, so is (9b).3

3Modeling the entailment relation expressed by therefore as a truth-conditional re-
lation, i.e., as requiring inclusion between two sets of possible worlds, cannot account
for the fact that the discourse π is an irrational number, therefore Fermat’s last theorem is
true is not intuitively acceptable as a valid entailment and it cannot be accepted as a
mathematical proof despite the fact that both sentences are necessary truths (i.e., they
are true in every possible world). For expository simplicity, we will ignore hyper-
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Second, we are interested in the meanings of (9a) and (9b). We will
take meaning to be context-change potential, i.e., to encode both content
(truth conditions) and anaphoric potential.

Thus, on one hand, we are interested in the contents of (9a) and (9b).
They are both modal quantifications. Sentence (9a) involves a circum-
stantial modal base (to use the terminology introduced in Kratzer 1981)
and says that, in view of the circumstances, i.e., given that God created
man in a particular way, as long as a man is alive, he must find some
thing or other pleasurable. Sentence (9b) involves the same modal base
and elaborates on the preceding modal quantification: in view of the
circumstances, if a man is alive and has no spiritual pleasure, he must
have a carnal pleasure. Importantly, we need to make the contents of
(9a) and (9b) accessible in discourse so that the entailment particle there-
fore can cross-sententially relate them.

On the other hand, we are interested in the anaphoric potential of
(9a) and (9b), i.e., in the anaphoric connections between them. These
connections are explicitly represented in discourse (10) below, which is
intuitively equivalent to (9) albeit more awkwardly phrased.

(10) a. If au1 man is alive, heu1 must find somethingu2 pleasurable /
heu1 must have au2 pleasure.

b. Therefore, if heu1 doesn’t have anyu3 spiritual pleasure, heu1

must have au4 carnal pleasure.

The indefinite au1 man in the antecedent of the conditional in (10a) in-
troduces the dref u1, which is anaphorically retrieved by the pronoun
heu1 in the antecedent of the conditional in (10b). This is an instance
of modal subordination, i.e., an instance of simultaneous modal and
individual-level anaphora: the interpretation of the conditional in (10b)
is such that we seem to covertly duplicate the antecedent of the condi-
tional in (10a) – if a man is alive and he doesn’t have any spiritual plea-
sure, he must have a carnal one.

We will henceforth discuss the more transparent discourse in (10)
instead of the naturally-occurring one in (9). The challenge posed by
(10) is that we need to compositionally assign meanings to the three
discourse segments listed below – and we need to do that in such a
way that we capture both the intuitively correct truth conditions of the
whole discourse and the modal and individual-level anaphoric connec-
tions between the two conditionals and within each one of them.

(i) the modalized conditional in (10a), i.e., the premise
(ii) the modalized conditional in (10b), i.e., the conclusion

intensionality throughout the paper, but nothing in the proposed account prevents us
from replacing sets of worlds with a suitably finer-grained notion of content.
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(iii) the entailment particle therefore, which relates the premise and the
conclusion

Plural info states enable us to analyze discourse (9/10) as a network
of interrelated anaphoric connections – and the validity of the Aquinas
argument will emerge as a consequence of the intertwined individual-
level and modal anaphora.

The analysis brings further support to the idea that the dynamic
turn in natural language semantics should explicitly preserve and in-
corporate the classical, static approach to meaning and reference. In
fact, to analyze the Aquinas argument in (9/10), we use propositional
drefs p1, p2 etc. to make classical, static propositional contents avail-
able for subsequent discourse reference – i.e., not merely available in
the meta-language as part of the recursive definition of truth and satis-
faction, but available in the representation / object language –, which
in turn enables us to analyze the argument as relating drefs storing the
propositional contents of its premise and conclusion.

The paper is structured as follows. Section 2 discusses the sim-
pler case of quantification over individuals, its decomposition in a dy-
namic system based on plural info states and the resulting account of
quantificational subordination. A good part of the material is not new,
so the discussion will be fairly compressed (see Brasoveanu 2010 for
more details). Working knowledge of Dynamic Predicate Logic (DPL,
Groenendijk & Stokhof 1991) and Compositional DRT (CDRT, Muskens
1996) is probably a prerequisite for section 2 and the rest of the paper
(for a review, see Brasoveanu 2007:ch.2,3 among many others). Section
3 tackles the more complex case of modal quantification and introduces
the intensional dynamic system within which modal and individual-
level quantification, as well as modal and quantificational subordina-
tion, receive a parallel decompositional analysis. Section 4 shows that
the account of entailment particles and of the Aquinas discourse follows
in this system. Finally, section 5 briefly compares this account with pre-
vious analyses of modal quantification and modal subordination.

2 Decomposing Quantification over Individu-
als

The goal of this section is to introduce the basic dynamic system that
enables us to account for quantificational subordination. By simply
adding possible-world drefs in the following section, we will be able
to account for modal subordination in a way that explicitly captures
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the anaphoric and quantificational parallels between the individual and
modal domains.

The knowledgeable reader eager to get to get to the heart of the mat-
ter, namely modal quantification and modal subordination, should feel
free to skim this section and start reading in earnest only the next one.
The less eager reader will find that I have repeatedly highlighted the
parts of this section that will be more or less directly imported in the
next section (and these parts make up the bulk of this section). More-
over, the dynamic perspective taken on individual-level quantification
in this section is, in fact, a modal perspective:4 variable assignments are
conceptualized as atomic, basic entities, i.e., points / states / worlds in
a modal model, and operations on variable assignments are ultimately
conceptualized as modal operations over such points, in the spirit of
van Benthem (1997) (see also Ben-Shalom 1996 and Marx & Venema
1997 among others).

Thus, in this section, we want to capture the fact that discourse (5)
above allows for only one of the two quantifier scopings of sentence
(5a/6a), while discourse (6) allows for both scopings.

Informally, the analysis proceeds as follows. First, sentence (5a) up-
dates the discourse-initial info state ∅ – which stores no discourse infor-
mation whatsoever – by introducing the dref u1 that stores the (possibly
singleton) set of women that Harvey courts at some convention or other
and the dref u2 that stores all the conventions. This update can happen
in two ways, depending on whether the indefinite scopes over the uni-
versal quantifier or vice versa, as shown in (11) and (12).

(11) ∅
au1 woman (H. courts at everyu2 convention)
===============================⇒

u1 u2

woman1 conv1
woman1 conv2

woman1 conv3

woman1 is courted
at every convention

(12) ∅
at everyu2 convention (H. courts au1 woman)
===============================⇒

u1 u2

woman1 conv1
woman2 conv2

woman3 conv3

woman1 is courted at conv1
woman2 is courted at conv2
woman3 is courted at conv3

Irrespective of which quantifier scoping we choose for sentence (5a),
the singular pronoun sheu1 in sentence (5b) constrains the set of u1-

4As Paul Dekker graciously reminded me (p.c.).
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women to be a singleton set. This is easily satisfied in (11), where the
indefinite takes scope over the universal quantifier. In the case of (12),
however, the singleton requirement contributed by the singular number
morphology on the pronoun sheu1 makes a non-trivial contribution: it
requires all the cells in the u1-column to store the same entity, as shown
in (13) below. Thus, irrespective of which quantifier scoping we choose
for sentence (5a), the only available reading for discourse (5) as a whole
is the wide-scope indefinite reading.

(13)

u1 u2

woman1 conv1
woman2 conv2

woman3 conv3

sheu1 is very pretty
=============⇒

u1 u2

woman1/2/3 conv1
woman1/2/3 conv2

woman1/2/3 conv3

{woman1, woman2, woman3}
is a singleton, i.e.:

woman1 = woman2 = woman3

The fact that discourse (6) – in contrast to (5) – is also compatible with
the narrow-scope indefinite reading is due to the fact that the quantifi-
cational adverb alwaysu2 in (6b) can take scope over the singular pro-
noun sheu1 and neutralize the effect that singular number morphology
has on the cardinality of the previously introduced set of women.

This neutralization is a consequence of the discourse-level distribu-
tivity operator dist that quantificational expressions contribute. The
dist operator distributes over plural info states in the sense that it re-
quires the update in its scope to be interpreted relative to singleton
subsets of the input plural info state, as shown in (14) below. So, the
singleton requirement contributed by the singular pronoun sheu1 is in-
terpreted relative to single rows and is trivially satisfied.

(14)

u1 u2

woman1 conv1
woman2 conv2

woman3 conv3

alwaysu2
distu2(sheu1

comes to the banquet with him)
=====================================⇒
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

u1 u2

woman1 conv1 {woman1} is a singleton

u1 u2

woman2 conv2 {woman2} is a singleton

u1 u2

woman3 conv3 {woman3} is a singleton


Note that we allow for models in which Harvey courts more than one
woman at a convention. The singleton requirement contributed by sin-
gular number morphology on anaphoric pronouns requires uniqueness
relative to the local plural info state and not globally, relative to the en-
tire model – as Russellian (non-anaphoric) definite descriptions would.
Moreover, we allow for models in which Harvey courts more than one
woman at a convention and not every woman courted by Harvey comes
to the banquet with him – we only require one of the women he courts
at a convention to come to the banquet of that convention with him.
We will further discuss this matter in due course, as well as the related
issue of weak vs strong readings for singular donkey anaphora.

The analysis of the modal subordination discourse in (8) above will
proceed in a way that is strictly parallel to the analysis of the quantifi-
cational subordination discourse in (6) – as shown by the sequence of
updates depicted in (15) below. The only difference is that the modal
verbs might and would quantify over possible worlds as opposed to in-
dividuals.

(15) ∅
mightp

(au wolf come in))
=================⇒

p u
v1 wolf1
v2 wolf2
v3 wolf3

in world v1, wolf1 comes in
in world v2, wolf2 comes in
in world v3, wolf3 comes in

wouldp distp(itu eat Harvey first)
=======================⇒

14





p u
v1 wolf1

{wolf1} is a singleton and
wolf1 eats Harvey first in v1

p u
v2 wolf2

{wolf2} is a singleton and
wolf2 eats Harvey first in v2

p u
v3 wolf3

{wolf3} is a singleton and
wolf3 eats Harvey first in v3


2.1 The Basics: Plural Info States, DRSs, Conditions and

Compositionality

The main formal innovation relative to classical DRT / FCS / DPL is
that, just as in Dynamic Plural Logic (van den Berg 1996), information
states I, J etc. are modeled as sets of variable assignments i, j etc. Plu-
ral info states enable us to encode discourse reference to both quantifier
domains and quantificational dependencies and pass this anaphoric in-
formation across sentential boundaries, which is exactly what we need
to account for the interpretation of discourses (5), (6) and (8).

More precisely, we need the following two ingredients. First, we
need a suitable meaning for generalized determiners (over individuals)
that will store two things in the output plural info state:

(i) the restrictor and nuclear scope sets of individuals that are intro-
duced by the determiner

(ii) the quantificational dependencies between these sets and any other
quantifiers / indefinites

For example, we store the sets of individuals and the dependencies be-
tween them introduced by the universal every convention in (6a) and the
indefinite a woman in its nuclear scope. These sets and dependencies
are available for subsequent anaphoric retrieval – e.g., always and she in
(6b) are simultaneously anaphoric both to the two sets of conventions
and women and to the dependency between these sets introduced in
(6a).

Second, we need a suitable meaning for singular number morphol-
ogy on pronouns like she above that requires the dref anaphorically re-
trieved by the pronoun to store a singleton set of individuals. Plural
info states are, once again, crucial: they store and pass on structured
sets (i.e., sets of values plus their associated dependencies / structure),
so we can constrain their cardinality by subsequent, syntactically non-
local anaphoric elements.
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Modal verbs will be analyzed as the modal counterparts of general-
ized determiners and verbal moods (e.g., indicative) as the modal coun-
terparts of pronouns.

To formalize these meanings for generalized determiners and singu-
lar anaphors, we work with a Dynamic Ty2 logic, i.e., with the Logic of
Change in Muskens (1996) that reformulates dynamic semantics (Kamp
1981, Heim 1982, Groenendijk & Stokhof 1991) in Gallin’s Ty2 (Gallin
1975).

We have three basic types: type t (truth values), type e (individuals;
variables: x, y, . . . ) and type s (variable assignments; variables: i, j, . . . ).
A suitable set of axioms ensures that the entities of type s behave as
variable assignments (see Muskens 1996, Brasoveanu 2008 for more de-
tails).

A dref for individuals u is a function of type se from assignments is
to individuals xe (subscripts on terms indicate their type). Intuitively,
the individual useis is the individual that the assignment i assigns to the
dref u. Dynamic info states I, J, . . . are plural: they are sets of variable
assignments, i.e., terms of type st. An individual dref u stores a set of
individuals relative to a plural info state I: u[I] is the image of the set of
assignments I under the function u.

(16) u[I] := {useis : i ∈ I}

A sentence is interpreted as a Discourse Representation Structure (DRS),
which is a binary relation of type (st)((st)t) between an input state Ist
and an output state Jst, as shown in (17).

(17) [newdrefs | conditions] := λIst.λJst. I[newdrefs]J∧ conditionsJ

A DRS requires:

(i) the input info state I to differ from the output state J at most with
respect to the new drefs

(ii) all the conditions to be satisfied relative to the output state J

The definition of dref introduction is given in (18) below. This defini-
tion is based on the familiar notion of dref introduction i[u]j in DPL
and CDRT, which relates single variable assignments i and j. Intu-
itively, the DPL / CDRT notion of dref introduction i[u]j – a.k.a. random
(re)assignment of value to a variable u – is interpreted as: the output as-
signment j differs from the input assignment i at most with respect to
the value it assigns to u (see Groenendijk & Stokhof 1991, Muskens 1996
and Brasoveanu 2008 among others for more discussion and the exact
definition of this notion). The binary relation i[u]j is an equivalence
relation over total variable assignments.
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We need to generalize this binary relation i[u]j between single as-
signments i and j to a binary relation I[u]J between sets of assignments
I and J – i.e., we need to generalize i[u]j to a relation between plu-
ral info states. We do this cumulative-quantification style, as shown in
(18): I[u]J requires any input assignment i ∈ I to have a [u]-successor
assignment j ∈ J and, vice versa, any output assignment j ∈ J should
have a [u]-predecessor assignment i ∈ I. The binary relation I[u]J is an
equivalence relation over sets of total variable assignments.

(18) [u] := λIst.λJst. ∀is ∈ I(∃js ∈ J(i[u]j)) ∧ ∀js ∈ J(∃is ∈ I(i[u]j))

Multiple dref introduction is defined in terms of dynamic conjunction
“;”, which in turn is defined as DRS composition (i.e., binary relation
composition), as shown in (19) below. Note the difference between dy-
namic conjunction and classical, static conjunction “∧”: the former is
an abbreviation, while the latter is part of the Dynamic Ty2 logic. An
example is provided in (21).

(19) D; D′ := λIst.λJst. ∃Hst(DIH ∧ D′HJ)
(20) [u1, . . . , un] := [u1]; . . . ; [un]
(21) [u1, u2 |WOMAN{u1}, CONVENTION{u2}, COURTED-AT{u1, u2}]

:= λIst.λJst. I[u1, u2]J ∧WOMAN{u1}J
∧ CONVENTION{u2}J ∧ COURTED-AT{u1, u2}J

DRSs of the form shown in (22) are tests. An example is provided in
(23).

(22) [conditions] := λIst.λJst. I = J ∧ conditionsJ
(23) [COURTED-AT{u1, u2}] := λIst.λJst. I = J∧ COURTED-AT{u1, u2}J

Note that DRSs like (21) above are simply a conjunction of an update in-
troducing the new drefs followed by a test containing all the conditions,
as shown below.

(24) [u1, u2 |WOMAN{u1}, CONVENTION{u2}, COURTED-AT{u1, u2}] =
[u1, u2]; [WOMAN{u1}, CONVENTION{u2}, COURTED-AT{u1, u2}]

Conditions denote sets of info states, i.e., they are terms of type (st)t,
and they are interpreted distributively relative to a plural info state.
For example, COURTED-AT{u1, u2} is a dynamic condition based on
the static relation between individuals COURTED-AT of type e(et) and
a plural info state I is in the set denoted by this condition iff ∀is ∈
I(COURTED-AT(u1i, u2i)), as shown in (25).
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(25) COURTED-AT{u1, u2} :=
λIst. I 6= ∅ ∧ ∀is ∈ I(COURTED-AT(u1i, u2i))
(prelim. version)

I . . . u1 u2 . . .
i1 . . . α1 (= u1i1) β1 (= u2i1) . . .︸ ︷︷ ︸

COURTED-AT(α1, β1)
i2 . . . α2 (= u1i2) β2 (= u2i2) . . .︸ ︷︷ ︸

COURTED-AT(α2, β2)
i3 . . . α3 (= u1i3) β3 (= u2i3) . . .︸ ︷︷ ︸

COURTED-AT(α3, β3)
. . . . . . . . . . . . . . .

Given the underlying type logic, Montague-style compositionality at
sub-clausal level follows in the usual way. More precisely, the composi-
tional aspect of interpretation in an extensional Fregean / Montagovian
framework is largely determined by the types for the (extensions of the)
saturated expressions, i.e., names and sentences. Let us abbreviate them
as e and t.

An extensional static logic, for example, identifies e with e and t
with t. The translation of the English noun woman is of type et, i.e., et:
woman λxe. WOMANet(x). The determiner every is of type (et)((et)t),
i.e., (et)((et)t): every λXet.λX′et. ∀xe(X(x)→ X′(x)).

For our dynamic system based on plural info states, we only need
to change the abbreviations for e and t. We let t abbreviate (st)((st)t),
i.e., a sentence is interpreted as a DRS, and we let e abbreviate se, i.e., a
name is interpreted as a dref. The denotation of the noun woman is still
of type et, as shown in (26) below. Moreover, the determiner every is still
of type (et)((et)t) – and its dynamic interpretation will be discussed
later in this section.

(26) woman λve. [WOMANet{v}]

Later on, we will be able to intensionalize this extensional system by
simply adding a basic type for possible worlds: we will build intensions
by relativizing the corresponding extensions to possible-world drefs.

2.2 Indefinites and Pronouns

This subsection is dedicated to the analysis of the simple discourse
in (27) below. The goal is to see the formal system in action and to
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show how indefinites, pronouns and basic patterns of cross-sentential
anaphora are analyzed in this system.

(27) a. Au wolf came in.
b. Itu ate Harveyu′ .

To model the fact that the discourse-initial info state does not contain
any information, we introduce the dummy individualF. This individ-
ual is the universal falsifier, i.e., any lexical relation that has F as one
of its arguments, e.g., WOLF(F) or EAT(F, α1), is false.5 The dummy
assignment iF assigns the dummy individual F to every dref. The
discourse-initial info state that contains no anaphoric-information is the
plural info state containing only the dummy assignment IF =

{
iF
}

.

(28) IF . . . u1 u2 u3 . . .
iF . . . F F F . . .

or simply:

. . . u1 u2 u3 . . .

. . . F F F . . .

The dummy info state IF enables us to capture the fact that using pro-
nouns out-of-the-blue is infelicitous. Classical DRT / FCS captures this
by using partial – instead of total – variable assignments. The dummy
individual enables us to keep the underlying logic as simple / classical
as possible: we work with total, not partial, assignments and we work
with a total, two-valued logic – in contrast to the partial logic in van
den Berg (1996).

Given the introduction of the universal falsifier F, we need to in-
terpret lexical relations (i.e., atomic conditions) distributively relative
to the non-dummy sub-state of the input plural info state I, as shown
below.

(29) Iu 6=F := {is ∈ I : ui 6=F}
(30) WOLF{u} := λIst. Iu 6=F 6= ∅ ∧ ∀is ∈ Iu 6=F(WOLF(ui))
(31) Iu 6=F,u′ 6=F := {is ∈ I : ui 6=F∧ u′i 6=F}
(32) EAT{u, u′} :=

λIst. Iu 6=F,u′ 6=F 6= ∅ ∧ ∀is ∈ Iu 6=F,u′ 6=F(EAT(ui, u′i))
(33) Iu1 6=F,...,un 6=F := {is ∈ I : u1i 6=F∧ . . . ∧ uni 6=F}

5We ensure that any lexical relation R of arity n – i.e., of type ent, defined as in
Muskens (1996:157-158): e0t := t and em+1t := e(emt) – yields falsity wheneverF is
one of its arguments by letting R ⊆ (DM

e \ {F})n.

19



(34) R{u1, . . . , un} :=
λIst. Iu1 6=F,...,un 6=F 6= ∅ ∧ ∀is ∈ Iu1 6=F,...,un 6=F(R(u1i, . . . , uni))

The translation of any sentence or discourse, hence also the translation
of (27) above, will be a DRS D. This DRS is true relative to an input
info state I, in particular, the dummy info state IF =

{
iF
}

, iff there is
an output state J such that D relates I and J. In other words, a DRS D
is true relative to I iff there is at least one way to successfully update I
with D.

