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1 Introduction

The main goal of this paper is to introduce a framework integrating generative theories,
computational cognitive models, and Bayesian methods. The integration proceeds in two
parts. First, competence-level generative theories are embedded in performance-level pro-
cessing theories formulated in the ACT-R cognitive architecture (Adaptive Control of
Thought-Rational; Anderson and Lebiere 1998, Lewis and Vasishth 2005 a.o.). Second,
these integrated competence-performance processing theories become part of a Bayesian
model, which can be fitted to experimental data.

The main upshot is that we are able to consider alternative generative grammar theories
and quantitatively compare how well they fit experimental data. A detailed introduction to
the framework will be available soon in Brasoveanu and Dotlacil (in prep.). In this paper,
we focus on a case study: the lexical decision task in Murray and Forster (2004). We model
their data with 3 different ACT-R models that differ qualitatively and/or quantitatively. We
then fit these models to the Murray and Forster (2004) experimental data and compare the
results.

Our generative grammar + ACT-R + Bayes framework is very general: it enables us
to incorporate rich syntactic and semantic theories, and also model experimental tasks
other than the one considered here. We choose to model lexical decision for reasons of
clarity and transparency: this task is straightforward, so it makes the general structure
of our approach very transparent. The integration of generative theories and ACT-R is

computationally implemented in a new Python3 library pyactr.!

“We are grateful to Donka Farkas, Abel Rodriguez, Matt Wagers and the UCSC S-lab audience (January
2018) for comments and discussion. The usual disclaimers apply.

'Readers familiar with ACT-R know that the official implementation of ACT-R is in Lisp. Using pyactr
enables us to easily interface ACT-R models with widely-used Python3 libraries for Bayesian modeling, e.g.,
pymc3. The most relevant parts of the code are provided in the main text; the full code will be available in
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The paper is structured as follows. In Section §2, we introduce the lexical decision
task and the data we model, and discuss a basic Bayesian log-frequency model for this
data. This model highlights the imperfect data fit of the log-frequency assumption, and
introduces the basic structure of Bayesian models that we will need later. In Section §3, we
introduce the main idea behind our ACT-R models of lexical decision: frequency effects
as practiced memory retrieval. In Section §4, we introduce a series of 3 ACT-R models
of a participant completing the lexical decision task, and we quantitatively compare them.
These lexical access models are particularly simple; the concluding section (§5) briefly

outlines how the framework can accommodate much more realistic linguistic theories.

2 The lexical decision task and a Bayesian log-frequency model

Word frequency is one very robust parameter affecting latencies and accuracies in lexical
decision tasks (Whaley, 1978). Frequency effects have been found in many, if not all
tasks that involve some kind of lexical processing (Forster, 1990; Monsell, 1991). These
effects are assumed to have a specific functional form: lexical access latency can be well
approximated as a log-function of word frequency (Howes and Solomon 1951).

Murray and Forster (2004) studied the role of frequency in detail and identified vari-
ous issues with the log-frequency model. Their data consisted of collected responses and
response times in a lexical decision task using words from 16 frequency bands: these 16
word-frequency bands (measured in tokens-per-million) together with the results of Ex-
periment 1 in Murray and Forster (2004), are provided in Table 1 below. In what follows,
we will use the mean frequency listed in the 2nd column from the left as the predictor vari-
able, and we will model the lexical decision latencies and accuracies reported in columns
3 and 4 in terms of this predictor.

To get acquainted with the structure of a Bayesian model, and as a baseline for all our
future models, we specify a simple Bayesian log-frequency model for this data. The basic
structure of the model is provided in Table 2. The last line in Table 2 shows that the log-
frequency model takes the observed reactions times (RTs) for a word to be a linear function

of the log-frequency of that word + some normal/Gaussian-distributed noise. This linear

Brasoveanu and Dotlacil (in prep.).
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Table 1: Exp. 1 in Murray and Forster (2004)

Frequency range Mean frequency Latency (ms) Accuracy (%)

315-197 242.0 542 97.22
100-85 92.8 555 95.56
60-55 57.7 566 95.56
42-39 40.5 562 96.3
32-30 30.6 570 96.11
24-23 234 569 94.26
19 19.0 577 95

16 16.0 587 92.41
14-13 134 592 91.67
12-11 11.5 605 93.52
10 10.0 603 91.85

9 9.0 575 93.52

7 7.0 620 91.48

5 5.0 607 90.93

3 3.0 622 84.44

1 1.0 674 74.63

function is the likelihood component of our Bayesian model, which connects the model to
the data.

