
Computational Formal Semantics Notes: Part 1

Adrian Brasoveanu∗

October 14, 2013

Contents

1 Syntax of propositional logic 1

2 Semantics of propositional logic 4

3 Tautologies, satisfiability and contradictions 9

4 Checking for entailment between two formulas 10

5 Context Set update 11

1 Syntax of propositional logic

We load the module that defines the syntax of propositional (technically speaking, sentential) logic.

ghci 1> : l PropLsyn

Note that this module imports the Data.List module:

(1) import Data.List

The PropLsyn module defines the recursive type of sentential formulas Form. The definition of Form
includes the expected recursive value constructors:

• negation

ghci 2> : t Ng
Ng :: Form→ Form

• conjunction (of a list of formulas, not just 2 formulas)

∗Code based on Computational Semantics with Functional Programming by Jan van Eijck & Christina Unger, http://www.
computational-semantics.eu.

1

http://www.computational-semantics.eu
http://www.computational-semantics.eu

ghci 3> : t Cnj
Cnj :: [Form]→ Form

• disjunction (of a list of formulas)

ghci 4> : t Dsj
Dsj :: [Form]→ Form

These formula constructors cover most of the definition of the syntax of sentential logic, which is
particularly simple:

(2) The syntax of propositional logic:

data Form = P String | Ng Form | Cnj [Form] | Dsj [Form] deriving Eq

We have a value constructor for atomic formulas P, which takes a string, i.e., a formula name, as its
only argument and returns an atomic formula with that name as the result:

ghci 5> : t P
P :: String→ Form

In adition, we have the Ng, Cnj and Dsj constructors we already looked at.
Finally, we derive Eq for our Form type since we want to be able to determine when two formulas

are identical as syntactic objects.
We manually derive the instace of Show for formulas so that we can display them in a more familiar

format.
The recursive definition of the show function might seem a bit complicated – just remember that

this is really just used for pretty-printing. The actual definition of the syntax of propositional logic is
particularly straightforward and concise.

Nonetheless, make sure you understand the recursive definition of the show function for our Form
data type, which is provided below for convenience:

(3) instance Show Form where
show (P name) = name
show (Ng f) = "~ "++ show f
show (Cnj fs) = "("++ intercalate " /\\ " (map show fs) ++ ")"
show (Dsj fs) = "("++ intercalate " \\/ " (map show fs) ++ ")"

The two example formulas below are predefined in the PropLsyn module as shown below:

(4) form1, form2 :: Form
form1 = Cnj [P "p", Ng (P "p")]
form2 = Dsj [P "p1", P "p2", P "p3", P "p4"]

ghci 6> form1
(p ∧ ∼p)

2

ghci 7> form2
(p1 ∨ p2 ∨ p3 ∨ p4)

We can define more formulas, both atomic and non-atomic:

ghci 8> let form3 = P "jake likes chocolate"

ghci 9> form3
jake likes chocolate

ghci 10> let form4 = P "sam likes vanilla"

ghci 11> form4
sam likes vanilla

ghci 12> let form5 = Ng form3

ghci 13> form5
∼ jake likes chocolate

ghci 14> let form6 = Ng $ Dsj [form3, form4]

ghci 15> form6
∼ (jake likes chocolate ∨ sam likes vanilla)

ghci 16> let form7 = Ng $ Cnj [form5, form6]

ghci 17> form7
∼ (∼ jake likes chocolate ∧ ∼ (jake likes chocolate ∨ sam likes vanilla))

3

2 Semantics of propositional logic

We load the module that defines the semantics for our propositional logic system:

ghci 18> : l PropLsem

Note that this module imports the syntax module PropLsyn right at the very beginning (in addition
to the Data.List module):

(5) import Data.List
import PropLsyn

Every time a module is (re)loaded in ghci, the namespace is completely erased and restarted – so
we redefine the formulas we introduced above:

ghci 19> let { form3 = P "jake likes chocolate";
form4 = P "sam likes vanilla";
form5 = Ng form3;
form6 = Ng $ Dsj [form3, form4];
form7 = Ng $ Cnj [form5, form6]}

We want to assign semantic values, i.e., True or False, to formulas like these. Such formulas have
a semantic value relative to a model that assigns semantic values (i.e., truth values) to the atomic
propositions in these formulas.

Propositional logic is so simple that we can actually generate all possible models for any given
formula and then evaluate that formula relative to any / all of those models.

To be able to generate a model for an arbitrary propositional formula, we first need to have access
to the atomic propositions that it contains.