(35) A DRS D of type t is true with respect to an input info state Ist iff
∃Jst(DI J).

We capture cross-sentential anaphora between the indefinite au wolf and
the pronoun itu in (27) in very much the same way as classical DRT /
FCS / DPL: the indefinite introduces a dref u that the pronoun later
retrieves. The translations for the singular indefinite and the singular
pronoun are provided in (36) and (37) below. The translations have the
expected Montagovian form: the indefinite takes as arguments a restric-
tor property P and a nuclear scope property P′, introduces a new dref u
and predicates the two properties of this dref; the pronoun is the Mon-
tagovian type-lift of the anaphorically-retrieved dref u. In both trans-
lations, singular number morphology contributes a condition sing(u)
that requires uniqueness of the non-dummy value of the dref u relative
to the plural info state I; |uI| denotes the cardinality of the set uI.6 In
contrast, plural pronouns do not require uniqueness, as shown in (40).
Recall that drefs are assigned only atomic (i.e., semantically singular)
entities as values; for a version of Dynamic Ty2 that countenances non-
atomic individuals in addition to plural info states (i.e., both domain-
level and discourse-level plurality), see Brasoveanu (2008).

(36) au λPet.λP′et. [u | sing(u)]; P(u); P′(u)
(37) itu  λPet. [sing(u)]; P(u)
(38) uI := {ui : is ∈ Iu 6=F}
(39) sing(u) := λIst. |uI| = 1
(40) theyu  λPet. [u 6= ∅]; P(u)
(41) u 6= ∅ := λIst. uI 6= ∅

The proper name Harveyu′ introduces a new dref u′ and constrains it to
pick out the individual denoted by the non-logical constant HARVEY (of
type e) relative to any assignment i ∈ I.

(42) Harveyu′  λPet. [u′ | u′ = HARVEY]; P(u′)
6See Nouwen (2007) for a similar proposal in a closely related framework.
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(43) u′ = HARVEY := λIst. u′ I = {HARVEY}

The two sentences of discourse (27) are compositionally translated as
shown in (44) and (45) below.

(44) a. wolf  λve. [WOLF{v}]
b. au wolf  λP′et. [u | sing(u)]; [WOLF{u}]; P′(u)
c. came in λve. [COME-IN{v}]
d. au wolf came in [u | sing(u)]; [WOLF{u}]; [COME-IN{u}]

(45) a. ate λQ(et)t.λve. Q(λv′e. [EAT{v, v′}])
b. ate Harveyu′  λve. [u′ | u′ = HARVEY]; [EAT{v, u′}]
c. itu ate Harveyu′ [sing(u)]; [u′ | u′ = HARVEY]; [EAT{u, u′}]

Conjoining the translations of the two sentences gives us the translation
for the entire discourse in (27), provided in (46) below. The DRSs in (47)
and (48) are equivalent ways of representing this discourse: (47) has the
same format as classical DRT boxes (represented in a linearized way),
while (48) is completely explicit about each atomic update contributed
by discourse (27).

(46) [u | sing(u)]; [WOLF{u}]; [COME-IN{u}];
[sing(u)]; [u′ | u′ = HARVEY]; [EAT{u, u′}]

(47) [u, u′ | sing(u), WOLF{u}, COME-IN{u}, u′ = HARVEY, EAT{u, u′}]
(48) [u]; [sing(u)]; [WOLF{u}]; [COME-IN{u}];

[sing(u)]; [u′]; [u′ = HARVEY]; [EAT{u, u′}]

While the DRT-style representation in (47) is the most readable, the rep-
resentation in (48) provides insight into the internal workings of the
update procedure. This is graphically depicted in (49) below.

We start with the dummy info state IF that contains no anaphoric
information. Then, we introduce a new dref [u]. The result is many
plural info states, some containing only one row, some containing two
rows etc. and assigning all possible individuals or combinations thereof
to the newly introduced dref u. That is, we now have a graph with
many paths. This is the result of the fact that our DRSs are relations
between info states and not functions, i.e., they are non-deterministic
updates. The test [sing(u)] eliminates some of the paths in the graph,
namely all those paths that end in an info state assigning more than
one entity to the dref u. The test [WOLF{u}] eliminates further paths
in the graph – namely all those that end in an info state where u is not
assigned a wolf. The test [COME-IN{u}] eliminates all the wolves that
didn’t come in.
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The test [sing(u)] contributed by the pronoun is vacuously satisfied,
so it doesn’t eliminate any more paths in the graph. We now introduce
another dref u′ that extends the graph in many different ways. The
subsequent test [u′ = HARVEY] prunes down the graph by eliminating
all info states that don’t assign the individual harvey to u′. Finally, the
test [EAT{u, u′}] keeps only the info states such that, for any row i in
those info states, the individual ui ate the individual u′i.

(49) IF
[u]
=⇒

u
wolf1

u
wolf2

u
wolf3

u
car1

u
wolf1
car2

. . .

[sing(u)]
====⇒

u
wolf1

u
wolf2

u
wolf3

u
car1
. . .

[WOLF{u}]
=====⇒

u
wolf1

u
wolf2

u
wolf3
. . .

[COME-IN{u}]
=======⇒

u
wolf1

u
wolf2
. . .

[sing(u)]
====⇒

u
wolf1

u
wolf2
. . .

[u′]
=⇒

u u′

wolf1 harvey

u u′

wolf1 car1

u u′

wolf1 harvey
wolf1 car2

u u′

wolf2 harvey

u u′

wolf2 wolf3
. . .

[u′=HARVEY]
======⇒
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u u′

wolf1 harvey

u u′

wolf2 harvey
. . .

[EAT{u,u′}]
=====⇒

u u′

wolf1 harvey
. . .

The picture in (49) above might seem overwhelming at first. However,
except for the fact that we allow plural info states (i.e., matrices with
multiple rows), this is in no way different from the way interpretation
proceeds in classical first-order logic or in classical DRT / FCS. Such
graphs are implicit in their recursive definitions of truth and satisfac-
tion. We will follow their lead and keep the graphs implicit, i.e., from
now on, we will depict updates by choosing a single, typical path in the
graph. For example, the update contributed by discourse (27) will be
represented as shown in (50) below – or in abbreviated form, as shown
in (51).

(50) IF
[u]
=⇒ u

wolf1

[sing(u)]
====⇒ u

wolf1

[WOLF{u}]
=====⇒ u

wolf1

[COME-IN{u}]
=======⇒

u
wolf1

[sing(u)]
====⇒ u

wolf1

[u′]
=⇒ u u′

wolf1 harvey
[u′=HARVEY]
======⇒

u u′

wolf1 harvey
[EAT{u,u′}]
=====⇒ u u′

wolf1 harvey

(51) IF
[u|sing(u),WOLF{u},COME-IN{u}]
==================⇒ u

wolf1

[u′|u′=HARVEY,EAT{u,u′}]
==============⇒ u u′

wolf1 harvey

The definition of truth in (35) above basically says that a DRS D is true
if there is at least one path through the graph denoted by D. Again, this
is just as in classical first-order logic or in classical DRT / FCS, except
this is implicit in their definitions of truth and satisfaction.

We end this subsection with the definition of dynamic negation, pro-
vided in (52) below, which derives the intuitively correct truth condi-
tions for examples like Linus didn’t bring an umbrella, and with the trans-
lations for the anaphoric readings of singular and plural definite arti-
cles, which are parallel to the translations for singular and plural pro-
nouns in (37) and (40) above.7 Later on, we will analyze verbal moods
as the modal counterparts of anaphoric pronouns.

7Semantically distinguishing between singular and plural definite articles is sup-
ported by the fact that other languages, e.g., Romance languages, have overt number
morphology on definite articles.
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(52) ∼ D := λIst. I 6= ∅ ∧ ∀Hst 6= ∅(H ⊆ I → ¬∃Kst(DHK))
(53) thesg:u  λPet.λP′et. [sing(u)]; P(u); P′(u)
(54) thepl:u  λPet.λP′et. [u 6= ∅]; P(u); P′(u)

2.3 Desiderata for Dynamic Generalized Quantification

A definition of dynamic generalized quantification, in both the indi-
vidual and the modal domain, should satisfy several desiderata. We
will discuss these desiderata here with respect to quantification over
individuals, but the same considerations apply to quantification over
possible worlds.

First, we want our notion of dynamic quantification to account for
donkey anaphora, exemplified in (55) below.

(55) Everyu farmer who owns au′ donkey beats itu′ .

Second, we want to avoid the proportion problem that unselective quan-
tification (“unselective” in the sense of Lewis 1975) runs into. The sen-
tence in (56) below exemplifies this problem. Intuitively, (56) is false in
a situation in which there are ten farmers, nine have a single donkey
each and they do not beat it, while the tenth has twenty donkeys and
he is busy beating them all. The unselective interpretation of the most-
quantification, however, incorrectly predicts that the sentence is true
in such a situation because more than half of the 〈farmer, donkey〉-pairs
(twenty out of twenty-nine) are such that the farmer beats the donkey.
Thus, dynamic generalized determiners should relate sets of individu-
als (of type et) and not sets of assignments (of type st).

(56) Mostu farmers who own au′ donkey beat itu′ .

Third, generalized quantification should be compatible with both strong
and weak donkey readings. That is, we want to allow for the differ-
ent interpretations associated with the donkey anaphora in (57) (Heim
1990) and (58) (Pelletier & Schubert 1989) below. The interpretation of
(57) is: most slave-owners were such that, for every (strong reading)
slave they owned, they also owned his offspring. The interpretation of
(58) is: every dime-owner will put some (weak reading) dime of her /
his in the meter.

(57) Mostu people that owned au′ slave also owned hisu′ offspring.

(58) Everyu person who has au′ dime will put itu′ in the meter.

Finally, as the discourses in (5) and (6) above indicate, dynamic quan-
tification should be defined in such a way that we make available the re-
strictor and nuclear scope sets of individuals for subsequent anaphoric
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take-up. In addition, the quantificational dependencies between differ-
ent quantifiers / indefinites should also be anaphorically available.

More precisely, generalized quantification supports anaphora to two
sets:

(i) the maximal set of individuals satisfying the restrictor update
(ii) the maximal set of individuals satisfying both the restrictor up-

date and the nuclear scope update8 (that is, we build conserva-
tivity into our representation of generalized quantification; this is
needed for, e.g., donkey anaphora)

The discourse in (59) below exemplifies anaphora to nuclear scope sets.
Sentence (59b) is interpreted as: the people that went to the beach are
the students that left the party after 5 a.m. – which, in addition, formed
a majority of the students at the party.

(59) a. Mostu′ students left the party after 5 a.m.
b. Theyu′ went directly to the beach.

The discourses in (60) and (61) exemplify anaphora to restrictor sets.
Using downward monotonic quantifiers like nou student and very fewu

people is important for this. Consider (60) first: any successful update
with a nou-quantification ensures that the nuclear scope set is empty
(given that we build conservativity into our representation of general-
ized quantification) – and anaphora to it is therefore infelicitous. The
only possible anaphora in (60) is restrictor-set anaphora.

(60) a. Nou student left the party later than 10 p.m.
b. Theyu had classes early in the morning.

Restrictor set anaphora is the only possible one in (61) too. This is be-
cause nuclear scope anaphora would yield a contradictory interpreta-
tion for (61b), namely: most of the people with a rich uncle that inherit
his fortune don’t inherit his fortune.

(61) a. Very fewu people with a rich uncle inherit his fortune.
b. Most of themu don’t.

Given these four desiderata, we translate dynamic generalized deter-
miners as shown in (62).

8We ignore anaphora to complement sets, i.e., sets obtained by taking the comple-
ment of the nuclear scope relative to the restrictor, e.g., Few students were paying atten-
tion in class. They were tired.; see Nouwen (2003) for arguments that complement-set
anaphora is a pragmatic, not semantic, phenomenon (I am indebted to an anonymous
reviewer for bringing this point to my attention).
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(62) detu,u′vu  
λPet.λP′et. maxu(〈u〉(P(u))); maxu′vu(〈u′〉(P′(u′))); [DET{u, u′}]

This translation is in the spirit of van den Berg (1996) (cf. van den Berg
(1996:149,(4.1))).

Let us examine it in detail. First, a determiner detu,u′vu introduces
two drefs u and u′: u is the restrictor dref and u′ is the nuclear scope
dref. Given the conservativity of natural language determiners, the nu-
clear scope dref is a subset of the restrictor dref: u′ v u.

Second, determiners relate a restrictor dynamic property Pet and a
nuclear scope dynamic property P′et. When these dynamic properties
are applied to their respective drefs, we obtain a restrictor DRS P(u) of
type t and a nuclear scope DRS P′(u′), also of type t.

The drefs u and u′ and the properties P and P′ are the basic building
blocks of the three updates in (62). The first update, namely maxu(〈u〉(P(u))),
has three components: the operator maxu(. . . ), the distributivity oper-
ator 〈u〉(. . . ) and the DRS P(u). This update ensures that u stores the
maximal set of individuals, i.e., maxu(. . . ), such that, when we take
each u-individual separately, i.e., 〈u〉(. . . ), this individual satisfies the
restrictor dynamic property, i.e., P(u). Once again, recall that the val-
ues assigned to the dref u are atomic, i.e., semantically singular, but
plural info states store collections of such singular values.

The second update, namely maxu′vu(〈u′〉(P′(u′))), ensures that the
nuclear scope set u′ is obtained in much the same way as the restrictor
set u, except for the requirement that u′ is the maximal structured subset
of u, i.e., maxu′vu(. . . ).

Finally, the third update, namely [DET{u, u′}], is a test: we test that
the restrictor set u and the nuclear scope set u′ stand in the relation
denoted by the corresponding static determiner DET.

To formally spell out the meaning for generalized determiners in
(62) above, we need:

(i) two operators over plural info states, namely a maximization op-
erator maxu(. . . ) and a distributivity operator 〈u〉(. . . )

(ii) a notion of structured inclusion u′ v u that requires the subset
to preserve the quantificational dependencies, i.e., the structure,
associated with the individuals in the superset

The following subsections introduce dynamic quantification over in-
dividuals and the resulting analysis of quantificational subordination.
The reader should take heart in the fact that, once this work is done, the
analysis of modal quantification and modal subordination will follow
by transferring all the developed notions from the domain of individu-
als to the domain of possible worlds.
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2.4 Structured Inclusion, Maximization and Distributiv-
ity

We start with the notion of structured inclusion. Consider, for example,
the discourse in (63) below, where u1 stores the set of conventions and
u2 stores the set of corresponding women. Assume that, in (63a), everyu1

convention takes scope over au2 woman and the correlation between u1-
conventions and u2-women is the one represented in (64) below. That
is, the correlation / dependency between conventions and women is
the binary relation {〈α1, β1〉 , 〈α2, β2〉 , 〈α3, β3〉 , 〈α4, β4〉}.

(63) a. Harvey courts au2 woman at everyu1 convention.
b. Sheu2 usuallyu3⊆u1 comes to the banquet with him.

(64) Two possible ways to introduce the subset dref u3:

I u1 u2 u3 (u3 ⊆ u1, u3 6b u1) u3 (u3 b u1)
i1 α1 β1 α1 α1
i2 α2 β2 α3 α2

i3 α3 β3 α1 F
i4 α4 β4 α2 α4

(65) u3 ⊆ u1 := λIst. u3[I] ⊆ u1[I]
(66) u3 b u1 := λIst. ∀is ∈ I(u3i = u1i ∨ u3i =F)

Intuitively, the adverb usually in (63b) is anaphoric to the set of conven-
tions introduced in (63a) – and sentence (63b) is interpreted as follows:
at most conventions, the woman courted by Harvey at that convention
comes to the banquet with him. Thus, we want to select a set that con-
sists of a majority of conventions, i.e., we want to select a most-subset
of the u1-column in matrix (64) above. At the same time, we want to
preserve the dependencies associated with the entities in this subset –
which dependencies are encoded in the rows of the matrix.

The simplest notion of inclusion is the one defined in (65) above and
symbolized by ⊆ (the customary symbol). This is a notion of value-
inclusion because it is concerned exclusively with sets of values. That
is, it is concerned with the information stored in the columns of a matrix
and completely disregards structure, i.e., the information stored in the
rows of a matrix.

For example, the leftmost u3 column in matrix (64) above satisfies
the condition u3 ⊆ u1: the dref u3 is a value-subset of the dref u1 be-
cause u3 I = {α1, α2, α3} ⊆ u1 I = {α1, α2, α3, α4}. We correctly store
in u3 most u1-conventions (three out of four), but we fail to preserve
the dependency between u1-conventions and u2-women established in
(63a), i.e., the relation {〈α1, β1〉 , 〈α2, β2〉 , 〈α3, β3〉 , 〈α4, β4〉}: as far as u3
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and u2 are concerned, α1 is still correlated with β1, but it is now also
correlated with β3, α2 is now correlated with β4 (not β2) and α3 with β2
(not β3). We therefore fail to derive the intuitively-correct interpretation
for sentence (63b) – and for discourse (63) as a whole.

We obtain similarly incorrect results for donkey sentences like the
one in (67) below. The restrictor of the quantification introduces a de-
pendency between all the donkey-owning u1-farmers and the u2-donkeys
that they own. The nuclear scope set u3 needs to contain most u1-
farmers, but in such a way that the correlated u2-donkeys remain the
same. That is, the nuclear scope set contains a most-subset of donkey-
owning farmers that beat their respective donkey(s). The notion of value-
only inclusion in (65) is, yet again, inadequate.

(67) Mostu1,u3⊆u1 farmers who own au2 donkey beat itu2 .

So, to capture the intra-sentential and cross-sentential interaction be-
tween anaphora and quantification, we need the notion of structured
inclusion defined in (66) above, whereby we go from a superset to a
subset by discarding rows in the matrix. The subset is then guaranteed
to contain only the dependencies associated with the superset (but not
necessarily all dependencies – see below).

To formalize this, we follow van den Berg (1996) and use the dummy
individualF as a tag for the cells in the matrix that should be discarded
in order to obtain a structured subset u3 of a superset u1 – as shown by
the rightmost u3 column in (64) above. However, unlike van den Berg
(1996), we will not take the dummy individualF to require making the
underlying logic partial.

The notion of structured inclusion b in (66) above ensures that the
subset inherits only the superset structure – but we also need it to in-
herit all the superset structure. We achieve this by means of the second
conjunct in definition (68) below. This conjunct is needed to account for
the strong donkey sentence in (57) above (among other things), which
is interpreted as talking about every slave owned by any given person.
That is, the nuclear scope set in (57), which is a most-subset of the re-
strictor set, needs to inherit all the superset structure: each slave owner
in the nuclear scope set needs to be associated with every slave that s/he
owned.

(68) u′ v u := λIst. (u′ b u)I ∧ ∀is ∈ I(ui ∈ u′ I → ui = u′i)

We turn now to the maximization and distributivity operators maxu

and distu, defined in the spirit of van den Berg (1996). Together, max-
imization and distributivity enable us to dynamize λ-abstraction over
both values (i.e., quantifier domains) and structure (i.e., quantificational
dependencies). That is, maxu and distu enable us to extract and store
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the restrictor and nuclear scope structured sets needed to define dy-
namic generalized quantification.

Consider the definition of maxu in (69) below first. The first con-
junct ([u]; D)I J introduces u as a new dref and makes sure that each
u-individual stored in the output state J satisfies D. So, we ensure that
u stores only individuals that satisfy D. The second conjunct enforces
maximality: there is no output state K that stores u-individuals satisfy-
ing D and that is a strict superset of J. So, we ensure that u stores all
individuals that satisfy D relative to J.

(69) maxu(D) :=
λIst.λJst. ([u]; D)I J ∧ ¬∃Kst(([u]; D)IK ∧ Ju 6=F ( Ku 6=F)

The definition of maximization is given in terms of local maxima, i.e.,
¬∃Kst(([u]; D)IK ∧ Ju 6=F ( Ku 6=F), and not in terms of a global supre-
mum, i.e., ∀Kst(([u]; D)IK → Ku 6=F ⊆ Ju 6=F), to allow for the fact that
the DRS D could contain a singular indefinite, i.e., a non-deterministic
update of the form [u′ | sing(u′)], that could in principle be satisfied by
multiple single individuals.

Maximal structured subsets can now be defined as shown in (70).

(70) maxu′vu(D) := maxu′([u′ v u]; D)

The definition of distributivity in (72) below – depicted in (73) – states
that updating an info state I with a DRS D distributively over a dref u
means:

(i) generating the u-partition of I, namely {Iu=x : x ∈ uI}
(a partition cell Iu=x is defined as shown in (71) below)

(ii) updating each cell Iu=x in the partition with the DRS D
(iii) taking the union of the resulting output info states

(71) Iu=x := {i ∈ I : ui = x}
(72) distu(D) := λIst.λJst. uI = uJ ∧ ∀xe ∈ uI(DIu=x Ju=x)
(73) Updating the info state I with the DRS D distributively over the

dref u:
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Iu=xIu=x′

Iu=x′′ . . .