To estimate a linear function, we need to estimate two parameters: its intercept and
its slope. A Bayesian model specifies our prior beliefs about these parameters (the first
three rows in Table 2), which can be very vague and unconstrained, e.g., we can take
them to be normally distributed with a mean of 0 and a large standard deviation, e.g., 300
ms.? Furthermore, we also specify a half-normal prior distribution for the noise — half-
normal because the noise parameter is a standard deviation, so it is has to be positive. The
Bayesian model then updates these priors with the information provided by the data, and
outputs the posterior distributions of these parameters; technically speaking, the model
draws sufficiently many samples from the posterior distributions such that the resulting
empirical distributions approximate the true posteriors very well (the last row in Table 2).

The full code for all the models introduced in this paper, as well as detailed discussions

of related technical issues, are provided in Brasoveanu and Dotlacil (in prep.). For our

’The (half-)Gaussians in Table 2 are parametrized in terms of their means and variances, as is customary.
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Table 2: Bayesian log-frequency model

Priors
intercept ~ Normal(0, 300?)
slope ~  Normal(0, 300?)
noise ~ HalfNormal(0, 300?)
Likelihood
RT ~  Normal(intercept + slope - log(freq), noise*)

purposes, it is enough to examine the plot in Figure 1 of the posterior predictions made
by the log-frequency model. On the = axis, we plot the observed RTs (in seconds) for the
16 word frequency bands — see the blue dots, which correspond to column 3 in Table 1
above. On the y axis, we plot the mean posterior RTs in seconds (the same blue dots) and
the associated 95% credible intervals (CRIs). The diagonal red line helps visualize the fit
of the model to the data: the closer the blue dots are to the line, the closer the estimated
RTs are to the observed data, and the better the model is at capturing the data. We see that
the log-frequency model gets middle values right, but underestimates the time needed to

access words in extreme frequency bands.

Figure 1: Posterior predictions of log-frequency model
Log frequency model: Observed vs. predicted RTs
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3 Frequency effects as practiced memory retrieval in ACT-R

Our proposal is to model frequency effects as practiced memory retrieval: latency in mem-
ory recall is a power function of the amount of practice, and also of the time elapsed since
individual instances of practice (Newell and Rosenbloom 1981, Anderson 1982, Logan
1990, Anderson et al. 1999). By practice, we simply mean the repeated presentation of an
item, e.g., the repeated exposure to and/or use of a word in daily conversation.?

A concrete implementation of practiced memory retrieval is provided in the ACT-R
cognitive architecture. The (base) activation of an item ¢ is A;, and it is based on the
amount of time ¢, elapsed since each rehearsal k of a word, and it is a power function of
time because of its form t,;d. Activations contributed by individual rehearsals & (from 1 to
the total number n of word rehearsals) are summed, and the total sum is log-compressed
— see the formula in (1) below. The activation of an item is in turn used to compute
accuracy (2) and latency (3) for retrieval processes. The free parameters associated with

each formula are boxed in the equations and enumerated in parentheses.

(D) A; =log <k§: t;) (: decay)
=1

-1
(2) P, = [1 + exp (—Ai)} ((s): noise, (7 ): threshold)

3) T, = eAi (: latency factor, : latency exponent)

As an example, Figure 2 plots activation, retrieval probability and retrieval latency as a
function of time for an item presented 5 times at equally spaced 1.25 s intervals. The top
plot shows that the activation of an item sharply increases after every presentation, and then
decays until the next presentation. Importantly, after every presentation, the decay curve
becomes shallower, ensuring that the item stays activated, i.e., above the threshold (the
dotted black line), for a longer period of time. The second plots shows that the probability
of successfully retrieving an item closely follows its activation. Finally, the third plot

shows that latency of retrieval is inversely related to the activation of an item: the higher

3This proposal is different from the one in Murray and Forster (2004).
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the activation of an item, the less time it takes to retrieve it.

