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Abstract

We introduce a Python3 reimplementation of ACT-
R (Anderson and Lebiere 1998, Anderson 2007) in
which we build an end-to-end simulation of syntac-
tic parsing in a typical self-paced reading experi-
ment. The model uses an eager left-corner parsing
strategy implemented as a skill in procedural mem-
ory (following Lewis and Vasishth 2005), makes
use of independently motivated components of the
ACT-R framework (procedural memory, content-
addressable declarative memory – cf. Wagers et al.
2009), and explicitly models the motor and visual
processes involved in self-paced reading. The ACT-
R model can be embedded in a Bayesian statistical
model to estimate its subsymbolic parameters and
perform model comparison.

Keywords: ACT-R, Bayesian models, incremental
processing, syntax, semantics, self-paced reading

Introduction: framework & case study
The overarching goal of the research we report on
here is to build an extensible framework in which
formally and computationally explicit processing
models for natural language syntax and semantics
can be formulated. Specifically, we want to build
cognitively realistic models for incremental pars-
ing of discourse representations structures (DRSs,
Kamp 1981; Kamp and Reyle 1993) or similar rep-
resentations. In the models we built so far, the
semantic and syntactic representations are created
mostly in parallel, so we will be able to focus only
on modeling syntactic representations in this paper.

This extensible framework enables us to formu-
late mechanistic models of natural language pro-
cessing, which is the preferred level of explana-
tion in cognitive science (see Lewandowsky and
Farrell 2010 among many others). When build-

ing the framework, our strategy was to use an in-
dependently motivated, general cognitive architec-
ture, and to embed processing models for natu-
ral language in this architecture. Since parsing is
easy to embed in hybrid (symbolic and subsym-
bolic) cognitive architectures, we chose to focus
on them. Two hybrid architectures are in common
use in psycholinguistics, namely Soar (Hale 2014;
Young and Lewis 1999) and ACT-R (Dillon et al.
2013; Engelmann et al. 2013; Kush 2013; Lewis
and Vasishth 2005; Nicenboim and Vasishth 2018;
Rij 2012; Taatgen and Anderson 2002; Vasishth et
al. 2008). ACT-R is the more popular architecture,
so it was a natural choice for our framework.

Currently, psycholinguistic ACT-R models are
mainly used to model recall of syntactic structures
(Dillon et al. 2013; Engelmann et al. 2013; Lewis
and Vasishth 2005; Nicenboim and Vasishth 2018;
Vasishth et al. 2008). This focus on recall-related
modeling does not take advantage of the general-
ity of ACT-R as a cognitive architecture and its “no
magic” policy. If we want to make explicit all the
various parsing components and actions involved
in processing models for specific natural language
phenomena, we have to rely on the full implemen-
tation of ACT-R in LISP, which is not a very pop-
ular programming choice now. Furthermore, since
LISP is a relatively isolated programming language,
it does not have a thriving ecosystem of statistical
estimation / machine learning libraries that could
be leveraged in processing models. Being a cog-
nitive architecture, ACT-R comes with many pa-
rameters, but because of the relative paucity of the
LISP library ecosystem, these parameters are set to
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their default values or manually changed even when
LISP ACT-R is used. Manually changing param-
eters makes modeling hard to replicate and system-
atic quantitative model comparison hard to perform.

In this paper, we introduce a new Python3 im-
plementation of ACT-R (pyactr, Brasoveanu and
Dotlačil 2018, in prep.), which makes two main
contributions. On one hand, it is easy to combine
ACT-R modeling and Bayesian estimation methods:
ACT-R models are embedded in Bayesian models,
which makes it possible for us to systematically
explore parameter values and quantify our uncer-
tainty about them, perform quantitative model com-
parison, and replicate / build on previous modeling
work. On the other hand, the ACT-R component
comes with a working, extensible parsing frame-
work for syntax and semantics, which includes vi-
sual and motor interfaces and a variety of mod-
els for both syntactic and semantic phenomena.
The framework has a modular structure: alterna-
tive models for peripherals (visual, motor) and other
components can in principle be swapped in, and the
resulting models can be systematically compared.

We showcase the framework by modeling Exper-
iment 1 in Grodner and Gibson (2005) (also used in
Lewis and Vasishth 2005). This is a self-paced read-
ing experiment (non-cumulative moving-window;
Just et al. 1982). Participants read word-by-word
sentences in which the subject noun phrase (NP)
is modified by a subject or object extracted relative
clause (RC). A subject-gap example is provided in
(1), and an object-gap in (2).