Ju=xJu=x′

Ju=x′′ . . .

DIu=x Ju=x

DIu=x′ Ju=x′

DIu=x′′ Ju=x′′

The first conjunct in (72) is required to ensure that there is a bijection
between the partition induced by the dref u over the input state I and
the one induced over the output state J. Without this conjunct, we could
introduce arbitrary new values for u in the output state J, i.e., arbitrary
new partition cells.9 The second conjunct in (72) is the one that actually
defines the distributive update: the DRS D relates every partition cell in
the input state I to the corresponding partition cell in the output state
J, as shown in (73) above.

2.5 Dynamic Generalized Quantifiers

The translation for generalized determiners is provided in (77) below.
The justification for the fact that we use the distributivity operators
〈u〉(. . . ) and 〈u′〉(. . . ) in the translation of generalized determiners has
to do with the existential commitment customarily associated with new
dref introduction.

(74) u(D) := λIst.λJst. Iu=F = Ju=F ∧ uI 6= ∅ ∧ distu(D)Iu 6=F Ju 6=F

(75) 〈u〉(D) := λIst.λJst. Iu=F = Ju=F ∧ (uI = ∅→ I = J) ∧
(uI 6= ∅→ distu(D)Iu 6=F Ju 6=F)

(76) DET{u, u′} := λIst. DET(uI, u′ I),
where DET is a static determiner.

(77) detu,u′vu  
λPet.λP′et. maxu(〈u〉(P(u))); maxu′vu(〈u′〉(P′(u′))); [DET{u, u′}]

The existential commitment associated with new dref introduction is
built into:

9Nouwen (2003:87) was the first to observe that we need to add the first conjunct
in (72) to the original definition of distributivity in van den Berg (1996:145,(18)).
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(i) the definition of lexical relations – see the conjunct Iu1 6=F,...,un 6=F 6=
∅ in (34) above

(ii) the definition of the operator u(. . . ) – see the conjunct uI 6= ∅ in
(74) above

We need these non-emptiness requirements because the pair of empty
info states 〈∅st, ∅st〉 is, on one hand, in the denotation of [u] for any dref
u (see definition (18) above) and, on the other hand, in the denotation
of distu(D) for any dref u and DRS D (see definition (72) above).

Crucially, however, there is no existential commitment in the trans-
lation of detu,u′vu, which employs the distributivity operators 〈u〉(. . . )
and 〈u′〉(. . . ) defined in (75) above. The fact that we use these distribu-
tivity operators enables us to capture the meaning of both upward and
downward monotonic quantifiers by means of the same translation.

The problem posed by downward monotonic quantifiers is that their
nuclear scope set can or has to be empty. For example, after a successful
update with a nou,u′vu-quantification, the nuclear scope set u′ is neces-
sarily empty, i.e., the dref u′ always stores only the dummy individual
F relative to the output info state. This, in turn, means that no lexical
relation in the nuclear scope DRS that has u′ as an argument can be sat-
isfied. The second conjunct uI = ∅→ I = J in (75) resolves the conflict
between the emptiness requirement enforced by a no-quantification and
the non-emptiness requirement enforced by lexical relations.10

Another important feature of the translation in (77) above is the fact
that it uses maximization operators to extract both the restrictor and the
nuclear scope set of individuals. These max operators (and the nuclear
scope one in particular) are essential for the derivation of the correct
truth conditions associated generalized quantifiers – and downward
monotonic quantifiers in particular.

The max-based definition of generalized quantification makes an in-
dependent – and correct – prediction: it predicts that anaphora to re-

10Even if definition (77) allows for empty restrictor and nuclear scope sets, we still
capture the fact that subsequent anaphora to such empty sets is infelicitous (e.g.,
anaphora to the nuclear scope sets in (60) and (61) above) because pronouns con-
tribute non-emptiness requirements – see the sing(u) condition contributed by it in
(37) above and the u 6= ∅ condition contributed by they in (40).

Moreover, the fact that the second conjunct in (75) requires the identity of the in-
put and output states I and J correctly predicts that anaphora to both empty re-
strictor / nuclear scope sets and indefinites in restrictor / nuclear scope DRSs as-
sociated with such empty sets is infelicitous. For example, the nuclear scope DRS of
a successful nou,u′vu-quantification, i.e., maxu′vu(〈u′〉(P′(u′))), will always be a test.
Hence, we correctly predict that anaphora to any indefinites in the nuclear scope of
a no-quantification is infelicitous, e.g., Harvey courts au′′ woman at nou,u′vu convention.
#Sheu′′ is very pretty / #Theyu′′ are very pretty (on the narrow-scope indefinite reading).
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strictor / nuclear scope sets is always anaphora to maximal sets, i.e., E-
type anaphora.11 Thus, the maximality of anaphora to quantifier sets is
an automatic consequence of the fact that we independently need max-
operators to formulate truth-conditionally correct dynamic meanings
for quantifiers. This is one of the major results in van den Berg (1996),
preserved here.

We end this subsection with the observation that maximization and
distributivity enable us to give appropriate translations for non-anaphoric
definites. Russellian definites are translated by combining the maxu op-
erator and the sing(u) condition, as shown in (78) below. This is needed
to interpret the DP the banquet in (6b) above. Link-style plural definites
(under their distributive reading) are translated as shown in (79).

(78) thesg:u  λPet.λP′et. maxu(P(u)); [sing(u)]; P′(u)
(79) thepl:u  λPet.λP′et. maxu(u(P(u))); [u 6= ∅]; u(P′(u))

2.6 Quantificational Subordination

We can now analyze discourses (5) and (6). We start with the two
quantifier scopings that are possible for the discourse-initial sentence
(5a/6a). For simplicity, we assume that the two scopings are due to the
two different lexical entries for the ditransitive verb court-at provided in
(80) and (81) below: court-at1 assigns the indefinite a woman wide scope
relative to every convention, while court-at2 assigns it narrow scope. This
quantifier scoping mechanism is just a matter of presentational conve-
nience; any other one (quantifier raising, Cooper storage, type-shifting
etc.) would be equally suitable. The basic syntactic structure of sentence
(5a/6a) is given in (82).

(80) court-at1  
λQ′(et)t.λQ′′(et)t.λve. Q′(λv′e. Q′′(λv′′e . [COURT-AT{v, v′, v′′}]))

(81) court-at2  
λQ′(et)t.λQ′′(et)t.λve. Q′′(λv′′e . Q′(λv′e. [COURT-AT{v, v′, v′′}]))

(82) Harveyu1 [[court-at1/2 [au4 woman]] [everyu2,u3vu2 convention]]

We will assume that the restrictor set of the every-quantification is non-
empty, so we can safely replace the distributivity operators 〈u2〉(. . . ) and

〈u3〉(. . . ) with the simpler distributivity operators u2(. . . ) and u3(. . . ).
The representations of the two quantifier scopings for sentence (5a/6a)

11Recall the Evans examples Few senators admire Kennedy and they are very junior and
Harry bought some sheep. Bill vaccinated them – in addition to (59), (60) and (61) above.
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are provided in (85) and (86) below (redundant distributivity operators
are omitted).12

(83) everyu2,u3vu2  
λPet.λP′et. maxu2(u2(P(u2))); maxu3vu2(u3(P′(u3)));
[EVERY{u2, u3}]

(84) everyu2,u3vu2 convention 
λP′et. maxu2([CONVENTION{u2}]); maxu3vu2(u3(P′(u3)));
[EVERY{u2, u3}]

(85) au4 woman>>everyu2,u3vu2 convention 
[u1 | u1 = HARVEY]; [u4 | sing(u4), WOMAN{u4}];
maxu2([CONVENTION{u2}]); maxu3vu2([COURT-AT{u1, u4, u3}]);
[EVERY{u2, u3}]

(86) everyu2,u3vu2 convention>>au4 woman 
[u1 | u1 = HARVEY]; maxu2([CONVENTION{u2}]);
maxu3vu2(u3([u4 | sing(u4), WOMAN{u4}, COURT-AT{u1, u4, u3}]));
[EVERY{u2, u3}]

The representation in (85) updates the discourse-initial info state IF as
follows. First, we store Harvey in u1 and one woman in u4. Then, we
store the set of all conventions in u2 in a pointwise manner, i.e., one con-
vention per row in the matrix. This is tantamount to associating Harvey
and the u4-woman with each and every convention in the resulting plu-
ral info state. The next update introduces u3 and stores in it the set of all
conventions at which Harvey courts the u4-woman. Finally, we test that
the set of u2-conventions, i.e., all of them, and the set of u3-conventions,
i.e., the conventions where Harvery courts the u4-woman, stand in the
EVERY relation, i.e., we have that u2 I ⊆ u3 I. If this final test is satis-
fied, the update in (85) is true relative to the input state IF – and this
can happen iff there is a woman such that Harvey courts her at every
convention, as depicted in (87) below.

(87) IF
[u1|u1=HARVEY]
========⇒ u1

harvey
[u4|sing(u4),WOMAN{u4}]==============⇒

12I assume that the following constraint (possibly pragmatic in nature – e.g., manner
/ relevance based) is satisfied by every new dref introduction update: the dummy
individual F is not assigned as a value for any newly introduced dref unless this is
absolutely necessary, i.e., required for the satisfaction of subsequent updates.

For example, in (85), the dref u1 will only store harvey in the output info state (and
not harvey and the dummy individualF), the dref u4 will only store a woman in the
output state and u2 will only store conventions (all of them). Given the fact that u3 is
a structured subset of u2, u3 is the only dref that could conceivably store the dummy
individualF in (part of) the output state – but even this is not possible in (85) because
of the final condition EVERY{u2, u3}.
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u1 u4
harvey woman1

maxu2 ([CONVENTION{u2}])==============⇒

u1 u4 u2

harvey woman1 conv1
harvey woman1 conv2

harvey woman1 conv3

maxu3vu2 ([COURT-AT{u1,u4,u3}]); [EVERY{u2,u3}]===========================⇒

u1 u4 u2 u3

harvey woman1 conv1 conv1
harvey woman1 conv2 conv2

harvey woman1 conv3 conv3

woman1 is courted by
harvey at every convention

The representation in (86) updates the discourse-initial info state IF as
follows. First, we store Harvey in u1. Then, we introduce the set of
all conventions relative to the dref u2. Then, we store in u3 the set of
conventions such that, when we take each convention one at a time, we
can introduce one u4-woman relative to it such that Harvery courts this
woman at the convention under consideration. The distributive oper-
ator u3(. . . ) ensures that the u4-women are introduced relative to one
u3-convention at a time and, at the end of this distributive update, they
are collected together in the output info state in such a way that, for
every row, the u4 woman in that row was courted at the u3 convention
in that row. Importantly, the women may be different from conven-
tion to convention. Finally, we test that the set of u2-conventions, i.e.,
all of them, and the set of u3-conventions, i.e., the conventions where
Harvery courts the corresponding u4-woman, stand in the EVERY re-
lation. If this final test is satisfied, the update in (86) is true relative to
the input state IF – and this can happen iff every convention is such that
Harvey courts some woman or other at that convention, as depicted in
(88) below.

(88) IF
[u1|u1=HARVEY]
========⇒ u1

harvey
maxu2 ([CONVENTION{u2}])==============⇒

u1 u2

harvey conv1
harvey conv2

harvey conv3

maxu3vu2 (u3 (... ))
=========⇒
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

u1 u2 u3

harvey conv1 conv1

[u4|sing(u4),WOMAN{u4},COURT-AT{u1,u4,u3}]=========================⇒

u1 u2 u3 u4
harvey conv1 conv1 woman1

u1 u2 u3

harvey conv2 conv2

[u4|sing(u4),WOMAN{u4},COURT-AT{u1,u4,u3}]=========================⇒

u1 u2 u3 u4
harvey conv2 conv2 woman2

u1 u2 u3

harvey conv3 conv3

[u4|sing(u4),WOMAN{u4},COURT-AT{u1,u4,u3}]=========================⇒

u1 u2 u3 u4
harvey conv3 conv3 woman3



[EVERY{u2,u3}]========⇒

u1 u2 u3 u4
harvey conv1 conv1 woman1
harvey conv2 conv2 woman2

harvey conv3 conv3 woman3

woman1 is courted by harvey at conv1
woman2 is courted by harvey at conv2
woman3 is courted by harvey at conv3

We can now see how sentence (5b) – in particular, the singular mor-
phology on the pronoun sheu4 – forces the wide-scope indefinite read-
ing: the condition sing(u4) in (89) below effectively conflates the two
scopings by requiring the set of u4-women obtained after updating with
(85) or (86) to be a singleton. This requirement leaves the truth condi-
tions derived on the basis of (85) untouched, but makes the truth con-
ditions associated with (86) strictly stronger. This is because sing(u4)
requires the set of women {woman1, woman2, woman3} stored in the fi-
nal output state in (88) above to be a singleton set, i.e., it requires that
woman1 = woman2 = woman3.

(89) sheu4 is very pretty [sing(u4), VERY-PRETTY{u4}]

In contrast, sentence (6b) contains the adverb of quantification alwaysu5vu3 ,
which can take scope above or below the singular pronoun sheu4 . In the
former case, the u4-uniqueness requirement is weakened by being rela-
tivized to u3-conventions. As shown in (90) below, we take the meaning
of alwaysu5vu3 to be a universal quantification over an anaphorically-
retrieved restrictor, which is none other than the nuclear scope dref
introduced by the quantifier everyu2,u3vu2 convention in the preceding
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sentence. The general format for the interpretation of quantificational
expressions that anaphorically retrieve their restrictors is provided in
(91).

(90) alwaysu5vu3  λPet. maxu5vu3(u5(P(u5))); [EVERY{u3, u5}]
(91) detu′vu  λPet. maxu′vu(〈u′〉(P(u′))); [DET{u, u′}]

The definite description the banquet in (6b) is a Russellian definite de-
scription (see (78) above), which contributes existence and model-level
uniqueness (relativized to conventions: there is a unique banquet per
convention13). However, for simplicity, we will assume that sentence
(6b) contributes a transitive predication of the form COME-WITH-HARVEY-
TO-BANQUET-OF, abbreviated as COME, that relates women and con-
ventions and that can be translated in two different ways corresponding
to the two possible relative scopes of sheu4 and alwaysu5vu3 , as shown in
(92) and (93) below. That is, the scoping technique is the same as in (80)
and (81) above. The translation in (92) gives the pronoun sheu4 wide
scope relative to the adverb alwaysu5vu3 , while the translation in (93)
gives the pronoun narrow scope relative to the adverb.

(92) come-to-banquet-of 1  
λQ(et)t.λQ′(et)t. Q′(λv′e. Q(λve. [COME{v′, v}]))

(93) come-to-banquet-of 2  
λQ(et)t.λQ′(et)t. Q(λve. Q′(λv′e. [COME{v′, v}]))

(94) sheu4 [[alwaysu5vu3 ] come-to-banquet-of1/2]

The two translations for sentence (6b), obtained on the basis of the syn-
tactic structure in (94) above, are provided in (95) and (96) below (re-
dundant distributivity operators are omitted).

(95) sheu4>>alwaysu5vu3  
[sing(u4)]; maxu5vu3([COME{u4, u5}]); [EVERY{u3, u5}]

(96) alwaysu5vu3>>sheu4  
maxu5vu3(u5([sing(u4), COME{u4, u5}])); [EVERY{u3, u5}]

13The existence and uniqueness are contributed by the Russellian definite arti-
cle, translated as: theu6  λPet.λP′et. maxu6(P(u6)); [sing(u6)]; P′(u6). The
relational noun banquet is anaphoric to u3-conventions and is translated as: ban-
quetu3  λve. [banquet{v, u3}] (this is the set of banquets v organized at
convention u3). Putting the two translations together, we obtain the follow-
ing representation for our Russellian definite description: theu6 banquetu3  
λPet. maxu6([BANQUET{u6, u3}]); [sing(u6)]; P(u6). The relativized uniqueness ef-
fect, i.e., the intuition that the banquet is unique per u3-convention, is due to the fact
that the definite description is in the scope of the adverb alwaysu5vu3 and, therefore,
in the scope of the distributivity operator u5(. . . ) contributed by the adverb.
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Thus, there are two possible representations for sentence (6a), i.e., (85)
and (86), and two possible representations for sentence (6b), i.e., (95)
and (96). Out of the four combinations, three end up effectively requir-
ing the indefinite au4 woman to have wide scope relative to everyu2,u3vu2

convention. The fourth combination (86+96), provided in (97) below, en-
codes the ‘narrow-scope indefinite’ reading that is intuitively available
for discourse (6), but not for (5).

(97) [u1 | u1 = HARVEY]; maxu2([CONVENTION{u2}]);
maxu3vu2(u3([u4 | sing(u4), WOMAN{u4}, COURT-AT{u1, u4, u3}]));
[EVERY{u2, u3}];
maxu5vu3(u5([sing(u4), COME{u4, u5}])); [EVERY{u3, u5}]

(98) IF
[u1|u1=HARVEY]
========⇒ u1

harvey
maxu2 ([CONVENTION{u2}])==============⇒

u1 u2

harvey conv1
harvey conv2

harvey conv3

maxu3vu2 (u3 (... ))
=========⇒



u1 u2 u3

harvey conv1 conv1

[u4|sing(u4),WOMAN{u4},COURT-AT{u1,u4,u3}]=========================⇒

u1 u2 u3 u4
harvey conv1 conv1 woman1

u1 u2 u3

harvey conv2 conv2

[u4|sing(u4),WOMAN{u4},COURT-AT{u1,u4,u3}]=========================⇒

u1 u2 u3 u4
harvey conv2 conv2 woman2

u1 u2 u3

harvey conv3 conv3

[u4|sing(u4),WOMAN{u4},COURT-AT{u1,u4,u3}]=========================⇒

u1 u2 u3 u4
harvey conv3 conv3 woman3


[EVERY{u2,u3}]========⇒

u1 u2 u3 u4
harvey conv1 conv1 woman1
harvey conv2 conv2 woman2

harvey conv3 conv3 woman3

maxu5vu3 (u5 (... ))
=========⇒

37





u1 u2 u3 u4 u5

harvey conv1 conv1 woman1 conv1

[sing(u4),COME{u4,u5}]============⇒

u1 u2 u3 u4 u5

harvey conv1 conv1 woman1 conv1

u1 u2 u3 u4 u5

harvey conv2 conv2 woman2 conv2

[sing(u4),COME{u4,u5}]============⇒

u1 u2 u3 u4 u5

harvey conv2 conv2 woman2 conv2

u1 u2 u3 u4 u5

harvey conv3 conv3 woman3 conv3

[sing(u4),COME{u4,u5}]============⇒

u1 u2 u3 u4 u5

harvey conv3 conv3 woman3 conv3


[EVERY{u3,u5}]========⇒

u1 u2 u3 u4 u5

harvey conv1 conv1 woman1 conv1
harvey conv2 conv2 woman2 conv2

harvey conv3 conv3 woman3 conv3

As depicted in (98) above, the ‘narrow-scope indefinite’ reading is avail-
able because the two occurrences of the condition sing(u4) are in the
scope of two distributivity operators over conventions u3(. . . ) and u5(. . . ).

Note that we allow for models in which Harvey courts more than
one woman at a convention and, in addition, not every woman courted
by Harvey comes to the banquet with him. We only require one of the
women he courts at a convention to come to the banquet of that conven-
tion with him. That is, singular indefinites – and subsequent singular
anaphora to them – have a weak reading. This issue is the main focus
of the next subsection.

In sum, the present dynamic system – dubbed Plural Compositional
DRT (PCDRT) – enables us to formulate in classical type logic a compo-
sitional account of the intra- and cross-sentential interactions between
quantifiers, anaphora and number morphology exhibited by the quan-
tificational subordination discourses in (5) and (6) above. The dynamics
of plural info states and the static meaning for generalized determin-
ers are integrated in an even-handed way, which enables us to provide
an analysis of quantificational subordination as structured anaphora to
quantifier domains.

2.7 Donkey Anaphora

Our current meanings for generalized determiners, indefinites and pro-
nouns derive weak donkey readings. Consider again the typical weak
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donkey sentence in (58) above. Its PCDRT translation, which derives
the intuitively-correct interpretation, is provided in (99) below.