Figure 2: Activation, retrieval probability and retrieval latency as a function of time
(threshold — dotted black line; 5 presentations — red)
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How do we estimate the schedule of presentations for words? For any word, the num-
ber of rehearsals that contribute to its activation are determined by its frequency (we ignore
other factors throughout this paper). We generate a presentation schedule for a 15-year old
speaker based on word frequency and the average number of words the 15-year old speaker
is estimated to have seen (estimate based on Hart and Risley 1995; see Brasoveanu and
Dotlacil in prep. for more details). With this schedule in place, we can compute activa-
tions for all 16 word-frequency bands and store them in a 16-coordinate vector we will
call activation-from-time.

A Bayesian model for the lexical decision data is specified in Table 1, with ACT-
R likelihoods for both lexical decision RTs and lexical decision accuracies. Embedding
ACT-R models in Bayesian models enables us to link them to experimental data (in the
case at hand: the lexical decision data from Murray and Forster 2004), and to estimate the
parameters of the ACT-R models based on that data.

Table 3 shows how we specify this type of ACT-R + Bayes models. Just as in the
simpler log-frequency model, we have vague, low information priors for the parameters

of interest (the first five rows in Table 3). The function PYACTR-MODEL in the likelihood
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Table 3: ACT-R + Bayes models of lexical decision
Priors

d ~  Uniform(0, 1)
S ~  Uniform(0, 5)
T ~ Normal(0, 10?)
F ~ HalfNormal(0, 1?)
f ~ HalfNormal(0, 1?)
Likelihood
JRT = PYACTR-MODEL(activation-from-time, d, I, f)
{iomon _ [1 + exp (_ activation—fzom—time _ Tﬂ -1
RT ~  Normal(igr, 0.012)

accuracy ~ Normal(jipros, 0.012)

part invokes an ACT-R model implemented in pyactr and runs it to generate mean laten-
cies pgr for the 16 word-frequency bands in Murray and Forster (2004). This function is
parametrized by the activations for the 16 word-frequency bands activation-from-time, the
decay parameter d, the latency factor F' and the latency exponent f. For simplicity, we
compute mean accuracies [iprop for the 16 word-frequency bands directly using equation
(2), but we can also obtain them by repeated runs of the same pyactr model we use to
obtain latencies.

In the last two lines of Table 3, the 16 observed mean RTs and accuracies from Murray
and Forster (2004) are assumed to be noisy realizations of the ACT-R generated RTs and
accuracies. To see if ACT-R can precisely fit the observed values, we require the normally-
distributed noise to be very small in both cases.*

With this framework in place, we can now fit a variety of ACT-R models to data and
compare their fit by specifying the models in pyactr and then plugging them into the
likelihood function ‘slot’ of our Bayesian model via the PYACTR-MODEL function.

4See the 0.012 variances in the last two lines of Table 3. These small variances, as well the normal
distributions, are independently motivated by the fact that we model observed mean RTs.
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4 Three ACT-R models of lexical decision

In this section, we discuss three ACT-R models that we fit to data by embedding them
in Bayesian models via the procedure shown in Table 3. ACT-R models provide the es-
sential link to competence-level generative theories: they embed competence theories in
processing models.

More specifically, for the lexical decision task we are modeling here, we have: (i) a
symbolic competence theory of the lexicon — the structure of a lexical entry, what infor-
mation is stored in it, etc.; we oversimplify here and assume lexical entries only store the
written form and syntactic category of a word; and (ii) a symbolic performance theory of
what human participants actually do in a lexical decision task — lexical items are stored
in declarative memory and have an activation that is a function of their frequency, partici-
pants read a written form (sequence of characters) on the screen and attempt to retrieve a
word with that form, etc.

These symbolic components are implemented in ACT-R as condition-action pairs
(production rules) stored in procedural memory. These rules trigger a cognitive action
if the cognitive context, i.e., the mental state of the ACT-R mind, satisfies a range of con-
ditions. Depending on which production rules we use and how we formulate them, we
implement different symbolic competence and performance theories in ACT-R, which can
then be quantitatively compared by fitting them to the same experimental data.

The three different models we consider for the remainder of this section differ in var-
ious ways, both qualitatively (symbolically) and quantitatively (subsymbolically). For
presentational simplicity, we consider symbolic and subsymbolic differences in the per-
formance / processing hypotheses we entertain, but different competence-level represen-

tational assumptions can be implemented and compared in the exact same way.