(1) The reporter who GAP sent the photogra-
pher to the editor hoped for a story.

(2) The reporter who the photographer sent
GAP to the editor hoped for a story.

There are 9 regions of interest (ROIs) that we will
model, underlined in the examples above. These are
word 2 (the matrix noun in subject position) through
word 10 (the matrix verb). An ACT-R model for
these 2 sentences is demo-ed in Figure 1. The red
circle is the visual focus; the models goes through
a series of cognitive (parsing) steps and decides to
press the space bar to reveal the next word at cer-
tain times during this process. The temporal trace

incrementally produced by the model (with all in-
teracting modules, buffers, parsing actions etc.) is
visible in the background.

Figure 1: An ACT-R model for self-paced reading
(open the paper with Adobe Reader to see movie)

The remainder of this paper is dedicated to un-
packing this ACT-R model (ACT-R and eager left-
corner parsing) and quantitatively comparing three
variations on it that differ in several theoretically-
relevant ways (Modeling results). We conclude
with a summary and future research directions.

ACT-R and eager left-corner parsing
We unpack the ACT-R model of self-paced reading
demo-ed in Figure 1 at three different levels of de-
tail. We start with a broad overview of the ACT-
R architectural components we need. We then out-
line how various parts of an eager left-corner parser
are distributed over the ACT-R components. Fi-
nally, we discuss how the model functions on a per-
word basis; that is, we outline the cognitive steps
the model goes through starting immediately after
a word is revealed on the virtual screen and ending
with the point at which the model decides to press
the space bar to reveal the next word.

There are two types of memory in ACT-R:
(i) declarative memory (roughly, ‘knowing that’)
– knowledge of facts, which are represented as
chunks (attribute-value matrices), e.g., the lexical
chunk for the word car in (3); and (ii) procedu-
ral memory (roughly, ‘knowing how’) – the set of
productions that fire in series to generate cognitive
behavior / processes. These productions have the
form of rewrite rules in formal grammars (e.g., con-
text free / phrase structure grammars), but in ACT-
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R, they are conditionalized cognitive actions: the
ACT-R mind fires a production, i.e., takes the action
encoded in it, if the current cognitive state satisfies
the preconditions of that production.

(3) ISA: word
FORM: car
MEANING: JcarK
CATEGORY: noun
NUMBER: sg

(4) Goalą TASK: reading
FORM: car

ñ

Goalą TASK: retrieving category
Retrievalą ISA: word

FORM: car

An example production is provided in (4):

• if the current cognitive state is such that the goal
buffer (which drives cognitive processes in ACT-
R) encodes a TASK of ‘reading’ the FORM ‘car’,

• then (ñ) we take a cognitive action that takes us
to a new cognitive state,

• where the TASK is to retrieve the syntactic cat-
egory of that form, and in which we simultane-
ously place a request in the Retrieval buffer to
search declarative memory for a chunk of type
‘word’ that has the FORM ‘car’.

Implicit in this example production is that an
ACT-R mind is composed of modules, which in-
clude declarative and procedural memory, but also
visual and motor modules etc. Modules are not di-
rectly accessible: they can only be accessed through
associated buffers (e.g., the Retrieval buffer is as-
sociated with declarative memory). Buffers serve
a dual purpose: individually, they provide the in-
put/output interface to specific modules; as a whole,
however, buffers represent the current cognitive
state of the mind. Crucially, productions fire based
on the current cognitive state, i.e., conditioned on
the contents of various buffers. The ACT-R ar-
chitecture constrains cognitive behavior in various

ways, two of which are that buffers can hold only
one chunk, and only one production can fire at any
given time.

Let us now move on to how we can implement
an eager left-corner parser in ACT-R (building on
Lewis and Vasishth 2005; Resnik 1992; see also
Hale 2014 for an introduction). We distribute parser
components over ACT-R modules and buffers as
follows. Lexical knowledge is encoded in declar-
ative memory, knowledge of grammar and parsing
actions are encoded in procedural memory, expec-
tations about upcoming syntactic categories (which
guide parsing) are encoded in the goal buffer, in-
formation about the current partially-built syntac-
tic parse is encoded in the imaginal buffer (a sec-
ondary goal-like buffer), visual information from
the environment is transferred via the visual buffer,
and, finally, key press commands are issued via the
manual buffer. The visual module we implement is
EMMA (Salvucci 2001), and the motor module is
EPIC (Kieras and Meyer 1996; Meyer and Kieras
1997). Other choices are also possible.