(99) maxu(u([PERSON{u}]; [u′ | sing(u′), DIME{u′}, HAVE{u, u′}]));
maxu′′vu(u′′([sing(u′), PUT-IN-METER{u′′, u′}]));
[EVERY{u, u′′}]

As the PCDRT system currently stands, it cannot derive the intuitively-
correct interpretation for strong donkey sentences like (55) above. How-
ever, in the spirit of Dekker (1993) (see also Schwarzschild 1989), we can
import the co-indexation mechanism in Heim (1982) and capture strong
donkey readings. Moreover, we will preserve our solution to the pro-
portion problem and the account will automatically generalize to mixed
weak & strong donkey sentences of the kind discussed in Brasoveanu
(2008).

The main proposal is as follows: we let the indefinites that intu-
itively receive a strong reading behave as open formulas, very much
along the lines of classical DRT and FCS. Thus, strong indefinites are ex-
actly like ordinary, weak indefinites except they do not introduce their
own dref, which is instead introduced by the main generalized deter-
miner of the donkey sentence. In other words, we allow generalized
determiners to be multiply selective instead of singly selective.

Importantly, we do not run into the proportion problem because we
have decomposed quantification and separated the static DET condi-
tion from the maximization and distributivity operators that regulate
the dynamics of dependencies.

The resulting indexation of the paradigmatic example of strong don-
key sentences is provided in (100) below. The universal determiner in-
troduces its restrictor dref u, its nuclear scope dref u′′ and the strong
donkey dref u′. The indefinite is basically anaphoric to this dref (just
as the donkey pronoun is) and its translation is identical to the one for
singular anaphoric definites in (53) above.

(100) Everyu,u′′vu,u′ farmer who owns au′ donkey beats itu′ .

This co-indexation mechanism is just a way to represent the contextual,
pragmatically-determined coercion of the meaning of dynamic general-
ized determiners that Kanazawa (1994) argues for. Taking co-indexation
to be the representation of this kind of coercion / quantifier domain
manipulation correctly restricts the availability of strong readings to
quantificational environments and predicts that the indefinite can be
‘reinterpreted’ as a definite only in this kind of configurations.

The translation for multiply selective generalized determiners is given
in terms of multiply selective maximization and distributivity opera-
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tors. These are a straightforward generalization of the singly selective
operators we have already defined, as shown below.

(101) maxu,u′(D) := λIst.λJst. ([u, u′]; D)I J ∧
¬∃Kst(([u, u′]; D)IK ∧ Ju 6=F,u′ 6=F ( Ku 6=F,u′ 6=F)14

(102) distu,u′(D) :=
λIst.λJst. ∀x∀x′(Iu=x,u′=x′ 6= ∅↔ Ju=x,u′=x′ 6= ∅)∧
∀x∀x′(Iu=x,u′=x′ 6= ∅→ DIu=x,u′=x′ Ju=x,u′=x′)15

(103) u,u′(D) := λIst.λJst. (Iu=F = Ju=F ∧ Iu′=F = Ju′=F)∧
Iu 6=F,u′ 6=F 6= ∅ ∧ distu,u′(D)Iu 6=F,u′ 6=F Ju 6=F,u′ 6=F

16

(104) 〈u,u′〉(D) := λIst.λJst. (Iu=F = Ju=F ∧ Iu′=F = Ju′=F)∧
(Iu 6=F,u′ 6=F = ∅→ I = J)∧
(Iu 6=F,u′ 6=F 6= ∅→ distu,u′(D)Iu 6=F,u′ 6=F Ju 6=F,u′ 6=F)17

(105) detu,u′′vu,u′  
λPet.λP′et. maxu,u′(〈u,u′〉(P(u))); maxu′′vu(〈u′′,u′〉(P′(u′′)));
[DET{u, u′′}]18

The strong donkey sentence in (100) above is translated as shown in
(107) below. Just as before, we assume that the domain of the universal
quantifier is non-empty, so we can use the simpler distributivity opera-
tors u,u′(. . . ) and u′′,u′(. . . ).

(106) everyu,u′′vu,u′  
λPet.λP′et. maxu,u′(u,u′(P(u))); maxu′′vu(u′′,u′(P′(u′′)));
[EVERY{u, u′′}]

(107) maxu,u′(u,u′([FARMER{u}]; [sing(u′), DONKEY{u′}, OWN{u, u′}]));
maxu′′vu(u′′,u′([sing(u′), BEAT{u′′, u′}])); [EVERY{u, u′′}]

The sequence of updates in (107) proceeds as follows. The restrictor up-
date maxu,u′(u,u′(. . . )) stores under u and u′ all the pairs of individuals

14maxu1,...,un(D) := λIst.λJst. ([u1, . . . , un]; D)I J ∧
¬∃Kst(([u1, . . . , un]; D)IK ∧ Ju1 6=F,...,un 6=F ( Ku1 6=F,...,un 6=F).

15distu1,...,un(D) :=
λIst.λJst. ∀x1 . . . ∀xn(Iu1=x1,...,un=xn 6= ∅↔ Ju1=x1,...,un=xn 6= ∅)∧
∀x1 . . . ∀xn(Iu1=x1,...,un=xn 6= ∅→ DIu1=x1,...,un=xn Ju1=x1,...,un=xn).

16
u1,...,un(D) := λIst.λJst. (Iu1=F = Ju1=F ∧ . . . ∧ Iun=F = Jun=F)∧

Iu1 6=F,...,un 6=F 6= ∅ ∧ distu1,...,un(D)Iu1 6=F,...,un 6=F Ju1 6=F,...,un 6=F.
17
〈u1,...,un〉(D) := λIst.λJst. (Iu1=F = Ju1=F ∧ . . . ∧ Iun=F = Jun=F)∧

(Iu1 6=F,...,un 6=F = ∅→ I = J)∧
(Iu1 6=F,...,un 6=F 6= ∅→ distu1,...,un(D)Iu1 6=F,...,un 6=F Ju1 6=F,...,un 6=F).

18detu,u′vu,u1,...,un  
λPet.λP′et. maxu,u1,...,un(〈u,u1,...,un〉(P(u))); maxu′vu(〈u′ ,u1,...,un〉(P′(u′)));
[DET{u, u′}].
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such that, relative to any row i in the output info state, ui is a farmer
and u′i is a donkey that ui owns. Importantly, the sing(u′) condition
contributed by the singular indefinite au′ donkey is in the scope of the
distributivity operator u,u′(. . . ), which ensures that this singleton con-
dition is vacuously satisfied. The nuclear scope update stores under u′′

all the u-farmers that beat each and every one of their corresponding
u′-donkeys. This maximal & distributive reading for the singular don-
key pronoun itu′ is due to the distributivity operator u′′,u′(. . . ), which
instructs us to examine each pair consisting of a farmer and a donkey,
i.e., each row i in the matrix, and check that the farmer u′′i in that pair
beats the corresponding donkey u′i. Thus, the distributivity operator
u′′,u′(. . . ) ensures the vacuous satisfaction of the second occurrence of
the condition sing(u′), which is contributed by the singular donkey
pronoun. Finally, we check that the set of u-individuals, i.e., farmers
that own at least one donkey, is included in the set of u′′-individuals,
i.e., farmers that own at least one donkey and beat every single donkey
they own. This sequence of updates is depicted in (108) below.

(108) IF
maxu,u′ (u,u′ (... ))
========⇒
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

u u′

f armer1 donkey1

[FARMER{u}];[sing(u′),DONKEY{u′},OWN{u,u′}]
=========================⇒

u u′

f armer1 donkey1

u u′

f armer1 donkey2

[FARMER{u}];[sing(u′),DONKEY{u′},OWN{u,u′}]
=========================⇒

u u′

f armer1 donkey2

u u′

f armer2 donkey3

[FARMER{u}];[sing(u′),DONKEY{u′},OWN{u,u′}]
=========================⇒

u u′

f armer2 donkey3

u u′

f armer3 donkey4

[FARMER{u}];[sing(u′),DONKEY{u′},OWN{u,u′}]
=========================⇒

u u′

f armer3 donkey4

u u′

f armer3 donkey5

[FARMER{u}];[sing(u′),DONKEY{u′},OWN{u,u′}]
=========================⇒

u u′

f armer3 donkey5

u u′

f armer3 donkey6

[FARMER{u}];[sing(u′),DONKEY{u′},OWN{u,u′}]
=========================⇒

u u′

f armer3 donkey6



, i.e.,

u u′

f armer1 donkey1
f armer1 donkey2

f armer2 donkey3

f armer3 donkey4
f armer3 donkey5

f armer3 donkey6

maxu′′vu(u′′ ,u′ (... ))
==========⇒
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

u u′ u′′

f armer1 donkey1 f armer1

[sing(u′),BEAT{u′′,u′}]
============⇒

u u′ u′′

f armer1 donkey1 f armer1

u u′ u′′

f armer1 donkey2 f armer1

[sing(u′),BEAT{u′′,u′}]
============⇒

u u′ u′′

f armer1 donkey2 f armer1

u u′ u′′

f armer2 donkey3 f armer2

[sing(u′),BEAT{u′′,u′}]
============⇒

u u′ u′′

f armer2 donkey3 f armer2

u u′ u′′

f armer3 donkey4 f armer3

[sing(u′),BEAT{u′′,u′}]
============⇒

u u′ u′′

f armer3 donkey4 f armer3

u u′ u′′

f armer3 donkey5 f armer3

[sing(u′),BEAT{u′′,u′}]
============⇒

u u′ u′′

f armer3 donkey5 f armer3

u u′ u′′

f armer3 donkey6 f armer3

[sing(u′),BEAT{u′′,u′}]
============⇒

u u′ u′′

f armer3 donkey6 f armer3



[EVERY{u,u′′}]
========⇒

u u′ u′′

f armer1 donkey1 f armer1
f armer1 donkey2 f armer1
f armer2 donkey3 f armer2

f armer3 donkey4 f armer3

f armer3 donkey5 f armer3

f armer3 donkey6 f armer3

In sum, the translation in (107) derives the intuitively-correct, strong
reading for sentence (100) because the multiply selective distributivity
operators u,u′(. . . ) and u′′,u′(. . . ) neutralize the two occurrences of the
sing(u′) condition – which is now vacuously satisfied. Consequently,
the maximization operator maxu,u′(. . . ) in the restrictor stores in u′ all
the donkeys owned by each u-farmer – and not only one such donkey
– and the nuclear scope retrieves all these donkeys one at a time.
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We correctly predict that singular donkey anaphora can only have
weak, i.e., existential & singular, or strong, i.e., maximal & distributive,
readings – irrespective of which generalized determiner we co-index
the indefinite with. This is because the co-indexation is cashed out in
terms of multiply selective maximization and distributivity operators
that are common to all determiners and that are completely separate
from the static DET condition that is specific to each generalized deter-
miner.

The present account of donkey anaphora generalizes to mixed weak
& strong relative-clause donkey sentences like the one in (109) below,
which are problematic for many static and dynamic accounts (see Brasoveanu
2008 for more discussion).

(109) Everyu1,u4vu1,u2 person who buys au2 book on amazon.com and
has au3 credit card uses itu3 to pay for itu2 .

The most salient interpretation of sentence (109) is that, for every book
(strong reading) that any credit-card owner buys on amazon.com, there
is some credit card (weak reading) that s/he uses to pay for the book.
In particular, the credit card can vary from book to book, e.g., I can use
my MasterCard to buy set theory books and my Visa to buy detective
novels, which means that even weak indefinites like au3 credit card can
introduce non-singleton sets. For each buyer, the two sets of objects, i.e.,
all the books purchased on amazon.com and some of the credit cards
that the buyer has, are correlated and the dependency between these
sets – left implicit in the restrictor of the quantification – is specified in
the nuclear scope: each book is correlated with the credit card that was
used to pay for it. This paraphrase of the meaning of sentence (109) is
formalized in classical (static) first-order logic as shown in (110) below.

(110) ∀x∀y(PERSON(x) ∧ BOOK(y) ∧ BUY(x, y)∧
∃z(CARD(z) ∧ HAVE(x, z))→
∃z′(CARD(z′) ∧ HAVE(x, z′) ∧ USE-TO-PAY(x, z′, y)))

The indefinite au2 book receives a strong reading, which in our account
means that it is co-indexed with the determiner everyu1,u4vu1,u2 . The re-
sulting translation for this mixed-reading donkey sentence is provided
in (112) below.

(111) everyu1,u4vu1,u2  
λPet.λP′et. maxu1,u2(u1,u2(P(u1))); maxu4vu1(u4,u2(P′(u4)));
[EVERY{u1, u4}]

(112) maxu1,u2(u1,u2([PERSON{u1}]; [sing(u2), BOOK{u2}, BUY{u1, u2}];
[u3 | sing(u3), CARD{u3}, HAVE{u1, u3}]));
maxu4vu1(u4,u2([sing(u2), sing(u3), USE-TO-PAY{u4, u3, u2}]));
[EVERY{u1, u4}]
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The update proceeds as follows. First, we store in u1 all the people that
buy books and have credit cards and in u2 all the books that they buy.
Then, relative to each u1-person and each u2-book, we (non-deterministically)
store in u3 one credit card that the person has. This is a consequence of
the fact that the sing(u3) condition is in the scope of the multiply selec-
tive distributivity operator u1,u2(. . . ). The nuclear scope update stores
in u4 all the u1 people such that, for each of the u2-books they buy, they
use the corresponding u3-card to pay for the book. Finally, we test that
the set of u1-people is included in the set of u4-people. The entire se-
quence of updates is true iff there is at least one way to successfully
update the initial info state IF with this sequence of updates, which is
the case iff the first-order formula in (110) above can be satisfied.

3 Decomposing Modal Quantification

This section extends Plural Compositional DRT (PCDRT) with drefs for
possible worlds, which enables us to decompose dynamic modal quan-
tification and provide an analysis of modal subordination that is paral-
lel to the analysis of quantificational subordination.

3.1 Intensional PCDRT

We extend Dynamic Ty2 (and PCDRT) with modal drefs by adding a
new basic type w for possible worlds. The result is a Dynamic Ty3
logic with four basic types: t (truth values), e (individuals; variables:
x, x′, . . . ), w (possible worlds; variables: w, w′, . . . ) and s (variable as-
signments; variables: i, i′, . . . , j, j′, . . . ); Dt, De, Dw and Ds are non-empty
and pairwise disjoint sets.

In the spirit of van Rooy (1998) and Stone (1999), we analyze modal
anaphora by means of drefs for static modal objects. This enables us
to explicitly capture the parallels between anaphora and quantification
in the individual and modal domains. The resulting Intensional PC-
DRT system takes the research program in Muskens (1996), i.e., the uni-
fication of Montague semantics and DRT, one step further: it unifies
in classical type logic the static Lewis (1973)-Kratzer (1981) analysis of
modal quantification and the extensional Dynamic Plural Logic of van
den Berg (1996).

Just as before, subscripts on terms indicate their types: xe, ww, is, . . . .
We also subscript lexical relations with their world variable – for exam-
ple, SEEw(x, y) is intuitively interpreted as x sees y in world w. These
notational conventions, meant to improve readability, are the reason
for using boldfaced w for the type of possible worlds (while all the
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other basic types are italicized) – it distinguishes this type from the sub-
scripted world variable w.

Just as a dref for individuals u is a function of type se from assign-
ments is to individuals xe, a dref for possible worlds p is a function
of type sw from assignments is to possible worlds ww. Intuitively, the
world pswis is the world that i assigns to the dref p.

A dref p stores a set of worlds, i.e., a proposition, with respect to
an info state I, as shown in (113) below: p[I] is the image of the set of
assignments I under the function p.

(113) p[I] := {pswis : i ∈ I}

Possible-world drefs have two uses:

(i) they store possible scenarios (in the sense of Stone 1999), e.g., the
set of worlds introduced by the conditional antecedent in (10a),
i.e., a possible scenario containing a man that is alive, which is
further specified by the consequent of the conditional in (10a)

(ii) they store propositional contents, e.g., the content of the entire
conditional in (10a), i.e., the content of the premise of the Aquinas
argument (this is just a specific, restricted version of the previous
use and, as such, can be derived from it)

In an intensional Fregean / Montagovian framework, the compositional
aspect of interpretation is largely determined by the types for the exten-
sions of the saturated expressions, i.e., names and sentences, plus the
type that enables us to build intensions out of these extensions. Let us
abbreviate them as e, t and s, respectively. A sentence is still interpreted
as a DRS, i.e., as a relation between info states, hence t := (st)((st)t).
A name is still interpreted as an individual dref, hence e := se. Finally,
s := sw, i.e., we use the type of possible-world drefs to build intensions.

The basic translations for some lexical items are provided in table
(114) below. They are simply the intensional counterparts of their ex-
tensional PCDRT translations. We will henceforth use the following
notational conventions:

• u, u′, . . . are drefs (i.e., constants) of type e and v, v′, . . . are vari-
ables of type e
• p, p′, . . . are drefs (i.e., constants) of type s and q, q′, . . . are vari-

ables of type s
• P ,P ′, . . . are variables over dynamic propositions; their type is st
• P, P′, . . . are variables over dynamic intensional properties of in-

dividuals; their type is e(st)
• Q, Q′, . . . are variables over dynamic intensional quantifiers; their

type is (e(st))(st)
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(114) Lexical Item Translation

Type
e := se

t := (st)((st)t)
s := sw

alive λve.λqs. [ALIVEq{v}] e(st)
where ALIVE is of type e(wt)

have λQ(e(st))(st).λve. ((e(st))(st))(e(st))
Q(λv′e.λqs. [HAVEq{v, v′}])
where HAVE is of type e(e(wt))

man λve.λqs. [MANq{v}] e(st)
where MAN is of type e(wt)

heu λPe(st).λqs. [singq(u)]; P(u)(q) (e(st))(st)
Harveyu λPe(st).λqs. (e(st))(st)

[u | u = HARVEY]; P(u)(q)
au λPe(st).λP′e(st).λqs. (e(st))((e(st))(st))

[u | singq(u)]; P(u)(q); P′(u)(q)
detu,u′vu λPe(st).λP′e(st).λqs. (e(st))((e(st))(st))

maxu(〈u〉(P(u)(q)));
maxu′vu(〈u′〉(P′(u′)(q)));
[DETq{u, u′}]

not λPst.λqs. [∼ P(q)] (st)(st)

The intensional singleton requirement singp(u), the intensional condi-
tion DETp{u, u′} and intensional lexical relations are defined below.
Just as we have a dummy individual Fe, we will assume that there is
a dummy worldFw relative to which all lexical relations are false, i.e.,
any n-ary relation of the form Rw(x1, . . . , xn) is false if w isF. We can
think of the dummy worldFw as the world where no individual exists.
Lexical relations are false inFw because a relation between individuals
obtains at a world only if the individuals exist in that world.

(115) Ip 6=F := {i ∈ I : pi 6=F}
(116) pI := {pi : i ∈ Ip 6=F}
(117) Ip=w := {i ∈ I : pi = w}
(118) singp(u) := λIst. pI 6= ∅ ∧ ∀w ∈ pI(sing(u)Ip=w)

(119) DETp{u, u′} := λIst. pI 6= ∅ ∧ ∀w ∈ pI(DET{u, u′}Ip=w)
(120) Ip 6=F,u1 6=F,...,un 6=F :=

{is ∈ I : pi 6=F∧ u1i 6=F∧ . . . ∧ uni 6=F}
(121) Rp{u1, . . . , un} := λIst. Ip 6=F,u1 6=F,...,un 6=F 6= ∅∧

∀is ∈ Ip 6=F,u1 6=F,...,un 6=F(Rpi(u1i, . . . , uni))

The definition of intensional atomic conditions in (121) above relies on
static lexical relations Rw(x1, . . . , xn) of the expected intensional type
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en(wt). For any type τ, enτ is defined as the smallest set of types such
that e0τ := τ and em+1τ := e(emτ).

The notions of new dref introduction, structured inclusion, maxi-
mization and distributivity for possible-world drefs are parallel to the
corresponding notions for individual-level drefs.

(122) [p] := λIst.λJst. ∀is ∈ I(∃js ∈ J(i[p]j)) ∧ ∀js ∈ J(∃is ∈ I(i[p]j))
(123) p′ b p := λIst. ∀is ∈ I(p′i = pi ∨ p′i =F)
(124) p′ v p := λIst. (p′ b p)I ∧ ∀is ∈ I(pi ∈ p′ I → pi = p′i)
(125) maxp(D) :=

λIst.λJst. ([p]; D)I J ∧ ¬∃Kst(([p]; D)IK ∧ Jp 6=F ( Kp 6=F)

(126) maxp′vp(D) := maxp′([p′ v p]; D)
(127) distp(D) := λIst.λJst. pI = pJ ∧ ∀ww ∈ pI(DIp=w Jp=w)
(128) Updating the info state I with the DRS D distributively over the

dref p:

Ip=wIp=w′

Ip=w′′ . . .

Jp=wJp=w′

Jp=w′′ . . .