4.1 Model 1

The first model of lexical decision we consider consists of 4 central rules. The first rule
is the attend word rule below that takes a visual location encoded in the visual location

buffer, a.k.a., the visual where buffer, and issues a command to the visual what buffer to
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move attention to that visual location.’

4) Rule 1 (attend word):
conditions

=goal> ‘ STATE:
=visual-location> ‘ ISA:

?visual > ‘ STATE:

actions
attend ‘ =goal> ‘STATE: retrieving
—location‘ —  +visual> | CMD: move-attention
SCREEN-POS: =visual-location

free ‘

Rule 2 takes the visual value discovered at that visual location, which is a potential word

form, and places a declarative memory request to retrieve a word with that form.

%) Rule 2 (retrieving):

conditions actions
=goal> ‘ STATE: retrieving ‘ =goal> STATE: retrieval-done
—_—
=visual > ‘ VALUE: =val ‘ +retrieval > | ISA: word
FORM: =val

Rules 3 (lexeme retrieved) and 4 (no lexeme found) take care of the two possible outcomes
of the memory retrieval request: if a word with that form is retrieved from memory (lexeme
retrieved), a command is issued to the motor module to press the J key, which is the Yes
response; if no word is retrieved (no lexeme found), a command is issued to the motor

module to press the F key, which is the No response.

(6) Rule 3 (lexeme retrieved):

conditions actions
=goal> STATE:  retrieval-done =goal> STATE: done
—_—
fretrieval> | BUFFER: full +manual> | CMD:  press-key
STATE:  free KEY: J

SFor more details about the modular structure of an ACT-R mind and the structure of the peripheral
modules (visual and motor) we assume here, see Brasoveanu and Dotlacil (in prep.).
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(7 Rule 4 (no lexeme found):

conditions actions
=goal> STATE: retrieval-done =goal> STATE: done
—_—
fretrieval> | BUFFER: empty +manual> | CMD:  press-key
STATE: error KEY: F

Running this model with the string elephant as a stimulus displayed in the center of the

screen, we obtain the temporal trace of the lexical-decision cognitive process in Table 4.

Table 4: Model 1: Temporal trace

****Environment: {1: {'text": 'elephant’, 'position": (320, 180)}}

'PROCEDURAL', 'RULE SELECTED: attend word')
0.05, 'PROCEDURAL', 'RULE FIRED: attend word')
0.0679, 'PROCEDURAL', 'RULE SELECTED: retrieving')
0.1179, 'PROCEDURAL', 'RULE FIRED: retrieving')
0.1179, 'retrieval', 'START RETRIEVAL')

0.1679, 'PROCEDURAL', 'RULE SELECTED: lexeme retrieved')
0.2179, 'PROCEDURAL', 'RULE FIRED: lexeme retrieved')

0.2179, 'manual’, 'COMMAND: press_key")
0.4679, 'manual’, 'PREPARATION COMPLETE)
0.5179, 'manual’, 'INITIATION COMPLETE')
0.6179, 'manual', 'KEY PRESSED: J')

(0,
(
(
(
(
(0.1679, 'retrieval', 'RETRIEVED: word(form= elephant)")
(
(
(
(
(
(

We can then take the time between the point at which a stimulus is displayed on the

screen (in the ‘environment’) and the time at which a key is pressed as the RT that we need

to fit to the experimental data from Murray and Forster (2004).° The posterior predictions

obtained by embedding Model 1 in a Bayesian model and fitting it to data are provided in

Figure 3. We see that the model fits both the latency and the accuracy data very well.

®We could also match the accuracy of the model (how often it presses the J key for existing words) to
the Murray and Forster (2004) data by repeatedly running the pyactr model. As we mentioned above, for
simplicity, we model accuracies directly in the Bayesian model using the ACT-R equation in (2).
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Figure 3: Model 1: estimated and observed RTs and probabilities

800 . 1.0 o
S
& )
- 750 .: $ 0.9 ::
S o = o
= 700 kS
= L o 0.8
o o o |
< 650 5 4
3 o B o7
S 600 o4’ o
o {’ S .
o — )
550 a 06 .
g
500 - 05
600 800 0.6 0.8 1.0
Observed RTs (ms) Observed probabilities

4.2 Model 2: adding the imaginal buffer

Model 1 oversimplifies the process of encoding visually retrieved data: it assumes the
visual value found at a particular visual location is immediately shuttled to the retrieval
buffer. But cognition in ACT-R is goal-driven: any important step in a cognitive process
should involve the goal buffer or the imaginal buffer, which is a goal-like buffer storing
internal snapshots of the current cognitive state. In our case, it is natural to assume that
the transfer between the visual and the retrieval buffer is mediated by the imaginal buffer.