Running this eager left-corner parser on a sim-
ple input sentence will shed more light on its in-
ner workings and how they are deployed in real
time. Assume we have a simple grammar with three
phrase structure rules S Ñ NP VP, NP Ñ Det N,
and VPÑ V. Also, assume that we are reading the
sentence A boy sleeps in a self-paced reading task.

We start with a screen in which all words are cov-
ered with dashes: - --- ------. Our goal stack
(stored in the goal buffer) consists of just S: our
goal is to parse a sentence. After the first space-bar
press, the first word is revealed: A --- ------, its
visual form is transferred via the visual buffer, and
its syntactic category Det (determiner) is retrieved
from declarative memory. At that point, we take a
series of cognitive steps – that is, we fire a series of
productions – that take us to a new state. The goal
stack in this new state is N NP S: we now have two
subgoals of finding an N (noun) and an NP (noun
phrase) on the way to finding an S. Also, we build a
partial syntactic structure of the form shown in Fig-
ure 2 and store it in the imaginal buffer. We see
here the left-corner nature of our parser: we trigger
all the syntactic rules that have the determiner a or
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a node dominating a as their left branch.

S

NP

Det

a

N

Figure 2: Partial tree after reading the determiner a

After another space-bar press, the noun is re-
vealed (- boy ------), its form is transferred via
the visual buffer and its syntactic category N is re-
trieved from declarative memory. At this point, we
trigger a series of productions that discharge all the
N, NP and S goals (this reflects the eager nature of
the parser) and replaces them with the single goal
of finding a VP (verb phrase). At the same time, a
richer partial tree, shown in Figure 3, is stored in the
imaginal buffer.1

S

NP

Det

a

N

boy

VP

Figure 3: Partial tree after reading the noun boy

Finally, the verb is revealed after one more space-
bar press: - --- sleeps. Its visual form is trans-
ferred via the visual buffer and its syntactic cate-
gory V is retrieved from declarative memory. At
that point, the VP goal is satisfied, resulting in an
empty goal stack H, and the final structure in Fig-
ure 4 is built and encoded in the imaginal buffer.

We have now examined our model at two levels
of detail: the general cognitive architecture (ACT-
R) and the way the eager left-corner parser is dis-
tributed over this architecture. We zoom in one

1Strictly speaking, only parts of the tree in Figure 3
are stored in the imaginal buffer at any given time: in
the broader spirit of ACT-R, syntactic chunks encode only
one level of embedding in the tree, e.g., rNPDet Ns or
rSNP VPs, but not both.

S

NP

Det

a

N

boy

VP

V

sleeps

Figure 4: Partial tree after reading the noun boy

more time to reach the final level of detail at which
we want to examine the parser, and describe the
series of cognitive steps it takes beginning imme-
diately after seeing a word and ending with the
decision to press the space bar to reveal the next
word. This sequence of steps is summarized in the
flowchart in Figure 5 below.

attend word
retrieve lex. info

about word

retrieve syntactic parse
if applicable (e.g., wh-word)

parse

move visual attention

press key

Figure 5: Flowchart of parsing process per word

As this flowchart indicates, we first attend to the
visual form of the word, then retrieve lexical infor-
mation about the word, and also a syntactic struc-
ture if applicable (e.g., we retrieve the wh-word at
GAP sites). We then proceed with all the parsing ac-
tions we can take given our eager left-corner parser.
When these parsing actions are complete – and only
then – we proceed in parallel to moving visual at-
tention and issuing the key-press motor command.

Modeling results
We estimate four different parameters associated
with the ACT-R parsing model outlined in the pre-
vious section. We could in principle estimate more,
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but we confine ourselves to these four parameters
for simplicity.

The first one is the angle parameter k that mod-
ulates visual encoding; the time of visual encoding
Tenc is given by the function K ¨D ¨ ek¨d , where k
is the angle parameter we estimate, d is visual dis-
tance, D specifies relevant visual object properties
(in our case, word length), and K is set to its default
value of 0.01. We estimate this parameter mostly
to show that parameters for peripheral modules can
be estimated at the same time as the more com-
monly estimated parameters associated with declar-
ative and procedural memory.

The second one is the time r it takes to fire a pro-
duction rule (a condition-action pair). This is nec-
essary because our processing models incorporate
linguistic theories in a fairly transparent way, which
makes it necessary to fire more rules per word / re-
gion of interest (ROI) than it would be possible with
the 50 ms default. It might be that a judicious use
of production compilation will increase rule-firing
time closer to its ACT-R default, but this is a topic
for future research. Apart from the need to estimate
rule-firing time in such ‘theoretically-transparent’
linguistic applications, the ACT-R + Bayes frame-
work we introduce here enables us to quantify our
uncertainty about rule-firing times in any ACT-R
model; as an anonymous reviewer points out, a good
understanding of the uncertainty associated with the
r parameter is relevant to ongoing discussions about
the need to possibly add noise to it, and will benefit
ACT-R models across the board.