So we have a helper function that extracts the names of all the atomic propositions that occur as
sub-formulas in any input formula:

(6) propNames :: Form→ [String]
propNames (P name) = [name]
propNames (Ng f) = propNames f
propNames (Cnj fs) = sort ◦ nub ◦ concat $ map propNames fs
propNames (Dsj fs) = sort ◦ nub ◦ concat $ map propNames fs

For example, consider the formula below:

ghci 20> form5
∼ jake likes chocolate

It contains only one atomic proposition, namely:

ghci 21> propNames form5
["jake likes chocolate"]

We can do the same for more complicated formulas, e.g.:

4

ghci 22> form7
∼ (∼ jake likes chocolate ∧ ∼ (jake likes chocolate ∨ sam likes vanilla))

ghci 23> propNames form7
["jake likes chocolate", "sam likes vanilla"]

Given a list of atom names, we can generate all the possible models, a.k.a. valuations, for that list:

• every single atom name can be paired with either True or False;

• a model / valuation is a list of (name, truth value) pairs such that the name of each atom occurs
in exactly one pair;

• to generate all models / valuations for a list of atomic proposition names, we simply need to
generate all the possible lists of (name, truth value) pairs of this kind.

And this is exactly what the recursive genVals function does:

(7) genVals :: [String]→ [[(String, Bool)]]
genVals [] = [[]]
genVals (name : names) = map ((name, True):) (genVals names) ++

map ((name, False):) (genVals names)

Take a minute and make sure you understand the definition of genVals properly. Do you see why
map is used and what it does?

We can now generate all the possible models / valuations for any formula by first extracting the
list of atomic propositions in that formula and then generating all the models for that list of atoms:

(8) allVals :: Form→ [[(String, Bool)]]
allVals = genVals ◦ propNames

For example:

ghci 24> form5
∼ jake likes chocolate

ghci 25> allVals form5
[[("jake likes chocolate", True)], [("jake likes chocolate", False)]]

And here’s another example:

ghci 26> form7
∼ (∼ jake likes chocolate ∧ ∼ (jake likes chocolate ∨ sam likes vanilla))

ghci 27> allVals form7
[[("jake likes chocolate", True), ("sam likes vanilla", True)],
[("jake likes chocolate", True), ("sam likes vanilla", False)],
[("jake likes chocolate", False), ("sam likes vanilla", True)],
[("jake likes chocolate", False), ("sam likes vanilla", False)]]

5

Let’s take form7 and choose one model:

ghci 28> let models_form7 = allVals form7

ghci 29> models_form7
[[("jake likes chocolate", True), ("sam likes vanilla", True)],
[("jake likes chocolate", True), ("sam likes vanilla", False)],
[("jake likes chocolate", False), ("sam likes vanilla", True)],
[("jake likes chocolate", False), ("sam likes vanilla", False)]]

ghci 30> let model3_form7 = models_form7 !! 2

ghci 31> model3_form7
[("jake likes chocolate", False), ("sam likes vanilla", True)]

We can now evaluate form7 relative to this model:

ghci 32> eval model3_form7 form7
True

The recursive definition of the eval function is actually the definition of the semantics of our propo-
sitional logic system:

(9) The semantics of propositional logic:

eval :: [(String, Bool)]→ Form→ Bool
eval [] (P name) = error ("no info about "++ show name)
eval ((atom, value) : xs) (P name)
| name ≡ atom = value
| otherwise = eval xs (P name)

eval xs (Ng f) = ¬ (eval xs f)
eval xs (Cnj fs) = all (eval xs) fs
eval xs (Dsj fs) = any (eval xs) fs

Thus, the recursive definition of truth for our propositional logic system is given by the interpre-
tation function eval, which takes a model of type [(String, Bool)] and a formula (of type Form) as argu-
ments and returns a truth value (of type Bool).

The first thing to note about the definition of eval is how closely it tracks the definition of the syntax
of our propositional logic system, in particular, how the clauses pattern match against the four value
constructors P (which builds atomic propositions), Ng (negative formulas), Cnj (conjunctions) and Dsj
(disjunctions).

Since the recursive interpretation function eval takes two arguments – a model and a formula – we
have two edge conditions. Both of them look at the edge / base condition for formulas, i.e., both of
them are about atomic formulas of the form P name.