DIp=w Jp=w

DIp=w′ Jp=w′

DIp=w′′ Jp=w′′

(129) p(D) := λIst.λJst. Ip=F = Jp=F ∧ pI 6= ∅ ∧ distp(D)Ip 6=F Jp 6=F
(130) 〈p〉(D) := λIst.λJst. Ip=F = Jp=F ∧ (pI = ∅→ I = J)∧

(pI 6= ∅→ distp(D)Ip 6=F Jp 6=F)

We define sentential negation as a test (see not λPst.λqs. [∼ P(q)] in
table (114) above) only for simplicity. We could have easily defined it
as introducing a maximal possible-world dref p storing all and only the
worlds satisfying the ‘sentence radical’ in the scope of negation. This
is needed to account for examples of modal subordination like (131)
below, which can be easily analyzed within the framework developed
in this section.

(131) a. Linusu does notp have au′ car.
b. Heu wouldp have nowhere to park itu′ .
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3.2 Indicative Sentences

We will analyze the discourse in (132) below all over again to see the
intensional system in action. The two sentences of this discourse are
compositionally translated in Intensional PCDRT as shown in (133) and
(134) below.

(132) a. Au wolf came in.
b. Itu ate Harveyu′ .

(133) a. wolf  λve.λqs. [WOLFq{v}]
b. au wolf  λP′e(st).λqs. [u | singq(u)]; [WOLFq{u}]; P′(u)(q)

c. au wolf came in 
λqs. [u | singq(u)]; [WOLFq{u}]; [COME-INq{u}]

(134) a. ate λQ(e(st))(st).λve. Q(λv′e.λqs. [EATq{v, v′}])
b. ate Harveyu′  λve.λqs. [u′ | u′ = HARVEY]; [EATq{v, u′}]
c. itu ate Harveyu′  

λqs. [singq(u)]; [u′ | u′ = HARVEY]; [EATq{u, u′}]

The translations of the two sentences, more precisely, of the two ‘sen-
tence radicals’, are two dynamic propositions of type st. We assume
that each of the two sentences has an indicative mood morpheme (mor-
phologically realized as part of their past tense morphology), the mean-
ing of which is provided in (135) below. The indicative mood takes the
dynamic proposition Pst denoted by the remainder of the sentence (i.e.,
by the ‘sentence radical’ in its scope) and applies it to the designated
dref for the actual world p∗. We capture the deictic nature of indicative
morphology by the fact that its translation is parallel to the translation
of singular pronouns (see (37) above).19 The single world that p∗ stores
relative the input state I is (for the purposes of the current discourse /
conversation) the actual world w∗.

19This analysis of indicative mood is simply a proof-of-concept intended to show
that verbal moods can be fruitfully analyzed in parallel to pronouns. The analysis
needs to be further developed to account for (among other things) the contrast be-
tween indicative and subjunctive in English – and, in richer mood systems, for the
contrast between indicative and various kinds of non-indicative moods. The hope
is that the resulting analysis of mood systems can be usefully compared to analyses
of pronominal systems that realize various contrasts, e.g., proximal vs distal demon-
stratives, indexical vs anaphoric personal pronouns, overt vs covert pro-forms, past
vs present tense etc. For more discussion, see Stone (1997) and Bittner (2001, 2007)
among others.

49



(135) indp∗  λPst. [sing(p∗)]; P(p∗)20

(136) sing(p) := λIst. |pI| = 1

When we apply the two indicative morphemes to the two ‘sentence rad-
icals’ of our discourse, as shown in (137) below, we obtain the final DRS
translations for the two sentences. Dynamically conjoining these DRSs
gives us the translation for the entire discourse, provided in (138) be-
low. We can rewrite this in the more familiar DRT format as shown in
(139).

(137) indp∗(au wolf came in). indp∗(itu ate Harveyu′)
(138) [sing(p∗)]; [u | singp∗(u)]; [WOLFp∗{u}]; [COME-INp∗{u}];

[sing(p∗)]; [singp∗(u)]; [u′ | u′ = HARVEY]; [EATp∗{u, u′}]
(139) [u, u′ | sing(p∗), singp∗(u), WOLFp∗{u}, COME-INp∗{u},

u′ = HARVEY, EATp∗{u, u′}]

Given that our default discourse-initial state IF assigns the dummy
worldF to all world-drefs, including p∗, we follow Bittner (2007) and
assume that a startup update precedes all discourses. This startup up-
date is just the “commonplace” update of Stalnaker (1978) and “in-
clude[s] any information which the speaker assumes his audience can
infer from the performance of the speech act” (Stalnaker 1978). Thus,
the startup update introduces the dref p∗ (among other things) and con-
strains it to store the world w∗ in which the speech act is performed, as
shown in (140) below. The two anaphoric indicative moods in (137)
above can now be successfully interpreted and the sequence of updates
in (138) can now be depicted as shown in (142) below.

(140) [p∗ | p∗ = w∗]
(141) p∗ = w∗ := λIst. I 6= ∅ ∧ ∀is ∈ I(p∗i = w∗)

(142) IF
[p∗|p∗=w∗]
=====⇒ p∗

w∗
[sing(p∗)]
=====⇒ p∗

w∗

[u|singp∗ (u),WOLFp∗{u},COME-INp∗{u}]
=====================⇒ p∗ u

w∗ wolf1

[sing(p∗)]
=====⇒ p∗ u

w∗ wolf1

[singp∗ (u)]
=====⇒ p∗ u

w∗ wolf1

[u′|u′=HARVEY,EATp∗{u,u′}]
===============⇒ p∗ u u′

w∗ wolf1 harvey

20We could take the dref p∗ to store the current Context Set (Stalnaker 1978). Since
p∗ stores exactly one world relative to a plural info state (by virtue of sing(p∗)), we
could think of the Context Set as the set p∗ I1 ∪ p∗ I2 ∪ p∗ I3 ∪ . . . , whose elements are
all the worlds that p∗ stores relative to the plural info states I1, I2, I3, . . . that are still
live options at any given point in discourse.
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3.3 Dynamic Modal Quantifiers

Following Kratzer (1981), we analyze modal verbs as quantifiers over
possible worlds that are contextually parametrized. The contextually-
provided parameters are the modal base β and the ordering source ω,
represented as indices on modal verbs, as shown in (143) and (144) be-
low.

(143) A wolf mightβ,ω come in.

(144) If a wolf comes in, it mightβ,ω eat Harvey.

Our dynamic notion of modal quantification is parallel to the notion of
dynamic quantification over individuals proposed in the previous sec-
tion. The translation for modal verbs in (145) below is parallel to the
translation for determiners that anaphorically retrieve their restrictor
in (91) above. The translation for modalized conditionals in (146) be-
low, i.e., for if -clauses that modify a matrix clause containing a modal
verb, is parallel to the translation for generalized determiners in (77)
above. The if -clause is a way to overtly provide the restrictor for the
modal quantifier. Note that the type of the translations in (145) and
(146) are exactly the types we would expect in an intensional Montago-
vian framework, i.e., (st)(st) and st((st)(st)), respectively.

(145) modalp′vp
β,ω  

λPst.λqs. maxp′vp(〈p′〉(P(p′))); [MODALq,β,ω{p, p′}]

(146) ifp+modalp′vp
β,ω  

λPst.λP ′st.λqs. maxp(〈p〉(P(p))); maxp′vp(〈p′〉(P ′(p′)));
[MODALq,β,ω{p, p′}]

Just as generalized determiners relate two dynamic properties P and P′

of type et, modal verbs relate two dynamic propositions P and P ′ of
type st. These dynamic propositions are used to extract a maximal re-
strictor set of worlds and a maximal nuclear scope set of worlds, which
are stored in the drefs p and p′. These drefs are then related by a modal
condition MODAL that is relativized to a modal base β and an order-
ing source ω. This condition contributes the static modal force that is
specific to each modal quantifier.

Thus, the modal condition MODALq,β,ω{p, p′} is parallel to the DET{u, u′}
condition. The only difference is that the modal condition brings in the
extra contextual parameters β and ω – and this is where the static anal-
ysis of modal quantification in Lewis (1973)-Kratzer (1981) is incorpo-
rated into our dynamic notion of modal quantification. Both β and ω
are drefs of type s(wt), i.e., they are drefs for sets of worlds, and they
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store a set of sets of worlds, i.e., a set of propositions, relative to a plu-
ral info state I, as shown in (147) below. The dummy value for drefs
like β and ω is the singleton set {F}whose sole member is the dummy
world, as shown in (148).

(147) a. βI := {βi : i ∈ Iβ 6={F}}
b. ωI := {ωi : i ∈ Iω 6={F}}

(148) a. Iβ 6={F} := {i ∈ I : βi 6= {F}}
b. Iω 6={F} := {i ∈ I : ωi 6= {F}}

The sets of propositions βI and ωI are none other than Kratzer’s static
conversational backgrounds. That is, they are the set of propositions
B of type (wt)t that is the contextually-provided modal base, and the
set of propositions O of type (wt)t that is the contextually-provided
ordering source – as shown in (149) below. Encoding conversational
backgrounds by means of drefs directly captures their context-sensitive
nature. Moreover, encoding them by means of drefs for propositions
enables us to capture the fact that the propositional contents of sen-
tences in logic puzzles like (1) above can be assembled together to form
such conversational-background drefs.

(149) a. B = βI = {βi : i ∈ Iβ 6={F}}
b. O = ωI = {ωi : i ∈ Iω 6={F}}

The ordering source O induces a strict partial order <O over the set of
all possible worlds, as defined in (150). We will assume that all the strict
partial orders of the form <O satisfy the Generalized Limit Assumption
in (152) below – so, the Ideal function in (153) is well-defined. This
function extracts the subset of O-ideal worlds from the set of worlds
W.

(150) w <O w′ := {Wwt ∈ O : w′ ∈W} ( {Wwt ∈ O : w ∈W}
(151) w ≤O w′ := w <O w′ ∨ w = w′21

(152) Generalized limit assumption: for any proposition Wwt and or-
dering source O(wt)t,
∀w ∈W(∃w′ ∈W(w′ ≤O w ∧ ¬∃w′′ ∈W(w′′ <O w′)))

(153) The Ideal function: for any proposition Wwt and ordering source
O(wt)t,
IdealO(W) := {w ∈W : ¬∃w′ ∈W(w′ <O w)}

21Alternatively: w ≤O w′ := {Wwt ∈ O : w′ ∈W} ⊆ {Wwt ∈ O : w ∈W}.
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The static modal relations NEC and POS can now be defined in the
familiar way, as shown in (154) and (155) below. The intersection of
the restrictor set W and the (itself intersected) modal base B, i.e.,

⋂B ∩
W, provides the set of worlds from which we select O-ideal worlds.
Necessity requires W ′ to contain all the ideal worlds, while possibility
requires W ′ to contain only some of the ideal worlds.

(154) NECB,O(W, W ′) := IdealO(
⋂B ∩W) ⊆W ′

(155) POSB,O(W, W ′) := IdealO(
⋂B ∩W) ∩W ′ 6= ∅

The modal conditions contributed by dynamic modal quantifiers can
now be defined as shown in (156) below, exemplified for necessity and
possibility modals in (157) and (158). Note that the third conjunct in
(157) and the third conjunct in (158) are exactly the static modal rela-
tions NEC and POS defined in (154) and (155) above.

(156) MODALp,β,ω{p′, p′′} :=
λIst. Ip=F = ∅ ∧ sing(p)I ∧MODALβI,ωI(p′ I, p′′ I)

(157) NECp,β,ω{p′, p′′} :=
λIst. Ip=F = ∅ ∧ sing(p)I ∧NECβI,ωI(p′ I, p′′ I)

(158) POSp,β,ω{p′, p′′} :=
λIst. Ip=F = ∅ ∧ sing(p)I ∧ POSβI,ωI(p′ I, p′′ I)

The world-dref p provides the world relative to which the entire modal
quantification is evaluated. This is the reason for the first two conjuncts
Ip=F = ∅ and sing(p)I, which require the dref p to store only one
world relative to info state I. That is, they ensure that the dref p is either
the actual-world dref p∗ or is in the scope of a distributivity operator
p(. . . ), which means that the entire modal condition is in the scope of
such an operator.

We therefore ensure that the modal base βI and the ordering source
ωI are the modal base and ordering source associated with only one
world – namely the world of evaluation pI. To put it differently, we
make use of plural info states to simplify the types of conversational-
background drefs. The type of conversational backgrounds in Kratzer
(1981) is w((wt)t), i.e., a function f that associates with each world
w, taken as the world of evaluation, a set of propositions f (w), which
is the conversational background f at the world of evaluation w. We
could in principle have drefs for such functions as our conversational-
background drefs; their type would be s(w((wt)t)). But we are able
to work with conversational-background drefs of the lower type s(wt)
because we let plural info states encode the dependency between the
world of evaluation and its contextually-associated set of propositions.
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Finally, the sets of worlds p′ I and p′′ I in (156/157/158) above store
the restrictor and nuclear scope sets of the modal quantifier. By virtue
of our plural info states, these sets are also guaranteed to be the re-
strictor and the nuclear scope sets of worlds corresponding to world of
evaluation pI.

3.4 A Parallel Account of Modal and Quantificational Sub-
ordination

We can now give a compositional account of modal subordination ex-
amples like the one in (8) above, repeated in (159) below, that is com-
pletely parallel to the analysis proposed for the quantificational subor-
dination example in (6) above, repeated in (160).

(159) a. Au wolf might come in.
b. Itu would eat Harvey first.

(160) a. Harvey courts au woman at every convention.
b. Sheu always comes to the banquet with him.
c. [Theu woman is usually also very pretty.]

Under its most salient interpretation, discourse (159) says that, for all
the speaker knows, it is a possible that a wolf comes in. Moreover,
for any such epistemic possibility of a wolf coming in, the wolf eats
Harvey first. The modal subordination discourse in (159) is parallel to
the discourse in (160) because the interactions between the indefinite au

wolf and the modal might, on one hand, and the singular pronoun itu
and the modal would, on the other hand, are parallel to the interactions
between au woman and every convention and between sheu and always.

Discourse-initial modals like might in (159a) have to anaphorically
retrieve their restrictor. However, no world drefs are available for anaphoric
take-up if the discourse is interpreted relative to the dummy info state
IF. We will assume that a world dref storing the set of all possible
worlds is always available in discourse for anaphoric retrieval. For-
mally, we introduce a dref p storing the set of all possible worlds as
part of our startup update, which will be of the form shown in (161)
below: first, we set the dref p∗ to the actual world w∗, then we make the
set of all possible worlds salient in discourse by storing it in the dref p.

(161) [p∗ | p∗ = w∗]; maxp([p b p])22

22Instead of maxp([p b p]), we could equally well use maxp([p = p]), where p =
p′ := λIst. ∀is ∈ I(pi = p′i).
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We want to capture the de dicto reading of sentence (159a) in which the
indefinite au wolf has narrow scope relative to the modal might – and
the fact that sentence (159b) preserves and elaborates on this de dicto
reading.

The translations for the two modal verbs might (in (159a)) and would
(in (159b)) are provided in (162) and (163) below. Just like the adverb
of quantification always in sentence (160b) above, these modal verbs
anaphorically retrieve their restrictor drefs: might is anaphoric to the set
of all possible worlds p that is by default available as part of the startup
update and would is anaphoric to the nuclear scope dref p′ introduced
by might.23

(162) mightp′vp
β,ω  

λPst.λqs. maxp′vp(p′(P(p′))); [POSq,β,ω{p, p′}]

(163) wouldp′′vp′

β,ω  

λPst.λqs. maxp′′vp′(p′′(P(p′′))); [NECq,β,ω{p′, p′′}]

Note that the distributivity operators 〈p〉(. . . ) and 〈p′〉(. . . ) in the trans-
lations of might and would have been replaced salva veritate by the sim-
pler operators p(. . . ) and p′(. . . ). This substitution is made possible by
the fact that the modal relation POS contributed by might has a built-in
existential commitment: by the very definition of POS, there must be
a non-empty restrictor set of worlds p and a non-empty nuclear scope
set of worlds p′. The same applies to the meaning of anaphoric would:
since the restrictor set of would (i.e., p′) is non-empty, its nuclear scope
set p′′ must also be non-empty given that NEC is parametrized by the
same modal base β and ordering source ω as POS.

The contextually-supplied modal base β (of type s(wt)) for both
might and would is epistemic: it associates with each q-world the set of

23Thus, we build the meaning for run-of-the-mill quantifiers like every, most etc. out
of three relatively independent parts: the first two parts are the two updates intro-
ducing the restrictor and nuclear scope sets (these two updates regulate the dynamics
of dependencies) and the final, static part contributes the truth conditions associated
with generalized quantifiers. This is not intended as a claim about how we actually
process quantifiers. The motivation for this way of building the meaning of quanti-
fiers is that it provides a general pattern that can be easily modified to obtain mean-
ings for various other quantificational expressions. For example, if we omit the first
update (the one that introduces the restrictor set), we obtain the meaning for adverbs
of quantification like always, usually etc. and modal verbs like might, should etc., which
anaphorically retrieve their restrictor. We might also be able to analyze floated each
along similar lines – e.g., we could let it anaphorically retrieve its restrictor set and
simply distribute over it, i.e., we would omit both the first and the third update and
let the second update consist of an anaphoric distributivity operator only.
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propositions that the speaker believes in that q-world. The contextually-
supplied ordering source ω is empty, which means that it does not con-
tribute anything to the meaning of the two modal quantifications. Once
again, this is information that is not explicitly introduced in discourse,
but is part of the background knowledge that the participants in the
conversation are assumed to have. Since we are not concerned here
with the exact nature of this common-background knowledge and how
it comes about, we will just take it to also be part of the startup up-
date, as shown in (164) below. Furthermore, we place conditions like
epistemic{p∗, β} or empty{ω} on the β and ω drefs. Strictly speaking,
these conditions are just placeholders for the common-ground knowl-
edge that they allude to. They are supposed to be intuitively interpreted
as: β is an epistemic base relative to the evaluation world p∗ and ω
is an empty ordering source – but we will not attempt here to explic-
itly formalize them. One way to define emptiness for conversational-
background drefs is tentatively suggested in (165).

(164) [p∗ | p∗ = w∗]; maxp([p b p]);
[β, ω | epistemic{p∗, β}, empty{ω}]

(165) a. empty{ω} := λIst. I 6= ∅ ∧ ∀is ∈ I(ωi = {F})
b. empty{β} := λIst. I 6= ∅ ∧ ∀is ∈ I(βi = {F})

Since the restrictor set for might in (162) above consists of all possible
worlds, the modal verb ends up quantifying over the set of worlds com-
patible with the epistemic modal base β, i.e., over the set of worlds

⋂
βI,

where I is the info state obtained after the startup update in (164) above.
This is intuitively correct: when uttered out of the blue, sentence (159a)
is interpreted as asserting that, for all the speaker knows, it is possible
that a wolf comes in. The follow-up sentence in (159b) further elabo-
rates on the wolf-coming-in possibilities epistemically entertained by
the speaker. This is represented in (166) below by indexing both might
and would with the same epistemic modal base β and by letting would be
anaphoric to the world-dref p′ introduced by might. The empty order-
ing source ω does not make any truth-conditional contribution because
IdealO(W) = W if O is empty, so we will henceforth omit it in our
representations.

(166) indp∗(mightp′vp
β (au wolf come in)).

indp∗(wouldp′′vp′

β (itu eat Harveyu′ first))

The compositionally-derived translation for our modal subordination
discourse is provided in (167).
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(167) [sing(p∗)];
maxp′vp(p′([u | singp′(u), WOLFp′{u}, COME-INp′{u}]));
[POSp∗,β{p, p′}];
[sing(p∗)];
maxp′′vp′(p′′([singp′′(u)]; [u′ | u′ = HARVEY, EATp′′{u, u′}]));
[NECp∗,β{p′, p′′}]

Given the info state obtained after the startup update, (167) instruct us
to do the following. First, we introduce the dref p′ and store in it the
maximal subset of p-worlds in which a wolf u comes in. Since p is the
set of all possible worlds, p′ will store the set of all worlds in which a
wolf u comes in. Then, we test that the nuclear scope p′ is a β-based
epistemic possibility relative to the restrictor p. Formally, we check that
there is at least one world w which is simultaneously a p-world and a β-
world and which, in addition, is also a p′-world. That is, we check that
there is an epistemic possibility of a wolf coming in. Then, we introduce
the dref p′′ and store in it all the p′-worlds in which the corresponding
u-wolf eats Harvey first. Finally, we test that the nuclear scope p′′ is a
β-based epistemic necessity relative to the restrictor p′. Formally, we
check if any world w that is both a p′-world and a β-world is also a p′′-
world. That is, we check if any epistemic possibility of a wolf coming in
is such that the wolf featuring in that epistemic possibility eats Harvey
first.