The third and fourth parameters are the latency
factor F and the latency exponent f that modu-
late the latency of retrieval from declarative mem-
ory. Retrieval latency T is a function of activa-
tion A, specifically, F ¨ e´ f ¨A.2 The latency factor
F is commonly estimated, but the latency exponent
f is usually set to its default value of 1. We esti-
mate both of them here because the latency expo-
nent has proved crucial in estimating latencies in

2Base activation A is a function of time periods tk since
previous word usages k from 1 to n, where n is determined

by the frequency of the word: A “ log
ˆ

n
ř

k“1
t´0.5
k

˙

. For

reasons of space, we do not discuss spreading activation.

lexical decision tasks like the ones in Murray and
Forster (2004) – see Chapter 7 in Brasoveanu and
Dotlačil (2018, in prep.) for a detailed discussion.
Given that lexical retrieval is a necessary compo-
nent of any cognitively-realistic parsing model, we
estimate both parameters.

The model is fit to data by estimating the poste-
rior distributions of these four free parameters k, r,
F and f . Standardly, modelers rely on default val-
ues or manually changing the values, but this pro-
cess is subjective and time consuming (e.g., a grid-
based search over only 20 parameter values for just
these 4 parameters would require manually evaluat-
ing 204 “ 160000 combinations). In contrast, py-
actr enables us to easily interface ACT-R models
with standard statistical estimation methods imple-
mented in widely-used Python3 libraries. Specifi-
cally, we use ACT-R models as the likelihood com-
ponent of full Bayesian models (implemented in
pymc3). We are therefore able to take advantage
of much more efficient search methods in multi-
dimensional parameter spaces, specifically, Markov
Chain Monte Carlo (MCMC) methods, when we fit
the ACT-R parameters to experimental data.

k
halfnormal(0;1)

r
halfnormal(0;0.05)

F
halfnormal(0;0.3)

f
halfnormal(0;0.5)

ACT-Rpk;r;F ; f q ñ Latency

RT
normal(Latency ;10)

“

„ „„„

Figure 6: The structure of the Bayesian model

The structure of the Bayesian model is pro-
vided in Figure 6: vague / low-information pri-
ors for the parameters are listed at the top, the en-
tire ACT-R model provides the likelihood function,
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which outputs latencies (times between successive
key presses) that can be matched against the read-
ing times (RTs) observed in Grodner and Gibson
(2005, Exp. 1). Bayesian methods have many ad-
vantages, including the fact that we obtain full pos-
terior distributions for the parameters of interest.
We are therefore able to find good parameter val-
ues for hybrid (symbolic & subsymbolic) models,
and also to quantify our uncertainty about these val-
ues. Posterior estimates: k – mean=0.87, sd=0.32,
95% HPD r0,1.23s; r – mean=0.02, sd=0.006, 95%
HPD r0.01,0.03s; F – mean=0.01, sd=0.03, 95%
HPD r0,0.1s; f – mean=0.23, sd=0.47, 95% HPD
r0,1.34s.

The fit of the model is most easily evaluated by
examining its posterior predictions for the 9 ROIs,
plotted in Figure 7. The diamonds indicate the ob-
served mean RTs for each word, the segments pro-
vide the 95% CRIs (credible intervals) for the mean
RT predicted by our model, and the dots are the
predicted mean RTs. When evaluating the model,
recall that the parameters are estimated once for a
full run through the experiment – they are not esti-
mated ROI by ROI (falsely assuming independence
between ROIs), as it is usually done in the psy-
cholinguistic literature. That is, we model here in
one go the full, hybrid (symbolic and subsymbolic)
stochastic process of incremental parsing in a self-
paced reading task.
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Figure 7: Model 1: postulated subject gaps

Figure 7 shows that wh-gap retrieval is modeled
well: this is the 3rd word (sent) in the top panel
(subj-gaps) and the 5th word (also sent) in the bot-
tom panel (obj-gaps). But the spillover effect on the
word after the object gap – the 6th word (to) in the
bottom panel – is not captured; we return to this.

Finally, we see that the wh-word and the follow-
ing word (the 2nd and 3rd words in both panels) are
modeled well for both subject and object gaps. This
is particularly interesting because the model is for-
mulated so that it predictively postulates a subject
gap when parsing the wh-word. This postulated gap
has to then be reanalyzed for object gaps.