Let’s start with the second edge condition, namely:

6

(10) eval ((atom, value) : xs) (P name)
| name ≡ atom = value
| otherwise = eval xs (P name)

This condition assumes that our model is a non-empty list of (atom name, truth value) pairs. We
extract the head of this list, i.e., the initial (atom, value) pair and then check two cases:

• if that pair happens to evaluate the atomic proposition we’re trying to evaluate, i.e., if name ≡
atom, then the atomic proposition receives the semantic value that the model assigns to it, namely
value;

• but if the head (atom, value) pair of our model does not assign a semantic value to our atomic
proposition P name, we keep looking for the semantic value of this atomic proposition in the rest
of our model – hence the recursive call eval xs (P name);

We keep looking for our atomic proposition P name in the model from left to right, one (atom,
value) pair at a time. If our model is incomplete and does not provide a semantic value for that atomic
proposition (either because the model is empty to begin with or just because that particular atomic
proposition is not included in the model), we will keep discarding pairs from our model until we reach
the empty model [].

At that point, the first edge condition kicks in and throws an error that lets us know which atomic
proposition was not included in the model:

(11) eval [] (P name) = error ("no info about "++ show name)

For example, evaluating relative to the null model gives an error:

ghci 33> form7
∼ (∼ jake likes chocolate ∧ ∼ (jake likes chocolate ∨ sam likes vanilla))

ghci 34> eval [] form7
∗ ∗ ∗Exception : no info about "jake likes chocolate"

And we also get an error if we have info only about some of the atomic propositions in our formula:

ghci 35> eval [("jake likes chocolate", False)] form7
∗ ∗ ∗Exception : no info about "sam likes vanilla"

The remaining three recursive clauses in the definition of eval deal with non-atomic propositions,
which can be formed with any of the three value constructors Ng, Cnj and Dsj. We assign semantic
values to these formulas in the expected way and in the process, we leverage the fact that Haskell
makes available several Boolean operators.

We’ll examine these final three clauses in turn.
First, if we have a negative formula, i.e., a formula of the form Ng f , its semantic value is obtained

by negating the semantic value of its immediate subformula f :

(12) eval xs (Ng f) = ¬ (eval xs f)

We obtain the semantic value of the immediate subformula by recursively calling eval with the same
model xs, i.e., eval xs f . We negate that truth value with the operator ¬ that Haskell provides:

7

ghci 36> : i ¬
¬ :: Bool→ Bool -- Defined in ‘GHC.Classes’

ghci 37> :! hoogle -- info not
Prelude not :: Bool -> Bool

Boolean "not"

From package base not :: Bool -> Bool

If we have a conjunction of a list of formulas, its semantic value is True if all the subformulas in the
list evaluate to True, otherwise the conjunction is False:

(13) eval xs (Cnj fs) = all (eval xs) fs

We implement this by recursively calling eval with the same model xs on all the subformulas in the
list of fs, and checking that they are all True with the operator all that Haskell provides:

ghci 38> : i all
all :: (a→ Bool)→ [a]→ Bool -- Defined in ‘GHC.List’

ghci 39> :! hoogle -- info all
Prelude all :: (a -> Bool) -> [a] -> Bool

Applied to a predicate and a list, all determines if all elements of the list satisfy the predicate.
For the result to be True, the list must be finite; False, however, results from a False value
for the predicate applied to an element at a finite index of a finite or infinite list.

From package base all :: (a -> Bool) -> [a] -> Bool

Finally, if we have a disjunction of a list of formulas, its semantic value is True if any subformula in
the list evaluates to True, otherwise the disjunction is False:

(14) eval xs (Dsj fs) = any (eval xs) fs

Just as for conjunctions, we implement this by recursively calling eval with the same model xs on
all the subformulas in the list of fs, and checking that at least one of them is True with the operator any
that Haskell provides:

ghci 40> : i any
any :: (a→ Bool)→ [a]→ Bool -- Defined in ‘GHC.List’

ghci 41> :! hoogle -- info any
Prelude any :: (a -> Bool) -> [a] -> Bool

Applied to a predicate and a list, any determines if any element of the list satisfies the
predicate. For the result to be False, the list must be finite; True, however, results from a
True value for the predicate applied to an element at a finite index of a finite or infinite list.

From package base any :: (a -> Bool) -> [a] -> Bool

8

We can now understand in detail how form7, for example, is evaluated relative to a model:

ghci 42> form7
∼ (∼ jake likes chocolate ∧ ∼ (jake likes chocolate ∨ sam likes vanilla))

ghci 43> model3_form7
[("jake likes chocolate", False), ("sam likes vanilla", True)]

ghci 44> eval model3_form7 form7
True

3 Tautologies, satisfiability and contradictions

Because we can generate all models for a formula, we can easily check if the formula is a tautology
(true in any model), satisfiable (true in at least one model) or a contradiction (true in no model /
unsatisfiable).