Note that the singular indefinite au wolf and the singular pronoun itu
anaphoric to it receive a weak reading. That is, we allow for epistemic
possibilities in which several wolves come in and we require one of
those wolves (but not necessarily all of them) to eat Harvey first. Thus,
given any epistemic possibility of a wolf coming in, the wolf is unique
relative to the local plural info state – but not globally, relative to the
entire epistemic possibility under consideration. The issue of weak vs
strong readings in modal environments is further discussed in the next
subsection, in preparation for our analysis of the Aquinas discourse,
which involves an instance of modal subordination that clearly has a
strong reading.

The sequence of updates in (167) is depicted in (168) below.

(168) IF
[p∗|p∗=w∗];maxp([pbp]);[β|epistemic{p∗,β}]
========================⇒

p∗ p β

w∗ w∗ {w∗, w1, w2}
w∗ w1 {w∗, w1, w2}
w∗ w2 {w∗, w1, w2}
w∗ w3 {w∗, w1, w2}
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[sing(p∗)]
=====⇒

p∗ p β

w∗ w∗ {w∗, w1, w2}
w∗ w1 {w∗, w1, w2}
w∗ w2 {w∗, w1, w2}
w∗ w3 {w∗, w1, w2}

maxp′vp(p′ (... ))
========⇒



p∗ p β p′

w∗ w∗ {w∗, w1, w2} w∗
[u|singp′ (u),WOLFp′{u},COME-INp′{u}]
=====================⇒

p∗ p β p′ u
w∗ w∗ {w∗, w1, w2} w∗ wolf1

p∗ p β p′

w∗ w1 {w∗, w1, w2} w1

[u|singp′ (u),WOLFp′{u},COME-INp′{u}]
=====================⇒

p∗ p β p′ u
w∗ w1 {w∗, w1, w2} w1 wolf2

p∗ p β p′

w∗ w3 {w∗, w1, w2} w3

[u|singp′ (u),WOLFp′{u},COME-INp′{u}]
=====================⇒

p∗ p β p′ u
w∗ w3 {w∗, w1, w2} w3 wolf3



[POSp∗ ,β{p,p′}]
========⇒

p∗ p β p′ u
w∗ w∗ {w∗, w1, w2} w∗ wolf1
w∗ w1 {w∗, w1, w2} w1 wolf2
w∗ w2 {w∗, w1, w2} F F
w∗ w3 {w∗, w1, w2} w3 wolf3

[sing(p∗)]
=====⇒

p∗ p β p′ u
w∗ w∗ {w∗, w1, w2} w∗ wolf1
w∗ w1 {w∗, w1, w2} w1 wolf2
w∗ w2 {w∗, w1, w2} F F
w∗ w3 {w∗, w1, w2} w3 wolf3

maxp′′vp′ (p′′ (... ))
=========⇒
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

p∗ p β p′ u p′′

w∗ w∗ {w∗, w1, w2} w∗ wolf1 w∗

[singp′′ (u)];[u′|u′=HARVEY,EATp′′{u,u′}]
=====================⇒
p∗ p β p′ u p′′ u′

w∗ w∗ {w∗, w1, w2} w∗ wolf1 w∗ harvey

p∗ p β p′ u p′′

w∗ w1 {w∗, w1, w2} w1 wolf2 w1

[singp′′ (u)];[u′|u′=HARVEY,EATp′′{u,u′}]
=====================⇒
p∗ p β p′ u p′′ u′

w∗ w1 {w∗, w1, w2} w1 wolf2 w1 harvey



[NECp∗ ,β{p′,p′′}]
=========⇒

p∗ p β p′ u p′′ u′

w∗ w∗ {w∗, w1, w2} w∗ wolf1 w∗ harvey
w∗ w1 {w∗, w1, w2} w1 wolf2 w1 harvey
w∗ w2 {w∗, w1, w2} F F F F
w∗ w3 {w∗, w1, w2} w3 wolf3 F F

Thus, the representation in (167) above captures the intuitively cor-
rect truth conditions for the modal subordination discourse in (159).24

Moreover, as desired, the representation in (167) is parallel to the corre-
sponding representation of the quantificational subordination discourse
in (97) above, repeated in (169) below for ease of reference.

24The logical form and the compositionally-obtained translation for the negation-
based modal subordination discourse in (131) above are provided in (3) and (4) below.
The crucial component is the translation for negation in (1) that introduces a maximal
possible-world dref p.

(1) notp  λPst.λqs. maxp(〈p〉(P(p))); [sing(q), q 6= p]

(2) p 6= p′ := λIst. ∀is ∈ I(pi 6= p′i)

(3) indp∗(notp(Linusu have au′ car)).

indp∗(wouldp′vp
β (heu have-nowhere-to-park itu′)).

(4) [sing(p∗)];
maxp(〈p〉([u, u′ | u = LINUS, singp(u′), CARp{u′}, HAVEp{u, u′}]));
[sing(p∗), p∗ 6= p];
[sing(p∗)];
maxp′vp(〈p′〉([singp′(u), singp′(u′), HAVE-NOWHERE-TO-PARKp′{u, u′}]));
[NECp∗ ,β{p, p′}]
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(169) [u1 | u1 = HARVEY]; maxu2([CONVENTION{u2}]);
maxu3vu2(u3([u4 | sing(u4), WOMAN{u4}, COURT-AT{u1, u4, u3}]));
[EVERY{u2, u3}];
maxu5vu3(u5([sing(u4), COME{u4, u5}])); [EVERY{u3, u5}]

Importantly, given our analysis of modal verbs as dynamic quantifiers,
we automatically predict that anaphora to nuclear scope sets of worlds
is always maximal. This is exactly what we need to account for the
standard case of modal subordination in (159) above, the most salient
interpretation of which is that: there is a possibility of a wolf coming
in and, for any such epistemic possibility, the wolf eats Harvey first.
That is, the modal would is anaphoric to all the epistemically-accessible
worlds in which a wolf comes in, not only to some of them. This is par-
allel to the maximality associated with (E-type) anaphora to quantifiers
over individuals.

We will end this subsection with a brief discussion of an important
difference between quantificational and modal subordination. Con-
sider the infelicitous example in (170) below (from Stone 1999; see also
references therein).

(170) a. John mightp′vp be eating au cheesesteak.
b. #Itu isp∗ very greasy.

(171) u in p := λIst. Iu 6=F,p 6=F 6= ∅ ∧ ∀is ∈ Iu 6=F,p 6=F(ui in pi),
where in is a constant of type e(wt)

Intuitively, this discourse is infelicitous because the hypothetical cheeses-
teak is anaphorically retrieved in the actual world – and the property of
being very greasy cannot hold in the actual world of an entity that does
not actually exist.

Note that the discourse (170) is felicitous if the indefinite au cheeses-
teak has a de re, wide-scope reading, but we will ignore this less salient
reading for the moment and focus on the more salient de dicto, narrow-
scope reading of the indefinite that yields infelicity.

As Stone (1999:21) suggests, we can derive the infelicity of this ex-
ample if we associate every pronoun with a presupposition of existence
relative to a modal dref – in this case, the modal dref p∗ associated with
the property of being very greasy that takes the pronoun as an argu-
ment. This presupposition is of the form given in (171) above (Stone’s
actual implementation is different).

The proposal is that the pronoun itu in (170b) contributes such a pre-
supposition of existence relative to the actual world dref p∗, i.e., u in p∗.
This presupposition, however, is not satisfied because the indefinite au

cheesesteak in (170a) has a de dicto reading (i.e., it has narrow scope rel-
ative to the modal verb) and introduces the u-individual only relative
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to the epistemically-accessible p′-worlds contributed by mightp′ , i.e., we
can only satisfy u in p′.

In sum, the discourse in (170) is infelicitous because the most salient
reading of sentence (170a) is the de dicto one, while sentence (170b) re-
quires a de re reading to satisfy the existence presupposition contributed
by the pronoun itu. In contrast, the discourse in (172) below is felici-
tous because the de re reading of sentence (172a) is salient enough. The
very same presuppositional mechanism that accounts for the infelicity
of (170) enables us to account for the fact that the only available reading
for discourse (172) as a whole is the de re one.

(172) a. Au wolf mightp′vp
β come into our cabin tonight.

b. Linus saw itu last night circling dangerously close to the
cabin.

This difference between quantificational subordination and modal sub-
ordination also accounts for the fact that, in the former case, we can
anaphorically retrieve a narrow scope indefinite by means of a plural
pronoun, while in the latter case, we cannot, as shown by the contrast
between (173) and (174) below.25 This is because, in the case of quantifi-
cational subordination, the plural pronoun, e.g., theyu in (173b) below,
can have ‘wide scope’ and retrieve all the objects brought to salience by
the narrow-scope indefinite au woman in (173b). That is, in the case of
quantificational subordination, we can collect all the quantificationally-
subordinated entities and elaborate on all of them in subsequent dis-
course.

In contrast, sentence (174b) is infelicitous because a modally-subordinated
dref, i.e., a dref introduced by a singular indefinite that has narrow
scope relative to a modal, cannot be subsequently retrieved by a ‘wide-
scope’ pronoun, be it singular (as in (170b) above) or plural (as in (174b)).
This is because the existence presupposition of the form u in p associ-
ated with the ‘wide-scope’ pronoun cannot be satisfied by the modally-
subordinated, narrow-scope antecedent.

(173) a. Harvey courts au woman at every convention.
b. Theyu are (always) very pretty.

(174) a. Au wolf might come in.
b. #Linus saw themu last night circling dangerously close to the

cabin.
c. #Theyu would eat Harvey first.

25I am indebted to an anonymous reviewer for bringing this point to my attention.
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Finally, we can account for the infelicity of sentence (174c), which fea-
tures a ‘de dicto’ plural pronoun anaphoric to a de dicto singular indef-
inite, by means of the ‘Maximize Presupposition’ principle usually in-
voked in such cases (see, for example, Sauerland 2003 and references
therein). That is, the sing presupposition contributed by singular pro-
nouns (which, for simplicity, we have treated as part of the at-issue /
asserted meaning) is stronger than the non-emptiness presupposition
contributed by plural pronouns (which we also took to be part of the
at-issue / asserted meaning) – and, ceteris paribus, the item with the
stronger presupposition should be used if that presupposition can be
satisfied.

The above observations about plural anaphora are fairly tentative
and should be taken cum grano salis. We cannot do justice here to the
variety of issues raised by plural anaphora and its interactions with
individual-level and modal quantification. Our main goal is to pro-
vide a framework in which we can precisely formulate the relevant
distinctions and that enables us to formalize such issues in the lingua
franca of classical many-sorted type logic. This goal is more basic – and
more modest – than the empirical investigation of the range of possible
anaphoric relations and their (differing) interactions with quantifica-
tional elements in the individual and modal domains.

To conclude, anaphora and quantification in the individual and modal
domains are analyzed in a systematically parallel way, from the types
for drefs to the format for the translations of quantificational and anaphoric
expressions. The fact that this is an empirically and theoretically de-
sirable goal has been repeatedly observed in the literature – see Geurts
(1995/1999), Stone (1997, 1999), Frank (1996), Bittner (2001) and Schlenker
(2005) among others, extending the parallel between the individual and
temporal domains argued for in Partee (1973, 1984). The differences in
anaphoric accessibility between quantificational and modal subordina-
tion arise as a consequence of independently-motivated constraints on
the way in which we can establish dependencies that simultaneously
involve possibilities (i.e., hypothetical scenarios) and individuals fea-
turing in them.

3.5 Modalized Conditionals and Donkey Anaphora

We analyze conditional antecedents as plural Russellian definite de-
scriptions (see (79) above) in the modal domain – with the addition
that such plural definites in the modal domain are always distributive,
unlike their possibly collective counterparts in the individual domain.
This analysis builds on the proposals in Stone (1999), Bittner (2001) and
Schlenker (2004).
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As already indicated in (146) above, we analyze if as a dynamic λ-
abstractor over possible worlds, i.e., as a morpheme that extracts the
content of a dynamic propositionPst and stores it in a newly introduced
dref p, as shown in (175) below. In a modalized conditional, this dref
p provides the restrictor set of worlds anaphorically retrieved by the
modal verb in the matrix clause.

(175) if p λPst. maxp(p(P(p)))

Thus, the proposal goes against the received wisdom (which is not inde-
pendently or cross-linguistically motivated; see, e.g., Bittner 2001) that
the update in (146) above comes about by simply ignoring the seman-
tic contribution of the overt item if and taking the adjoined if -clause
to provide the restrictor for the generalized quantifier denoted by the
modal verb in the matrix clause.

Rather, we propose that the adjoined if -clause introduces a topical
dref that the matrix clause comments on. Except for the requirement
that the matrix clause has to comment on the topical dref (or drefs, as
the case may be; see the discussion of strong donkey conditionals be-
low) contributed by the if -clause, there is no other constraint on how
the meanings of the two clauses are combined. That is, we will use the
default mode of dynamic meaning combination: dynamic conjunction.

Alternatively, we can stay closer to the received wisdom about con-
ditionals and take the adjoined if -clause as a whole to be an intersective
modifier of type st that modifies, i.e., is conjoined with, the modalized
matrix clause as a whole, itself of type st. The relevant meaning for if
is provided in (176) below and the corresponding compositional inter-
pretation procedure for modalized conditionals is schematized in (177).
The antecedent denotes a dynamic proposition, the consequent also de-
notes a dynamic proposition and the two propositions are intersected /
conjoined; see the appendix of Brasoveanu (2008) for the required no-
tions of generalized dynamic conjunction and generalized sequencing.

(176) if p λPst.λqs. maxp(p(P(p)))
(177) a. if p(subordinate clause) λqs. maxp(p(Psubord(p)))

b. modalp′vp
β,ω (matrix clause) 

λqs. maxp′vp(〈p′〉(Pmatrix(p′))); [MODALq,β,ω{p, p′}]

c. [ [if p(subordinate clause)] [modalp′vp
β,ω (matrix clause)] ]

 λqs. maxp(p(Psubord(p))) u λqs. maxp′vp(〈p′〉(Pmatrix(p′)));
[MODALq,β,ω{p, p′}]
 λqs. maxp(p(Psubord(p))); maxp′vp(〈p′〉(Pmatrix(p′)));
[MODALq,β,ω{p, p′}]
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Consider, for example, the modalized conditional in (178) below. The
LF of this conditional is schematically represented in (179). The compositionally-
obtained translations of the two clauses if. . . and should. . . are dynam-
ically conjoined and the result is provided in (180). For simplicity, we
omit the (redundant) distributivity operator contributed by ifp and use
the simpler distributivity operator p′(. . . ) instead of 〈p′〉(. . . ).

(178) Ifp it’s raining, Linusu shouldp′vp
β,ω bring anu′ umbrella.

(179) indp∗([ [if p(it’s raining)]

[shouldp′vp
β,ω (Linusu bring anu′ umbrella)] ])

(180) [sing(p∗)]; maxp([RAININGp]);
maxp′vp(p′([u | u = LINUS];
[u′ | singp′(u′), UMBRELLAp′{u′}, BRINGp′{u, u′}]));
[NECp∗,β,ω{p, p′}]

The update in (180) proceeds as follows. First, we store in p the set of
all worlds in which it is raining. Then, we store in p′ all the p-worlds in
which Linus brings an umbrella. Finally, we test whether the p′-worlds
include all the deontically-ideal p-worlds – where ‘deontically ideal’
is determined in terms of the actual world p∗ and the contextually-
provided modal base β and deontic ordering source ω. This is depicted
in (181) below.

(181) IF
[p∗|p∗=w∗];[β,ω|... ]
==========⇒

p∗ β ω

w∗ W1 V1
w∗ W2 V2

w∗ W3 V3

[sing(p∗)]
=====⇒

p∗ β ω

w∗ W1 V1
w∗ W2 V2

w∗ W3 V3

maxp([RAININGp])
=========⇒

p∗ β ω p
w∗ W1 V1 w∗

w∗ W2 V2 w1
w∗ W3 V3 w2

maxp′vp(p′ (... ))
========⇒
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

p∗ β ω p p′

w∗ W2 V2 w1 w1

[u|u=LINUS];[u′|singp′ (u′),UMBRELLAp′{u′},BRINGp′{u,u′}]
===============================⇒
p∗ β ω p p′ u u′

w∗ W2 V2 w1 w1 linus umbrella1

p∗ β ω p p′

w∗ W3 V3 w2 w2

[u|u=LINUS];[u′|singp′ (u′),UMBRELLAp′{u′},BRINGp′{u,u′}]
===============================⇒
p∗ β ω p p′ u u′

w∗ W3 V3 w2 w2 linus umbrella2


[NECp∗ ,β,ω{p,p′}]
=========⇒

p∗ β ω p p′ u u′

w∗ W1 V1 w∗ F F F
w∗ W2 V2 w1 w1 linus umbrella1
w∗ W3 V3 w2 w2 linus umbrella2

This analysis immediately generalizes to modalized conditionals that
contain instances of donkey anaphora. Consider, for example, the con-
ditional in (182) below, based on an example in Partee (1984). The most
salient reading for the donkey anaphora is the weak one: we consider
all the worlds in which Linus has at least one credit card and store
them in p; then, we check that all the p-worlds that are deontically-
ideal (relative to the contextually-provided modal base β and order-
ing source ω) are such that Linus uses one of his credit cards instead
of cash. The compositionally-obtained Intensional PCDRT representa-
tion is provided in (183). This account of weak donkey conditionals is
parallel to the account of weak relative-clause donkey sentences in (99)
above.

(182) Ifp Linusu has au′ credit card, heu shouldp′vp
β,ω use itu′ here instead

of cash.

(183) [sing(p∗)]; maxp(p([u | u = LINUS];
[u′ | singp(u′), CARDp{u′}, HAVEp{u, u′}]));

maxp′vp(p′([singp′(u), singp′(u′), USEp′{u, u′}]));
[NECp∗,β,ω{p, p′}]

(184) IF
[p∗|p∗=w∗];[β,ω|... ]
==========⇒

p∗ β ω

w∗ W1 V1
w∗ W2 V2

w∗ W3 V3
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[sing(p∗)]
=====⇒

p∗ β ω

w∗ W1 V1
w∗ W2 V2

w∗ W3 V3

maxp(p(... ))
======⇒



p∗ β ω p
w∗ W1 V1 w∗

[u|u=LINUS];[u′|singp(u′),CARDp{u′},HAVEp{u,u′}]
===========================⇒

p∗ β ω p u u′

w∗ W1 V1 w∗ linus card1

p∗ β ω p
w∗ W2 V2 w1

[u|u=LINUS];[u′|singp(u′),CARDp{u′},HAVEp{u,u′}]
===========================⇒

p∗ β ω p u u′

w∗ W2 V2 w1 linus card2

p∗ β ω p
w∗ W3 V3 w2

[u|u=LINUS];[u′|singp(u′),CARDp{u′},HAVEp{u,u′}]
===========================⇒

p∗ β ω p u u′

w∗ W3 V3 w2 linus card3



, i.e.,

p∗ β ω p u u′

w∗ W1 V1 w∗ linus card1
w∗ W2 V2 w1 linus card2

w∗ W3 V3 w2 linus card3

maxp′vp(p′ (... ))
========⇒



p∗ β ω p u u′ p′

w∗ W1 V1 w∗ linus card1 w∗

[singp′ (u),singp′ (u′),USEp′{u,u′}]
==================⇒
p∗ β ω p u u′ p′

w∗ W1 V1 w∗ linus card1 w∗

p∗ β ω p u u′ p′

w∗ W3 V3 w2 linus card3 w2

[singp′ (u),singp′ (u′),USEp′{u,u′}]
==================⇒
p∗ β ω p u u′ p′

w∗ W3 V3 w2 linus card3 w2


[NECp∗ ,β,ω{p,p′}]
=========⇒

p∗ β ω p u u′ p′

w∗ W1 V1 w∗ linus card1 w∗

w∗ W2 V2 w1 linus card2 F
w∗ W3 V3 w2 linus card3 w2
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We also account for the strong donkey conditional in (185) below, based
on an example in Kratzer (1981), in a way that is parallel to the analysis
of strong relative-clause donkey sentences in (100) and (107) above. The
representation in (186) derives the intuitively-correct interpretation: p
stores all the worlds in which a murder happens and u stores all the
corresponding murders; then, we check that each and every u-murder
is investigated in all the deontically-ideal p-worlds.

(185) Ifp,u au murder happens, itu mustp′vp,u
β,ω be investigated.

