
REINFORCEMENT LEARNING FOR
PRODUCTION-BASED COGNITIVE MODELS

Adrian Brasoveanu Jakub Dotlačil

1. LEARNABILITY OF PRODUCTION-BASED MODELS
Main goal: framework to explore in a computationally explicit way the learn-
ability of mechanistically-specified cognitive models of linguistic skills, e.g.,
the parsers in Lewis and Vasishth (2005); Hale (2011); Engelmann (2016).
Learnability is a major issue for cognitive models that use theoretically-
grounded linguistic representations and processes, as they call for:

• richly structured representations

• complex rules that require a significant amount of hand-coding

Learnability of production-based models can be divided into two questions:

(i) rule acquisition: how do we form complex rules out of simpler ones?

(ii) rule ordering: how do we decide which rule to fire when?

ACT-R’s (Anderson and Lebiere, 1998) partial answers: (i) prod. compilation, (ii) utility
estimation. Neither systematically applied to complex models of linguistic skills.

Main contribution here: focus initially on easier question (ii), show how to
leverage Reinforcement Learning (RL, Sutton and Barto 2018) to answer it.

RL & ACT-R have close connections (Fu and Anderson, 2006), but largely unexplored.

2. RULE-BASED MODEL OF LEXICAL DECISION (LD)
LD tasks modeled in ACT-R with small number of rules (Brasoveanu and
Dotlačil, 2019), so good starting example. Three LD tasks of increasing length
(hence difficulty): 1 stimulus (the word elephant), 2 stimuli (the word elephant
and a non-word), and 4 stimuli (elephant, non-word, dog, another non-word).
Declarative memory: stores lexical knowledge (words) of an English speaker.
Procedural memory: stores production rules to carry out LD tasks.
Rules: conditionalized actions; they execute actions when conditions are met.

3. RULES FOR LD
Rule 1: Retrieving

goal> STATE: retrieving
[stricken out b/c the agent learns goal conditions]
visual> VALUE: =val

VALUE: ∼FINISHED
=⇒
goal> STATE: retrieval-done

+retrieval> ISA: word
FORM: =val

Rule 2: Lexeme Retrieved
goal> STATE: retrieval-done

retrieval> BUFFER: full
STATE: free

=⇒
goal> STATE: retrieving

+manual> CMD: press-key
KEY: J

Rule 3: No Lexeme Found
goal> STATE: retrieval-done

retrieval> BUFFER: empty
STATE: error

=⇒
goal> STATE: retrieving

+manual> CMD: press-key
KEY: F

Rule 4: Finished
goal> STATE: retrieving

visual> VALUE: FINISHED
=⇒ goal> STATE: done

4. Q-LEARNING FOR GOAL-CONDITIONED RULES IN LD TASKS
The 4 rules were initially hand-coded to fire serially. Assume initial goal STATE of ACT-R model is retrieving, and
elephant appears on the virtual screen of the model, which is automatically stored in the VALUE slot of the visual buffer.
Rule 1 fires, attempting to retrieve a word with the form elephant from declarative memory, and the goal STATE is
updated to retrieval-done. When the word is successfully retrieved, Rule 2 fires and the J key is pressed, then:

• 1-stimulus task: the text FINISHED is displayed on the screen, then Rule 4 fires and ends the task.

• 2-/4-stimuli tasks: a non-word is displayed, then Rule 1 fires; the retrieval attempt fails (cannot retrieve a non-
word), so Rule 3 fires and the F key is pressed, after which the next text (FINISHED or dog) is displayed, etc.

Q: Can we learn how to order the rules if we do not hand-code goal states? (indicated above by striking out goals)
A: Q-learning agents (Watkins, 1989; Watkins and Dayan, 1992; Mnih et al., 2015) can learn goal-conditioned rules.
We give the agent a reward of 1 if it reaches the final goal-state done; for any intermediate rule firing, we give it a
smaller negative reward −0.15 to encourage it to finish the task asap. The agent learns by trial and error to successfully
carry out the LD tasks: it learns how to properly order the rules and complete the LD task as efficiently as possible.
Learning is faster and better for shorter tasks (fewer stimuli): given a goal state, the Q-learner selects the same rule as
the original hand-coded version by assigning it the highest value relative to the other rules.

• 1-stim: task takes ≈ 12 steps; perfect learning; see https://people.ucsc.edu/~abrsvn/1_stim.html

• 2-stim: task takes ≈ 18 steps; almost perfect learning; see https://people.ucsc.edu/~abrsvn/2_stim.html

• 4-stim: task takes ≈ 34 steps; learning with some noise; see https://people.ucsc.edu/~abrsvn/4_stim.html


