

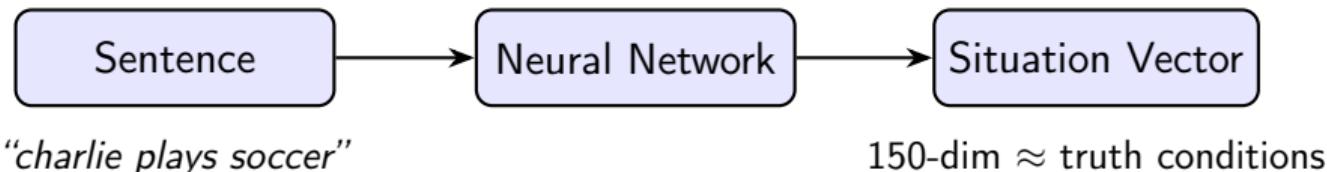
# The Learnability of Model-Theoretic Interpretation Functions in Artificial Neural Networks

Adrian Brasoveanu (UC Santa Cruz)  
Jakub Dotlačil (Utrecht University)

CPL 2025

# The Task: Learning Sentence → Truth Conditions

**Question:** Can neural networks learn model-theoretic interpretation functions?



**Setup** (following Frank et al. 2009):

- **Microworld:** 3 people, 3 games, 3 toys, 4 locations → 44 atomic propositions
- **Situation vectors:** Encode event co-occurrence structure (details at poster)
- **Training:** Map sentences to target vectors; measure comprehension

**The systematicity question:** Does the learned interpretation function **generalize** to novel sentences not seen during training?

# Complementary Train/Test Splits

What's held out in Split 1 is trained in Split 2 (and vice versa)—ensuring results don't depend on which particular sentences are excluded (C=charlie, H=heidi, S=sophia).

| Test Group      | Split 1 Held Out         | Split 2 Held Out         | Truth Cond in Train |
|-----------------|--------------------------|--------------------------|---------------------|
| Word (easiest)  | C+soccer                 | boy+football             | yes                 |
| Sentence        | C {beats/loses to} H ... | C {beats/loses to} S ... | yes                 |
| Complex Event   | chess+outside ...        | chess+inside ...         | no                  |
| Basic (hardest) | C+doll ...               | C+ball ...               | no                  |

Four test groups of increasing difficulty:

- **Word**: Novel word combinations (synonym substitution), but target truth cond seen in training
- **Sentence**: Novel person pairs in “beats”/“loses to”—can model learn argument alternations?
- **Complex**: Novel game+location conjunctions, target truth cond **not** seen in training (only truth conditions for individual conjuncts seen)
- **Basic**: Novel person+toy combinations (hardest), target truth cond **not** seen in training

Training: ~6,500 consistent sentences per split

## Evaluation: Described vs. Competing Events

**Problem:** High score for correct interpretation isn't enough, model might learn event *type* rather than specific event.

**Example:** "charlie beats heidi"  $\Rightarrow$   $\text{win}(\text{charlie}) \wedge \text{lose}(\text{heidi})$ , but model might just learn "someone wins, someone loses"

Add **competing events** that match event type but contradict described event (Frank et al. 2009 hardcodes; we generalize notion of "competing" so that applicable to any sentence):

- **Described:**  $\text{win}(\text{charlie}) \wedge \text{lose}(\text{heidi})$  — should score **positive**
- **Competing:**  $\text{win}(\text{heidi})$ ,  $\text{win}(\text{sophia})$ ,  $\text{lose}(\text{charlie})$ ,  $\text{lose}(\text{sophia})$  — should score **negative**

**Comprehension score** (Frank et al. 2009): Normalized belief change

$$\text{Comprehension}(a|z) = \begin{cases} \frac{P(a|z) - P(a)}{1 - P(a)} & \text{if } P(a|z) > P(a) \\ \frac{P(a|z) - P(a)}{P(a)} & \text{otherwise} \end{cases}$$

**Systematicity / OOT Generalization = Advantage** =  $\text{score}(\text{described}) - \text{score}(\text{competing})$   
Positive advantage  $\Rightarrow$  model correctly distinguishes described from competing

# What We Vary: Architectures & Entity Vectors

Four architectures (capacity-matched at  $\approx 66k$  parameters for no-entity condition):

| Architecture    | Type              | Hidden | Layers | Params (no entity) |
|-----------------|-------------------|--------|--------|--------------------|
| SRN             | Recurrent         | 178    | 1      | 66,010             |
| LSTM            | Recurrent (gated) | 80     | 1      | 66,950             |
| Attention AbsPE | Transformer       | 48     | 2      | 65,670             |
| Attention RoPE  | Transformer       | 48     | 2      | 65,670             |

Entity vectors — our extension to Frank et al truth-conditional target vectors:

- Original: 150-dim targets (truth-conditional only)
- Our extension: 300-dim targets (150 truth + 150 entity information)  
Comprehension scores evaluated only on truth-conditional part

Scale: 4 architectures  $\times$  2 entity conditions  $\times$  2 splits  $\times$  5 seeds = 80 models

## Results at our poster!

Which architectures generalize best? How much do entity vectors help?

Zoom link: Adrian available during poster session; QR on poster also