(186) [sing(p∗)];
maxp,u(p,u([singp(u), MURDERp{u}, HAPPENp{u}]));

maxp′vp(p′,u([singp′(u), INVESTIGATEDp′{u}]));
[NECp∗,β,ω{p, p′}]

(187) IF
[p∗|p∗=w∗];[β,ω|... ]
==========⇒

p∗ β ω

w∗ W1 V1
w∗ W2 V2

w∗ W3 V3

[sing(p∗)]
=====⇒

p∗ β ω

w∗ W1 V1
w∗ W2 V2

w∗ W3 V3

maxp,u(p,u(... ))
========⇒
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

p∗ β ω p u
w∗ W1 V1 w∗ murder1

[singp(u),MURDERp{u},HAPPENp{u}]
====================⇒

p∗ β ω p u
w∗ W1 V1 w∗ murder1

p∗ β ω p u
w∗ W1 V1 w∗ murder2

[singp(u),MURDERp{u},HAPPENp{u}]
====================⇒

p∗ β ω p u
w∗ W1 V1 w∗ murder2

p∗ β ω p u
w∗ W2 V2 w1 murder3

[singp(u),MURDERp{u},HAPPENp{u}]
====================⇒

p∗ β ω p u
w∗ W2 V2 w1 murder3

p∗ β ω p u
w∗ W3 V3 w2 murder4

[singp(u),MURDERp{u},HAPPENp{u}]
====================⇒

p∗ β ω p u
w∗ W3 V3 w2 murder4

p∗ β ω p u
w∗ W3 V3 w2 murder5

[singp(u),MURDERp{u},HAPPENp{u}]
====================⇒

p∗ β ω p u
w∗ W3 V3 w2 murder5

p∗ β ω p u
w∗ W3 V3 w2 murder6

[singp(u),MURDERp{u},HAPPENp{u}]
====================⇒

p∗ β ω p u
w∗ W3 V3 w2 murder6



, i.e.,

p∗ β ω p u
w∗ W1 V1 w∗ murder1
w∗ W1 V1 w∗ murder2

w∗ W2 V2 w1 murder3

w∗ W3 V3 w2 murder4
w∗ W3 V3 w2 murder5

w∗ W3 V3 w2 murder6

maxp′vp(p′ ,u(... ))
=========⇒
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

p∗ β ω p u p′

w∗ W2 V2 w1 murder3 w1

[singp′ (u),INVESTIGATEDp′{u}]
================⇒

p∗ β ω p u p′

w∗ W2 V2 w1 murder3 w1

p∗ β ω p u p′

w∗ W3 V3 w2 murder4 w2

[singp′ (u),INVESTIGATEDp′{u}]
================⇒

p∗ β ω p u p′

w∗ W3 V3 w2 murder4 w2

p∗ β ω p u p′

w∗ W3 V3 w2 murder5 w2

[singp′ (u),INVESTIGATEDp′{u}]
================⇒

p∗ β ω p u p′

w∗ W3 V3 w2 murder5 w2

p∗ β ω p u p′

w∗ W3 V3 w2 murder6 w2

[singp′ (u),INVESTIGATEDp′{u}]
================⇒

p∗ β ω p u p′

w∗ W3 V3 w2 murder6 w2



[NECp∗ ,β,ω{p,p′}]
=========⇒

p∗ β ω p u p′

w∗ W1 V1 w∗ murder1 F
w∗ W1 V1 w∗ murder2 F
w∗ W2 V2 w1 murder3 w1
w∗ W3 V3 w2 murder4 w2

w∗ W3 V3 w2 murder5 w2

w∗ W3 V3 w2 murder6 w2

The relevant definitions for the maximization and distributivity opera-
tors are provided below – they are strictly parallel to the ones needed
for strong relative-clause donkey sentences.

(188) maxp,u(D) := λIst.λJst. ([p, u]; D)I J ∧
¬∃Kst(([p, u]; D)IK ∧ Jp 6=F,u 6=F ( Kp 6=F,u 6=F)

(189) distp,u(D) :=
λIst.λJst. ∀w∀x(Ip=w,u=x 6= ∅↔ Jp=w,u=x 6= ∅)∧
∀w∀x(Ip=w,u=x 6= ∅→ DIp=w,u=x Jp=w,u=x)

(190) p,u(D) := λIst.λJst. (Ip=F = Jp=F ∧ Iu=F = Ju=F)∧
Ip 6=F,u 6=F 6= ∅ ∧ distp,u(D)Ip 6=F,u 6=F Jp 6=F,u 6=F

(191) 〈p,u〉(D) := λIst.λJst. (Ip=F = Jp=F ∧ Iu=F = Ju=F)∧
(Ip 6=F,u 6=F = ∅→ I = J)∧
(Ip 6=F,u 6=F 6= ∅→ distp,u(D)Ip 6=F,u 6=F Jp 6=F,u 6=F)

The account also generalizes to mixed weak & strong donkey condi-
tionals, first discussed in Dekker (1993). An example and its analysis
are provided in (192) and (193) below.
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(192) Ifp,u au driver has au′ dime, sheu shouldp′vp,u
β,ω put itu′ in the me-

ter.

(193) [sing(p∗)]; maxp,u(p,u([singp(u), DRIVERp{u}];
[u′ | singp(u′), DIMEp{u′}, HAVEp{u, u′}]));

maxp′vp(p′,u([singp′(u), singp′(u′), PUT-IN-METERp′{u, u′}]));
[NECp∗,β,ω{p, p′}]

4 Entailment as Modal Anaphora

This section shows that the intensional dynamic system we have ar-
gued for enables us to analyze entailment particles like therefore and dis-
courses like (9/10) above that involve multiple layers of modal quan-
tification and modal subordination across these layers.

Schematically, we analyze discourse (9/10) as shown in (194) below.

(194) a. PREMISEp1

i. ifp2,u1 : au1 man is alive

ii. mustp3vp2,u1
β,ω : heu1 has au2 pleasure

b. THEREFOREp4vp1
β∗,ω∗

i. ifp5bp2,u1 : not(heu1 has au3 spiritual pleasure)

ii. mustp6vp5,u1
β,ω : heu1 has au4 carnal pleasure

The representation in (194) is a network of anaphoric connections. Con-
sider the conditional in (194a) first. We introduce a new dref p1 that
stores the content of the whole conditional – that is, p1 is the premise of
the Aquinas argument as a whole. Then, the morpheme ifp2,u1 in (194a-
i) introduces a new dref p2 that stores the content of the antecedent.
In addition, the indefinite a man receives a strong donkey reading, i.e.,
given our mechanism of co-indexation, we introduce a new dref u1 that
stores all the men that are alive in each of the p2-worlds.

Then, the modal verb must in (194a-ii) introduces a new dref p3 that
contains all the p2-worlds in which the corresponding u1-men have a
pleasure. Finally, we test that the set of ideal p2-worlds – ideal relative
to a circumstantial modal base β and an empty ordering source ω – is
included in the set of p3-worlds.

We take therefore to contribute a necessity modal relation, just as the
modal verb must. The particle therefore is anaphoric to dref p1, i.e., the
premise, and introduces a new dref p4 that stores the set of p1-worlds
that also satisfy the conclusion of the Aquinas argument, i.e., the condi-
tional (194b). Then, like any necessity modal, therefore requires the set
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of p1-worlds that are ideal relative to the empty modal base β∗ and the
empty ordering source ω∗ to be included in the set of p4-worlds. The
modal base β∗ and the ordering source ω∗ are empty because therefore
is interpreted as logical consequence. Importantly, since β∗ and ω∗ are
empty, the particle therefore effectively requires the set of p1-worlds to
be identical to the set of p4-worlds.

Thus, we analyze the Aquinas discourse as a modal quantification
that relates two embedded modal quantifications.

We finally turn to the second modal quantification, i.e., the condi-
tional in (194b) above, which is modally subordinated to the previous
conditional in (194a). Unlike all the conditional antecedents that we
have considered up until now, the antecedent in (194b-i) is anaphoric
to the dref p2 introduced by the antecedent in (194a-i). The dref p5 is
a structured subset of p2, symbolized as p5 b p2. We need structured
inclusion because we want p5 to preserve the structure associated with
the p2-worlds, i.e., we want p5 to preserve the quantificational depen-
dency between p2-worlds and the u1-men that are alive in them. Since
the dref u1 received a strong reading in (194a-i), we preserve this strong
reading in the modally subordinated antecedent in (194b-i), hence the
indexation of the particle ifp5bp2,u1 .

Nothing special needs to be said about the modalized consequent in
(194b-ii); its indexation and interpretation are parallel to (194a-ii).

The remainder of this section examines the particle therefore in more
detail, then turns to a discussion of anaphoric conditionals and con-
cludes with the fully explicit formal analysis of the Aquinas discourse.

4.1 Therefore as a Necessity Modal

We indicated that the entailment particle therefore relates static proposi-
tional contents and not dynamic meanings. We can see this by examining
the discourses in (195) and (196) below: in both cases, the content (i.e.,
truth conditions) of the premise(s) and the content of the conclusion
stand in an inclusion relation, while their meanings (i.e., context-change
potentials) do not.

(195) a. Everyu1 man saw au2 woman.
b. Therefore, theyu1 noticed themu2 .

(196) a. Au1 wolf mightp1 enter the cabin.
b. Itu1 wouldp1 see Johnu2 .
c. Therefore, itu1 wouldp1 notice himu2 .

Further support for the idea that therefore relates contents is provided
by the fact that the felicity of therefore-discourses is context-dependent,
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as shown by the discourse in (197) below: entailment obtains if (197)
is uttered on a Thursday in a discussion about John, but not otherwise.
The context-sensitivity of such discourses is expected if therefore relates
contents – since contents are determined in a context-dependent way,
while meanings are not.

(197) a. HeJohn came back three days agoThursday.
b. Therefore, John came back on a Monday.

Moreover, we suggested that the entailment particle therefore should be
analyzed as a necessity modal relation. One argument for such an anal-
ysis is that it predicts we can interpret therefore in different ways, i.e.,
relative to different modal bases and ordering sources.

For example, therefore expresses logical necessity in the Aquinas dis-
course, as well as in the three discourses in (195), (196) and (197) above.
But it can also express causal consequence, as in (198) below, metaphys-
ical necessity, as in (199), a form of practical inference, as in (200), and
various other kinds of necessity / consequence, as in (201), (202) and
(203).

(198) Reviewers are usually people who would have been poets, his-
torians, biographers, etc., if they could; they have tried their tal-
ents at one or the other, and have failed; therefore they turn crit-
ics. (Samuel Taylor Coleridge, Lectures on Shakespeare and Milton)

(199) I blog; therefore, I am. (various hits on www.google.com)

(200) We cannot put the face of a person on a stamp unless said per-
son is deceased. My suggestion, therefore, is that you drop dead.
(attributed to J. Edward Day; letter, never mailed, to a petitioner
who wanted himself portrayed on a postage stamp)

(201) In view of the head and neck symptoms of pneumomediastinum
and cervical emphysema during labor – which include dyspnea,
cough, sore throat, pain on swallowing, and dysphagia – oto-
laryngologists might be consulted and should therefore be aware
of these conditions in order to recognize and treat them. (COCA
– Corpus of Contemporary American English, www.americancorpus.org)

(202) There has been a general fear that juvenile delinquency might
lead to adult criminality, and therefore, must always be curtailed
before contaminating the society. (COCA)

(203) To say things might go back the way they were, therefore we
should not do anything, is bad thinking. (COCA)

Another argument for analyzing therefore as a necessity modal is that
it enables us to capture the intuitive equivalence between therefore dis-
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courses like (204) below and modalized conditionals like (205): they are
equivalent provided we add the premise A man saw a woman to (205).

(204) A man saw a woman. Therefore, he noticed her.

(205) If a man saw a woman, he obviously / necessarily noticed her.

The translation for the particle therefore as it is interpreted in the Aquinas
discourse is provided in (206) below.

(206) thereforep4vp1
β∗,ω∗  

λPst.λqs. maxp4vp1(p4(P(p4))); [NECq,β∗,ω∗{p1, p4}]
(207) [empty{β∗}, empty{ω∗}]

Since therefore expresses logical consequence, both its modal base β∗

and its ordering source ω∗ are empty, as shown in (207) above. This
effectively requires p4 to be identical to p1 with respect to both values
and structure. Formally, given the output state J obtained after the up-
date maxp4vp1(. . . ) in (206) above, the NEC condition effectively tests if
p1 j = p4 j for any assignment j ∈ J. Consequently, p1 can be freely sub-
stituted for p4 and we can simplify the translation of therefore as shown
in (208) below. This translation clearly exhibits the anaphoric nature of
the particle therefore.

(208) thereforep1  λPst. p1(P(p1))

The anaphoric nature of the entailment particle therefore, which needs a
dref p1 as its restrictor, triggers the insertion of a covert content-extraction
operator PREMISEp1 that scopes over the entire modalized conditional
in (194a) and stores the content of this conditional in p1.

(209) PREMISEp1  λPst. maxp1(p1(P(p1)))

We assume the existence of such covert operators only for presenta-
tional convenience. A more plausible analysis would be to automat-
ically extract propositional contents and introduce new drefs to store
these contents as part of the Common Ground (CG) update process (see
Stalnaker 1978). While the present dynamic system is well-suited to for-
malize CG update and its interaction with quantification and anaphora,
this issue is largely orthogonal to our present concerns, so we will ig-
nore it.26

26Note that the Common Ground is a set of propositions incrementally updated in
discourse by the addition of new propositions – and is different from the Context Set,
which is a set of worlds, namely the intersection of all the propositions in the Common
Ground. In the present system, we can take the dref p∗ of type sw to store the Context
Set. The Common Ground could be formalized by means of a modal base dref β∗ of
type s(wt).
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4.2 Anaphoric Conditionals

The antecedent (194b-i) of the second conditional in the Aquinas dis-
course is anaphoric, i.e., modally subordinated, to the antecedent (194a-
i) of the first conditional. We capture this by requiring the dref p5 to be
a maximal structured subset of p2, as shown in (210) below.

(210) if p5bp2  λPst. maxp5bp2(p5(P(p5)))

(211) maxp′bp(D) := maxp′([p′ b p]; D)

This analysis seems to postulate two translations for the complemen-
tizer if : a non-anaphoric one in (194a-i) and an anaphoric one in (194b-
i). But we can easily unify them by taking discourse-initial occurrences
of if to be anaphoric the set of all possible worlds introduced as part of
our startup update (see (161) above).

The fact that we use the weaker notion of structured inclusion b
in the above translation for anaphoric if instead of the stronger one v
requires some justification. Consider the two notions of anaphoric max-
imization maxp′vp(D) and maxp′bp(D) more closely.

The former (maxp′vp(D)) is more restrictive, i.e., stronger with re-
spect to values: p′ stores all and only the p-worlds such that all their
associated dependencies satisfy the DRS D. The latter (maxp′bp(D)) is
less restrictive, but this makes it stronger with respect to structure /
dependencies: p′ doesn’t store only the p-worlds such that all their as-
sociated dependencies satisfy the DRS D; p′ stores both these worlds
and the p-worlds such that only some of their associated dependencies
satisfy D. That is, p′ collects as many p-dependencies that satisfy D as
possible.

Consider again the modally-subordinated conditional in (194b). It
is interpreted as: if a man is alive and he doesn’t have any spiritual
pleasure, he must have a carnal pleasure. That is, we quantify over all
the p2-worlds in which there is at least one u1-man without spiritual
pleasures and, simultaneously, over all such u1-men. That is, we do not
quantify only over the worlds in which all men are without spiritual
pleasures. We quantify over both these worlds and the worlds in which
there is at least one man without spiritual pleasures.

Formally, we need to quantify over the maximal subset of p2-worlds
such that at least some of their associated u1-dependencies satisfy the
antecedent (194b-i) – and, at the same time, over the maximal subset of
these u1-dependencies that satisfy (194b-i). This is what the structure-
maximization operator maxp′bp(D) achieves – as opposed to the oper-
ator maxp′vp(D).

So, the antecedent of the conditional in (194b-i) stores in p5 all the p2-
worlds where some u1-man is alive and without spiritual pleasures and
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associates with each of these worlds all the corresponding u1-men that
have no spiritual pleasures. The consequent in (194b-ii) above can now
receive its intuitively-correct interpretation, i.e., it requires us to check
that each one of the u1-men without spiritual pleasures has a carnal
pleasure in the corresponding p5-world.

Thus, anaphoric conditionals bring into sharper focus the main idea
behind our account of modal subordination: modal subordination is
just quantifier domain restriction via structured modal anaphora, i.e.,
simultaneous anaphora both to previously introduced sets of values,
i.e., worlds and individuals, and to the previously established depen-
dencies between these sets.

In general, structure-maximization operators seem to be needed in
downward-entailing contexts that contain anaphoric items. Consider,
for example, the relative-clause donkey sentences with downward-monotonic
quantifiers in (212) (from Rooth 1987) and (213) below.

(212) No parent with a son still in high school has ever lent him the
car on a weeknight.

(213) Few parents with a son still in high school have ever lent him
the car on a weeknight.

Intuitively, (212) is falsified by any parent who has a son in high school
and who has lent him the car on a weeknight, even if the parent has
another son who never got the car (a similar observation can be made
with respect to sentence (213)).

We analyze (212) as a strong (not weak, as the received wisdom has
it!) donkey sentence whose main determiner no contributes a structure-
maximization operator over its nuclear scope, as shown in (214) and
(215) below.

(214) Nou,u′′bu,u′ parent with au′ son still in high school has ever lent
himu′ the car on a weeknight.

(215) maxu,u′(〈u,u′〉([PARENT{u}]; [sing(u′), SON{u′}, WITH{u, u′}]));
maxu′′bu(〈u′′,u′〉([sing(u′), LEND-CAR{u′′, u′}])); [NO{u, u′′}]

(216) maxu′bu(D) := maxu′([u′ b u]; D)

The first update in (215), i.e., the restrictor of the no-quantification, stores
in u all the parents with at least one son and in u′ all their corresponding
sons. The second update, i.e., the nuclear scope of the no-quantification,
stores in u′′ all the u-parents that lent their car to at least one of their
corresponding u′-sons. Finally, the NO{u, u′′} condition effectively re-
quires u′′ to store the empty set – that is, there are no parents who lent
their car to any one of their sons.
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4.3 The Aquinas Discourse

The translation of the entire Aquinas discourse is provided in (217) be-
low. Given the definition of truth in (35) above, we assign the intuitively
correct truth conditions to this discourse. That is, according to the
translation in (217), the argument made by Aquinas goes through. The
premise establishes that the set of ideal worlds among the p2-worlds is
such that any man u1 has at least one pleasure. The conclusion follows
because, in all the ideal p2-worlds, pleasures are spiritual or carnal (just
as in the actual world w∗) and any man has at least one pleasure. Hence,
if a man u1 has no spiritual pleasure, he must have at least one carnal
pleasure.

(217) Ifp2,u1 au1 man is alive, heu1 mustp3vp2,u1
β,ω have au2 pleasure. Thereforep1 ,

ifp5bp2,u1 heu1 doesn’t have anyu3 spiritual pleasure, heu1 mustp6vp5,u1
β,ω

have au4 carnal pleasure. 
[sing(p∗), circumstantial{p∗, β}, empty{ω}];
maxp1(p1(maxp2,u1(p2,u1([singp2

(u1), MANp2{u1}, ALIVEp2{u1}]));
maxp3vp2(p3,u1([singp3

(u1)];
[u2 | singp3

(u2), PLEASUREp3{u2}, HAVEp3{u1, u2}]));
[NECp1,β,ω{p2, p3}]));
p1(maxp5bp2(p5,u1([∼ [singp5

(u1)]; [u3 | singp5
(u3),

SPIRITUALp5{u3}, PLEASUREp5{u3}, HAVEp5{u1, u3}]]));
maxp6vp5(p6,u1([singp6

(u1)]; [u4 | singp6
(u4),

CARNALp6{u4}, PLEASUREp6{u4}, HAVEp6{u1, u4}]));
[NECp1,β,ω{p5, p6}])

Once again, we follow Kratzer (1981) and take the modal base and or-
dering source drefs β and ω (relative to which the premise and the con-
clusion are interpreted) to be contextually supplied and suitably con-
strained. In particular, the condition circumstantial{p∗, β} in (217)
above constrains the modal base β to share with the actual world p∗

the same (contextually-relevant) set of circumstances. The proposition
in (218) below is one such shared circumstance.

(218) {w : ∀xe(PLEASUREw(x)→ (SPIRITUALw(x) ∨ CARNALw(x)))}

5 Comparison with Previous Approaches

The main goal of the present paper was to explore how far we can get in
the analysis of modal and individual-level quantification and anaphora
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– and their intra- and cross-sentential interactions – with just two gen-
eralizations of the classical Tarskian semantics for first-order logic: go-
ing dynamic in the style of Dynamic Predicate Logic (Groenendijk &
Stokhof 1991), i.e., taking denotations to be pairs of an input and an
output context of evaluation, and going plural in the style of Dynamic
Plural Logic (van den Berg 1996), i.e., taking contexts of evaluation to
consist of sets of assignments instead of single assignments. We pre-
served as much of classical Tarskian semantics as possible, e.g., we
worked with total assignments (formally better behaved than partial
assignments, stacks, referent systems etc.), so that we can identify the
extensions that are crucial to our analysis.