We therefore consider a second model that does
not postulate a subject gap as soon as the wh-word is
parsed. The posterior predictions of this model, pro-
vided in Figure 8, are clearly worse: the 95% CRIs
are completely below the observed mean RTs for the
wh-word in both conditions, and also for the word
immediately following the wh-word in the object-
gap condition. This indicates that the model un-
derestimates the parsing work triggered by the wh-
word, and it also underestimates the reanalysis work
that needs to be done on the word immediately fol-
lowing the wh-word in the object-gap condition.
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Figure 8: Model 2: no postulated subject gaps

Thus, our first model (postulated subject gaps;
Figure 7) is the better one. This model comparison
shows that our ACT-R + Bayes framework has em-
pirical bite; not everything goes. Furthermore, the
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framework can be used both for formalizing (sym-
bolic) processing hypotheses and for quantitative
hypothesis testing.

A final, third model we consider aims to capture
the spillover effect on the word following the re-
trieval of object gaps (the 6th word in the bottom
panel of Figure 7 above). In this model, parsing
actions proceed in parallel to moving visual atten-
tion and issuing key press commands, unlike the
flowchart in Figure 5 where we see that parsing has
to always precede visual and motor actions. This
is sufficient to capture the spillover effect for object
gaps, and also increases the precision of our model
(smaller CRIs), as shown in Figure 9 below.
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Figure 9: Model 3: ‘parallel’ reader

This increase in precision for Model 3 is clearly
visible in its much lower WAIC2 value:3 Model 1
(postulated subject gaps) – WAIC1 = 387.8, WAIC2
= 1469; Model 2 (no postulated subject gaps) –
WAIC1 = 433.1, WAIC2 = 1613; Model 3 (‘parallel’
reader) – WAIC1 = 389.8, WAIC2 = 553.4. These
WAIC values provide a good summary of the con-
clusions we drew based on the posterior-prediction
plots in Figures 7, 8 and 9: Model 1 is better than
Model 2 with respect to both WAIC1 and WAIC2,

3Watanabe-Akaike/Widely Available Information Cri-
terion; see Gelman et al. (2013, pp. 173-174) a.o. for dis-
cussion of both WAIC1 and WAIC2. We compute both
WAIC values based on the estimated posterior pyactr
RTs for the 18 ROIs (9 subject-gap ROIs + 9 object-gap
ROIs).

and Model 3 provides sharper posterior predictions
than either Model 1 or Model 2, as its WAIC2 value
shows (recall that WAIC2 is variance based).

As a final way to evaluate our processing mod-
els, we can compare observed RTs and model pre-
dictions for individual words (in individual items)
rather than focusing only on mean RTs, as we have
done above. Let’s focus only on the predictions
made by Model 1; a linear regression with observed
RTs for individual words as the response variable
and predicted word RTs as the sole predictor esti-
mates a slope of 1 (SE=0.009, t=5.7). That is, a
1 ms increase in predicted RTs corresponds to a 1
ms increase in observed RTs, indicating a very good
data fit for our models at individual word level.

Finally, we used Model 1 to predict both eye-
tracking (ET) and self-paced reading (SPR) data
from Frank et al. (2013) (a variety of syntactic struc-
tures, no RCs; we selected 22 sentences that the
parser, with its limited set of syntactic rules, parses
correctly). For eye-tracking, we simply remove the
key-press motor component from the model. Once
again, we run a linear regression with observed and
predicted word-level RTs as the response and pre-
dictor variables, respectively. The model fits both
kinds of data fairly well: SPR – 1ms increase in
predicted RT corresponds to 0.79ms increase in ob-
served RT (t=2.1); ET – 1ms increase in predicted
RT corresponds to 0.82ms increase in observed RT
(t=3.31). The relative decrease in fit (the slope is
not 1 anymore) is due to the fact that the model was
really tailored to the RC data in Grodner and Gibson
(2005, Exp. 1).

Conclusion
We introduced an extensible framework for mecha-
nistic processing models and investigated 3 models
incorporating an eager left-corner parser with visual
and motor interfaces. The models differed in vari-
ous theoretically-relevant respects, and the frame-
work was used to quantitatively compare these dif-
ferent models / theoretical hypotheses.

We have only done quantitative comparisons
based on posterior-prediction plots and WAIC val-
ues, but systematic across-the-board model compar-
ison via Bayes factors is possible in the framework,
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as well as modeling a variety of other tasks (eye
tracking, lexical decision).
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