The definition of the tautology predicate is provided below:

(15) tautology :: Form→ Bool
tautology f = all (λv→ eval v f) (allVals f)

tautology is a function of type Form → Bool: it takes a formula f as its argument and it returns True
if that formula is a tautology and False otherwise. We check this by:

• generating the list of all the models for the formula f with allVals f ;

• checking that for each model / valuation v in this list, when we evaluate f relative to v, we get
True; this is achieved by the function λv→ eval v f , together with the operator all.

And here are two examples:

ghci 45> tautology form7
False

ghci 46> tautology $ Dsj [form7, Ng form7]
True

The definition of the satisfiable predicate is exactly like the definition of tautology except the operator
all is replaced with any:

(16) satisfiable :: Form→ Bool
satisfiable f = any (λv→ eval v f) (allVals f)

And the contradiction predicate is defined as being unsatisfiable:

(17) contradiction :: Form→ Bool
contradiction = ¬ ◦ satisfiable

9

Here are several examples:

ghci 47> satisfiable form7
True

ghci 48> satisfiable $ Dsj [form7, Ng form7]
True

ghci 49> satisfiable $ Cnj [form7, Ng form7]
False

ghci 50> contradiction form7
False

ghci 51> contradiction $ Dsj [form7, Ng form7]
False

ghci 52> contradiction $ Cnj [form7, Ng form7]
True

4 Checking for entailment between two formulas

We can also test if a formula entails another formula, i.e., if there is a subset relation between the models
that satisfy them.

The way we chose to define this implies predicate is in terms of contradiction / unsatisfiability: a
formula ϕ entails a formula ψ iff conjoining ϕ and ¬ψ is a contradiction.

(18) implies :: Form→ Form→ Bool
implies f1 f2 = contradiction (Cnj [f1, Ng f2])

Optional homework: why do we choose to define entailment like this rather than directly in terms
of a subset relation between the sets of models that satisfy the two formulas? Hint: what kind of
models do we generate if one of the formulas contains an atomic proposition that the other doesn’t,
e.g., we check if ϕ entails ϕ ∨ ψ?

And here are a couple of examples:

ghci 53> implies form7 (Dsj [form7, Ng form7])
True

ghci 54> implies form7 (Cnj [form7, Ng form7])
False

10

5 Context Set update

Finally, we can model the update contributed by each formula relative to a Stalnaker-style Context Set,
i.e., relative to the set of models / valuations that are our current candidates for the actual model.

We define a function update that takes as arguments:

• the current Context Set, i.e., the set of models that we currently think are live candidates for
the actual model (real-world situation); this is a list of models, and since each model is a list of
(name, value) pairs, Context Sets are lists of lists of pairs, i.e., they are of type [[(String, Bool)]];

• the formula we are updating with, i.e., the formula containing the new factual information we
just learned.

The update function then returns a smaller Context Set containing only the models in the input
Context Set that satisfy the formula we’re updating with:

(19) update :: [[(String, Bool)]]→ Form→ [[(String, Bool)]]
update vals f = [v | v← vals, eval v f]

For example:

ghci 55> models_form7
[[("jake likes chocolate", True), ("sam likes vanilla", True)],
[("jake likes chocolate", True), ("sam likes vanilla", False)],
[("jake likes chocolate", False), ("sam likes vanilla", True)],
[("jake likes chocolate", False), ("sam likes vanilla", False)]]

ghci 56> update models_form7 form7
[[("jake likes chocolate", True), ("sam likes vanilla", True)],
[("jake likes chocolate", True), ("sam likes vanilla", False)],
[("jake likes chocolate", False), ("sam likes vanilla", True)]]

ghci 57> length $ models_form7
4

ghci 58> length $ update models_form7 form7
3

Here’s another example in which we update a singleton Context Set:

ghci 59> [model3_form7]
[[("jake likes chocolate", False), ("sam likes vanilla", True)]]

ghci 60> update [model3_form7] form7
[[("jake likes chocolate", False), ("sam likes vanilla", True)]]

And here’s a final example in which we try to update the empty Context Set:

11

ghci 61> update [] form7
[]

12

	Syntax of propositional logic
	Semantics of propositional logic
	Tautologies, satisfiability and contradictions
	Checking for entailment between two formulas
	Context Set update