Following Muskens (1996) (among many others), we also preserved
the Montagovian solution to the problem of compositionality (at sub-
clausal level), since there seemed to be no compelling reason to believe
that the two generalizations of classical Tarskian semantics will require
any change in this respect. The only essential addition to Muskens
(1996) was the introduction of maximization and distributivity oper-
ators (in the spirit of van den Berg 1996), needed to define a dynamic
version of λ-abstraction.

The resulting Intensional PCDRT system reformulates van den Berg’s
Dynamic Plural Logic in classical type logic, simplifies it in the pro-
cess and unifies it with the static Lewis (1973)-Kratzer (1981) analysis
of modal quantification in an even-handed way. An important conse-
quence is that we are able to associate modal quantifications with con-
tents, i.e., the propositions these quantifications express in a particular
context, and are able to account for the fact that the entailment particle
therefore in the Aquinas discourse and modal verbs in logic puzzles can
relate such contents.

The approach we took was one of four types of dynamic approaches
to modal subordination explored in the previous literature. These types
of approaches differ with respect to the way in which they encode the
quantificational dependencies between possible scenarios, e.g., the epis-
temic possibilities of a wolf coming in, and the individuals that feature
in these scenarios, e.g., the wolves in these epistemic possibilities that
come in.

The first class consists of accommodation accounts – exemplified
primarily by Roberts (1987, 1989, 1996), but see also the more recent
approach in Geurts (2009) –, where there are no modal drefs of any
kind and the associations between possible scenarios and the individu-
als that feature in them is captured at the level of logical form, i.e., by ac-
commodating / copying the DRSs that introduce the relevant individual-
level drefs into the restrictor or nuclear scope DRSs of another modal
operator. Most of the work in these approaches is done by such DRS-
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copying rules, for which a systematic, suitably-constrained theory is
still pending (see Geurts 2009 for a recent attempt to work towards the
foundations of such a theory).

The naturally-occurring logic-puzzle texts exemplified at the begin-
ning of the paper show that it is really important to provide a formally
explicit and detailed theory of DRS copying / accommodation. The
reason is that these logic puzzles can be solved – and, to solve them, we
need to be able to build precise semantic representations for discourses
in which complex relations between sets of objects are incrementally in-
troduced and described. Simply invoking some underspecified form of
DRS copying / accommodation will not provide the highly specific and
detailed representations that support the logical reasoning required to
solve these puzzles.

The second class includes analyses like the ones proposed in Kibble
(1994, 1995), Geurts (1995/1999), Frank (1996), Frank & Kamp (1997),
van Rooy (2001) and Asher & McCready (2007), which take modal quan-
tifiers to relate dynamically-valued drefs, i.e., in the simplest case, drefs
for information states – where, following Heim (1982), an information
state is basically represented as a set of 〈world, assignment〉-pairs.

In these approaches, the dependency between possibilities and indi-
viduals is encoded in the drefs for information states: every 〈world, assignment〉-
pair is such that the assignment stores the individual-level drefs that
have been introduced with respect to that world. These approaches to
modal subordination are parallel to the parametrized-sum-individuals
approaches to donkey anaphora and quantificational subordination in
Rooth (1987) and Krifka (1996). The only difference is that, instead
of summing atomic individuals, each of which is parametrized with
a variable assignment, these approaches ‘sum’ possible worlds that are
parametrized with assignments.

The third class consists of encapsulated quantification accounts, e.g.,
Stone (1997, 1999) and Bittner (2001, 2007), where modal quantifiers re-
late drefs for static objects. Modal drefs in such accounts are of type
s(w(wt)), i.e., they are drefs for accessibility relations, and individual-
level drefs are of type s(we), i.e., they are drefs for individual concepts.

The quantificational dependency between possibilities and individ-
uals is encoded in the complex static objects that these drefs have as
values. For example, in a sentence like A wolf might come in, the modal
might introduces a dref of type s(w(wt)) which, with respect to a given
assignment is, stores a relation of type w(wt) that maps (the current
candidates for) the actual world to the set of epistemically-accessible
worlds in which a wolf comes in. The indefinite a wolf introduces a dref
of type s(we) which, relative to an assignment is, stores a function map-
ping every epistemically-accessible world w in which a wolf comes in
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to that particular wolf.
Building on proposals in van den Berg (1996) and van Rooy (1998),

we used of a fourth way of capturing quantificational dependencies be-
tween possibilities and individuals, namely plural information states.
Just as in encapsulated quantification accounts, drefs for possibilities
have static objects as values – in particular, they are of type sw, storing
a possible world w relative to each assignment i. Drefs for individu-
als have the usual type se. But, unlike in encapsulated quantification
accounts, the quantificational dependencies between possibilities and
individuals are stored in the plural info states that are incrementally
updated in discourse and not in the static objects that the modal and
individual-level drefs have as values. Our dynamic modal relations are
relativized to a world-dref (p∗ by default), so we can associate modal
quantifications with their propositional contents and thereby account
for the Aquinas discourse.

Thus, the differences between the present account and previous ap-
proaches stem from the choices made with respect to three dimensions
of variation:

(i) the use of modal drefs that have static vs dynamic objects as val-
ues

(ii) encoding quantificational dependencies by means of functions /
relations vs plural info states

(iii) being able to associate propositional contents with dynamic modal
quantifiers

The many dynamic systems instantiating these four types of approaches
and combinations thereof are rather complex (given the empirical com-
plexity of the target phenomena) and one can fairly easily imagine a
variety of more-or-less natural extensions for most of them.27 Con-
sequently, a comparison between these systems with the aim of dis-
missing some of them as empirically or theoretically inadequate is ul-
timately misguided – given the currently available empirical evidence
and the current level of theory development.

This section will therefore be confined to the discussion of several
kinds of phenomena that make our choices with respect to (i), (ii) and
(iii) above at least prima facie plausible.

We begin with point (iii). The Lewis-Kratzer static semantics for
modal quantification automatically associates propositional contents with
modal quantifiers. This enables us to understand why modal state-
ments can be related by particles like therefore, i.e., can be (informa-

27I am indebted to Paul Dekker and an anonymous reviewer for really driving this
point home.
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tively) said to entail one another, in the same way that non-modal state-
ments can be said to entail one another. In contrast, most dynamic
analyses of modal quantification, including van Rooy (1998) and Stone
(1999), are formulated in such a way that they automatically fuse modal
statements with the background information (i.e., with the input con-
text of evaluation) and do not extract their contents and keep track of
these contents as separate discourse entities. While this is not a neces-
sary feature of dynamic systems, it is a natural consequence of the view
that meaning is context / information update.28 Consequently, these
dynamic systems do not capture the meaning of items like therefore that
relate such contents. One can imagine ways of ‘lifting’ the dynamic
meanings of sentences in a therefore-discourse from the context and ex-
tract their static contents – since all dynamic systems on the market
associate sentences with truth conditions (in the meta-language, how-
ever, not in the representation / object language!) – but this would be
an artificial way to proceed. The way in which Intensional PCDRT inte-
grates dynamic plural logic and the Lewis-Kratzer semantics for modal
quantification delivers this automatically.

Turning now to point (ii), an argument in favor of decomposed quan-
tification is that encapsulated-quantification approaches (which, in a
broad sense, include approaches that make use of choice and / or Skolem
functions to account for donkey anaphora and quantificational sub-
ordination) do not store the quantificational dependencies introduced
in discourse in the database that is meant to store discourse-related
information, i.e., in the information states. They instead store quan-
tificational dependencies in the meaning of lexical items, be they the
indefinite-like items that introduce new drefs or the pronoun-like items
that retrieve them.

The point, which van den Berg (1996) already makes with respect to
plural anaphora, can be more easily clarified if we consider the quantificational-
subordination examples in (219) and (220) below. The argument based
on modal subordination would be parallel to this.

(219) a. Everyu man loves au′ woman.
b. Theyu bring themu′ flowers to prove this.

(220) a. Everyu boy made au′ paper flower and gave itu′ to au′′ girl.
b. Theyu′′ thanked themu for theu′ very nice gifts.

Consider (219) (from van den Berg 1996) first. Sentence (219a) estab-
lishes a twofold dependency between men and the women that they

28I am indebted to Paul Dekker and an anonymous reviewer for suggesting this line
of argumentation.
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love. Then, sentence (219b) further elaborates on this dependency. Encapsulated-
quantification approaches have to make use of functions from individ-
uals to individuals of type ee – or relations between individuals of type
e(et) – to capture the intuition that sentence (219b) elaborates on the de-
pendency introduced in sentence (219a). That is, either the quantifiers
everyu man and au′ woman or the pronouns theyu and themu′ – or both –
have to have such functions / relations as part of their semantic values.

Now consider discourse (220). Sentence (220a) establishes a three-
fold dependency between boys, flowers and girls and sentence (220b)
further elaborates on this dependency. In this case, encapsulated-quantification
approaches need to make use of functions and / or relations that are
more complex than the ones needed for discourse (219). Therefore, the
semantic values assigned to quantifiers and / or pronouns will have to
be more complex in the case of (220), despite the fact that the very same
lexical items are used.

That is, quantifiers and / or pronouns denote functions / relations
of different arities depending on the discourse context, i.e., depending
on how many simultaneous anaphoric connections are established in
a particular discourse. And these functions / relations become a lot
more complex as soon as we start to explicitly represent anaphora to
and quantification over possible worlds, times, locations, eventualities,
degrees etc. In sum, the argument against encapsulated-quantification
approaches is the following: since the arity of the functions / relations
denoted by pronouns and / or quantifiers is determined by the dis-
course context, we should encode this context dependency in the info
state (the purpose of which is to store precisely this kind of discourse
information) and not in the meaning of the lexical items themselves.

There are two, more specific features of our analysis of modal quan-
tification that distinguish it from the encapsulated approach in Stone
(1999) – and they should be mentioned because Stone (1999) has been
an obvious source of inspiration for the present account. First, Stone
(1999) treats modal bases and ordering sources as static objects (see the
definitions for necessity and possibility in Stone 1999:27,(47)). In con-
trast, we introduce drefs for modal bases and ordering sources, thus
providing a dynamic treatment for all the context-dependent compo-
nents of modal quantification that Kratzer (1981) argues for.

Second, we employ maximal unparametrized restrictor and nuclear
scope sets in the definition of modal quantification. In contrast, Stone
(1999) introduces restrictor and nuclear scope sets for modal quantifiers
by means an if-update, with a Lewis-style similarity ordering source
built into it (see Stone 1999:17,(34)). To see that the built-in parametriza-
tion is too restrictive, consider the deontic conditional in (221) below
(based on Kratzer 1981). Intuitively, (221) does not involve a similarity
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ordering source because the conditional simply states that, according to
the law, the deontically ideal worlds among the set of all worlds where
there is a murder are such that the murderer goes to jail. The deontic
quantification is not restricted to the set of worlds where there is a mur-
der and which are as similar as possible to the actual world, since many
of the facts in the actual world are orthogonal to the legal requirement
specified by (221).

(221) If there is a murder, the murderer must go to jail.

Another argument for maximal unparametrized nuclear scope sets is
provided by the discourse in (222) below (from Roberts 1996).

(222) a. You should buy au lottery ticket and put itu in a safe place.
b. [You’re a person with good luck.]
c. Itu might be worth millions.

Sentence (222c) elaborates on any possible scenario in which you buy
a lottery ticket (and put it in a safe place). Crucially, sentence (222c)
does not elaborate only on deontically-ideal scenarios of this sort, as it
would be the case if the nuclear-scope set of worlds introduced by sen-
tence (222a) were parametrized by the modal base and ordering source
contributed by the modal verb should.

We finally turn to point (i). The availability of both weak and strong
donkey readings in modalized conditionals seems to favor Intensional
PCDRT over systems with dynamically-valued modal drefs or accommodation-
based accounts. Accommodation-based approaches like Roberts (1987,
1989) account only for strong donkey readings, a feature they inherit
from the underlying classical DRT framework. More interestingly, ap-
proaches that use drefs for information states also account only for strong
readings.

For example, the definitions in Frank (1996:98,(36)) and Geurts (1995/1999:154,(43b))
update a set F of 〈world, assignment〉-pairs with a DRS K (the denota-
tion of which is a binary relation between 〈world, assignment〉-pairs) by
taking the image of the set F under the relation denoted by K. That is,
the output set G of 〈world, assignment〉-pairs obtained after updating F
with K is the set G = {〈w′, g′〉 : ∃ 〈w, g〉 ∈ F(〈w, g〉K 〈w′, g′〉)}. This
kind of update predicts that, after we interpret the antecedent of the
conditional in (182) above, for example, the output set of 〈world, assignment〉-
pairs will contain all the credit cards that Linus has, which in turn in-
correctly predicts that the conditional in (182) requires Linus to use all
his credit cards.

Various repairs can be imagined, which would presumably try to
uncouple the part of the update that targets worlds, which still needs to
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be maximal / ‘strong’, and the part of the update that targets variable
assignments, which should optionally be non-maximal / ‘weak’. The
question that arises is to what extent such repairs would move these
dynamic systems towards the Intensional PCDRT end of the spectrum.

We end this section with the observation that weak and strong don-
key readings also pose problems for the account in van Rooy (1998) and
for Stone (1999). The system in van Rooy (1998) derives only strong
readings because indefinites are analyzed as quantifiers, so they always
have a maximal / strong reading.

In contrast, Stone (1999) derives only weak readings because indefi-
nites introduce drefs for individual concepts (they are functions of type
s(we)), hence, for each possible world, the dref will store exactly one
individual. Such drefs are, basically, drefs for choice functions: given a
world w, the individual concept will choose a particular entity that is a
credit card that Linus has in w. Thus, Stone (1999) can account for the
weak-donkey conditional in (182), but not for the strong-donkey condi-
tional in (185), where the indefinite in the antecedent needs to introduce
all the murders that happen in any given world w.

An easy repair would be to introduce drefs for properties, i.e., drefs
of type s(w(et)), which, relative to a given world w, would store the set
of all murders in w. However, this strategy fails to predict the correct in-
terpretation for more complex examples involving multiple instances of
strong donkey anaphora, e.g., (223) below. If u simply stores all farmers
that own a donkey in w and u′ stores all donkeys owned by a farmer in
w, there is no way to keep track of the own-relation in the consequent of
the conditional: every farmer should feed the donkey(s) that he owns,
not other donkeys owned by some other farmer.

(223) If au farmer owns au′ donkey, heu should feed itu′ properly.

6 Conclusion

The paper introduced a variety of phenomena involving intra-sentential
and cross-sentential quantificational dependencies between individuals
and possibilities and argued that they can receive a unified composi-
tional account if their analysis is seen as part of a general project of
investigating the fine structure and dynamics of quantifier-internal and
quantifier-external contexts of evaluation.

The main proposal is that modal quantification is a composite no-
tion, to be analyzed in terms of discourse reference to quantificational
dependencies that is multiply constrained by the various components
that make up a modal quantifier. In particular, modal and individual-
level quantification should be decomposed in such a way that the ‘count-
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ing’ / ‘quantifying’ component specific to each quantifier is separated
from the general dynamics of quantifier-dependency interpretation.

We purposefully left open the question of whether the decomposi-
tion of quantifiers is at the object level (i.e., at the level of logical form)
or at the level of the meta-language or translation language (i.e., quan-
tifiers come with a complex interpretation rule, but they are not com-
plex expressions at the level of logical form). Generalized quantifiers
over individuals were decomposed at the meta-level, while modalized
conditionals were decomposed at the level of logical form. In general,
whether a quantificational item / construction – in English or any other
language – should be decomposed at the object level or at the meta-
level is an empirical issue, as it depends on the morpho-syntax of that
particular item / construction (among other things).

The idea that the Montagovian solution to the problem of composi-
tionality and the underlying logic of Montague semantics are compati-
ble with dynamic semantics informs the entire paper. The resulting dy-
namic system, couched in classical type logic, systematically captures
the anaphoric and quantificational parallels between the individual and
modal domains.

The truth-conditional and anaphoric components of modal quan-
tification are captured in an even-handed way and, unlike previous ac-
counts, we make the propositional contents contributed by modal con-
structions available for subsequent discourse reference, which enables
us to analyze discourses like (9/10) that crucially involve structured
anaphora to such propositional contents.

The main goal of the paper was to provide a framework in which
issues and distinctions pertaining to the interactions between singular
/ plural anaphora and individual-level / modal quantification can be
precisely formulated and explicitly formalized in the lingua franca of
classical many-sorted type logic. The hope is that an empirical pro-
gram that systematically investigates the range of possible anaphoric
relations and their differing interactions with various quantificational
elements can be built on this foundation.

Acknowledgments
I am grateful to Daniel Altshuler, Pranav Anand, Johan van Benthem, Sam
Cumming, Donka Farkas, Tim Fernando, Hans Kamp, Sarah Murray, Jessica
Rett, Maribel Romero, Robert van Rooy, Philippe Schlenker, Katrin Schulz,
Magda Schwager, Roger Schwarzschild, Will Starr, Henk Zeevat and Ede Zim-
mermann for comments and discussion. I am particularly grateful to Maria
Bittner, Paul Dekker and Matthew Stone for their continued support and in-
terest in this project and their extensive comments and advice. Finally, I want
to thank three Journal of Semantics anonymous reviewers and Anna Szabolcsi

84



for their detailed comments on an earlier draft of this paper and the impetus
to improve it in many respects. The usual disclaimers apply.

References
Asher, N. & E. McCready (2007). Were, Would, Might and a Compositional

Account of Counterfactuals. In Journal of Semantics 24, 93-129.
Barwise, J. (1987). Noun phrases, Generalized Quantifiers and Anaphora. In

Generalized Quantifiers, P. Gärdenfors (ed.), Dordrecht: Kluwer, 1-29.
Barwise, J. & R. Cooper (1981). Generalized Quantifiers in Natural Languages.

In Linguistics and Philosophy 4, 159-219.
Ben-Shalom, D. (1996). Semantic Trees, PhD dissertation, UCLA.
van Benthem, J. (1997). Modal Foundations for Predicate Logic. In Logic Journal

of IGPL 5, 259-286.
van den Berg, M. (1996). Some aspects of the Internal Structure of Discourse. The

Dynamics of Nominal Anaphora, PhD dissertation, University of Amsterdam.
Bittner, M. (2001). Topical Referents for Individuals and Possibilities. In the

Proceedings of SALT XI, Hastings. R et al (eds.), CLC, Cornell University,
Ithaca 36-55.

Bittner, M. (2007). Online update: Temporal, Modal and De Se Anaphora in
Polysynthetic Discourse. In Direct Compositionality, C. Barker & P. Jacobson
(eds.), Oxford: Oxford University Press, 363-404.

Brasoveanu, A. (2007). Structured Nominal and Modal Reference, PhD disserta-
tion, Rutgers University.

Brasoveanu, A. (2008). Donkey Pluralities. In Linguistics and Philosophy 31, 129-
209.

Brasoveanu, A. (2010). Structured Anaphora to Quantifier Domains. In Infor-
mation and Computation 208, 450-473.

Chierchia, G. (1995). The Dynamics of Meaning: Anaphora, Presupposition and the
Theory of Grammar, University of Chicago Press.

Dekker, P. (1993). Transsentential Meditations: Ups and Downs in Dynamic Seman-
tics, PhD dissertation, University of Amsterdam.

Evans, G. (1977). Pronouns, Quantifiers and Relative Clauses (I). In The Journal
of Canadian Philosophy 7, 467-536.

Evans, G. (1980). Pronouns. In Linguistic Inquiry 11, 337-362.
Frank, A. (1996). Context Dependence in Modal Constructions, PhD dissertation,

University of Stuttgart.
Frank, A. & H. Kamp (1997). On Context Dependence in Modal Constructions.

In Proceedings of SALT VII, Stanford University.
Gallin, D. (1975). Intensional and Higher-Order Modal Logic with applications to

Montague semantics, North-Holland Mathematics Studies.
Geurts, B. (1999). Presuppositions and Pronouns, Amsterdam, Elsevier. Revised

version of Geurts, B. 1995, Presupposing, PhD dissertation, University of
Stuttgart.

85



Geurts, B. (2009). Anaphora, Accessibility and Bridging. To appear in Handbook
of Semantics, K. von Heusinger, C. Maienborn & P. Portner (eds.).

Groenendijk, J. & M. Stokhof (1990). Dynamic Montague Grammar. In Papers
from the Second Symposium on Logic and Language, L. Kálman & L. Pólos (eds.),
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