We correct this oversimplification in a second model. The Bayesian model remains the
same, the only part we change is the pyactr-provided likelihood for latencies. In particular,
we modify the procedural core of the ACT-R model. First, we add the imaginal buffer to
the model. Then, we replace the attend word and retrieving rules with three rules attend
word, encoding word and retrieving. The new rule encoding word mediates between attend
word and retrieving: for our limited purposes, encoding a word form means taking it from

the visual buffer and shuttling it to the imaginal buffer.

(8) Rule 5 (encoding word):
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conditions actions

=goal> ‘STATE: encoding‘ =goal> STATE: retrieving

+imaginal> | ISA: word

=visual> ‘ VALUE: =val
FORM: =val

The attend word and retrieving rules are minimally revised: the output goal state for the
attend word rule is now encoding (rather than retrieving), and the retrieving rule looks up

the string of characters in the imaginal buffer now (rather than the visual buffer).

9) Rule 1 (attend word,; revised):

conditions actions
=goal> ‘ STATE: attend =goal> ‘ STATE: encoding
=visual-location> ‘ ISA: -location ‘ —  +visual> | CMD: move-attention

SCREEN-POS: =visual-location

?visual > ‘ STATE: free ‘

(10) Rule 2 (retrieving; revised):

conditions actions
=goal> ‘ STATE: retrieving ‘ =goal> STATE: retrieval-done
—
=imaginal > ‘ VALUE: =val ‘ +retrieval > | ISA: word
FORM: =val

All these modifications are symbolic / discrete / qualitative. We are nonetheless able to fit
the new model to the same data and quantitatively compare its performance with Model 1
(the no-imaginal-buffer model). As the left plot in Figure 4 shows, Model 2 has a very poor
fit to the latency data. The encoding step adds 200 ms to every lexical decision, since 200
ms is the default ACT-R delay for chunk-encoding into the imaginal buffer. Consequently,
the predicted latencies for 15 out of the 16 word-frequency bands are greatly overestimated
(above the diagonal line). Model 2 cannot run faster than about 640 ms, and this is too

high to fit high-frequency words, which take about 100 ms less than that.
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Figure 4: Model 2: estimated and observed RTs and probabilities
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4.3 Model 3: imaginal buffer with 0 delay

Let’s change a quantitative feature of Model 2 and set the imaginal delay to 0 ms instead.
It is reasonable to assume that various default values for ACT-R subsymbolic parameters
should be changed when modeling linguistic phenomena: natural language comprehen-
sion involves fast incremental construction of rich hierarchical representations, and this
richness significantly exceeds the complexity of representations needed for other high-
level cognitive processes modeled in ACT-R (e.g., arithmetic). This change is sufficient to

obtain a very good fit to latencies for all 16 word-frequency bands, as shown in Figure 5.

5 Conclusion

We have presented a framework that integrates generative theories, the ACT-R cognitive
architecture and Bayesian models. This framework enables us to do quantitative compari-
son for qualitative theories: we can implement different competence + processing models
in ACT-R, and then embed these alternative ACT-R models in a Bayesian model. We can
then estimate their subsymbolic parameters, and quantitatively compare these different

models / theories. Consequently, we have a formally explicit way to connect competence-
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Figure 5: Model 3: estimated and observed RTs and probabilities
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level theories to experimental data via explicit processing models, and a formally explicit
and systematic way to quantitatively compare these theories.

In this paper, we have done only informal quantitative comparisons based on poste-
rior predictions, but systematic model comparison via WAIC values or Bayes factors is
also possible — see Brasoveanu and Dotlacil (to appear) for WAIC-based model compari-
son. Furthermore, the framework can model eye fixation durations in eye-tracking-while-
reading tasks (see Dotlacil 2018), and latencies in self-paced reading tasks targeting a vari-
ety of syntactic and semantic phenomena (Brasoveanu and Dotlacil to appear, Brasoveanu

and Dotlacil in prep.).
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