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Scope Prediction

• we as semanticists generally do not weigh in on the actual
patterns of usage of a given possible reading

• that is, semantics is not concerned with the problem of
quantifier scope disambiguation (QSD)
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In order to develop a model for QSD, we examine the factors
influencing quantifier scope in a controlled, but naturally occurring
body of text: LSAT Logic Puzzles.

Goal

• today, our aim is to introduce the corpus and report the main
findings

• in particular, we’re interested in those aspects of a quantifier’s
usage that are correlated with its wide vs. narrow scope . . .

• . . . e.g., its position (before or after the other quantifier/s), its
grammatical function (S, O etc.), its lexical realization (each,
all etc.)
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Linguistically & Psychologically Plausible Predictors

We designed the tagging scheme to reflect the features that have
been argued to bias QSD in (some of) the psychological and
computational literature, which we summarize now.

Linear order/C-command

1. Every professor saw a student. every � a

2. A student saw every professor. a � every

Gillen (1991), Kutzman & McDonald (1993), Tunstall (1998),
Anderson (2004)

• it is difficult in English to separate the effect of linear order
from the next predictor, grammatical function



Linguistically & Psychologically Plausible Predictors

Grammatical function hierarchy

3. Joan told a child the story at every intersection. every � a

4. Joan told everyone the story at an intersection. a � every



Linguistically & Psychologically Plausible Predictors

Grammatical function hierarchy

3. Joan told a child the story at every intersection. every � a

4. Joan told everyone the story at an intersection. a � every

S � Prep � IO � O



Linguistically & Psychologically Plausible Predictors

Grammatical function hierarchy

3. Joan told a child the story at every intersection. every � a

4. Joan told everyone the story at an intersection. a � every

S � Prep � IO � O

Kutzman & McDonald (1993), Tunstall (1998), Micham et al.
(1980)
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Linguistically & Psychologically Plausible Predictors

Ioup’s (1975) Quantifier Hierarchy

5. She knows a solution to every problem. every � a

6. She knows a solution to all problems. a � all

each � every � all � most � many � several � somepl � a few

Tunstall (1998), Van Lehn (1978)
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Numerical Typicality

Saba & Corriveau (2001) propose a formal model of the world
knowledge used in QSD based on the number of restrictor entities
that typically participate in the nuclear scope relation.

7. A doctor lives in every city.

• the narrow scope reading of every is dispreferred because it
would require an individual to participate in the living-in
relation with an atypically large number of cities.
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Numerical Typicality (ctd.)

Srinivasan & Yates (2009) show that numerical typicality can be
extracted from a large corpus and applied successfully to QSD.

• applied to a handpicked corpus of 46 items

• information about numerical typicality significantly improves
prediction, especially for inverse scope
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Higgins & Sadock (2003) build a scope corpus from the WSJ Penn
Treebank with the following properties:

• exactly 2 scope taking elements

• scope taking elements include most NPs with a determiner,
predeterminer or measure phrase, e.g., more than half

• the result was 893 sentences, coded for scope by 2 people

Corpus Worries

• leave out NPs headed by a/an

• do not separate conjoined or appositive clauses, so the two
quantifiers do not interact in 61% of the corpus
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Computationally Effective Predictors

Higgins & Sadock (2003) (ctd.)

Three models (Naive Bayes, Maximum Entropy, Single Layer
Perceptron) were trained on a subset of the corpus and each had
an accuracy of 70%-80% on the remaining corpus.

Predictors:

• the first quantifier c-commands the second or the second
quantifier c-commands the first

• the second quantifier is each, every, all, a superlative adverb
or a numerical measure phrase

• there is an intervening S node

• conjoined or appositive clauses were not separated, so other
important predictors were intervening comma or colon,
intervening conjunct node, intervening quotation mark etc.



Summary of Predictors in Previous Literature

Scope predictors in the previous computational and
(psycho)linguistic literature:

• Linear order/C-command

• Grammatical hierarchy

• Particular quantificational item

• Intervening clause boundaries

• World knowledge
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LSATs

• the LSAT exam consists of several types of questions: reading
comprehension, analytical reasoning etc.

• our corpus is drawn from one particular type of question:
analytical reasoning questions, a.k.a. logic puzzles

• logic puzzles follow a particular format as follows
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�
Introduction

�
Laws

�
Question

�
Answers
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Why Logic Puzzles?

Minimal ambiguity

• test takers are expected to select a single correct answer, so
ambiguity must be minimal.

Minimal world knowledge

• as an aptitude test, the LSAT explicitly states assumptions
which might be left to world knowledge in ordinary
conversation

• in essence, the entire discourse context is made linguistically
explicit, allowing us to abstract away from world knowledge

Multiple quantifiers frequent

• sentences with two or more quantifiers are (unsurprisingly)
quite frequent in this register
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Scopal Domains

Syntactic Constraints

• in Higgins & Sadock (2003), the sentence was taken as the
domain for quantifier scope regardless of syntactic complexity

• however, it is often clear that a sentence consists of multiple
separate scopal domains

• e.g., if two quantifiers appear in a coordinate structure . . .

8. [ Joe ate three oranges ] and [ Pam ate two apples ].

• . . . the example is best treated as two separate scopal
domains, one per sentential conjunct
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Scopal Domains

• quotations and parenthetical content like appositive relative
clauses similarly involve multiple scopal domains

• therefore, we consider scopal domains with multiple
quantifiers, rather than sentences

• this is consistent with our stated goal of studying the
pragmatics of quantifier scope

• the lack of relative scope between quantifiers in different
conjuncts of a coordinate clause is largely an observation
about the syntax/semantics of quantifiers, not their
pragmatics
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Tagging the Data

Method

• quantifier scope by its nature requires a trained linguist to tag

• first, we separated the data into individual sentences and then
further into scopal domains

• second, we enlisted undergrads to identify sentences with
multiple quantifiers and make a first attempt at tagging them

• finally, we individually went through the corpus by hand
producing the final tags

No effort was made to quantify inter-annotator agreement (this
would require additional skilled coders).

• based on Higgins & Sadock’s (2003) study, we would expect
to find fairly high variability
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Tagged Categories

Response variable

Scope: the relative scope of the 2 or more quantifiers in a
scopal domain

Predictors:

1 Linear order

2 Grammatical function

3 Lexical identity of quantifier
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Tagged Categories

The beginning of a tag is marked by &, the end of a tag is marked
by #, subtags are separated by .

Scope

• we coded scope numerically, with 1 corresponding to widest
scope and other numbers indicating narrower scope

• quantifiers with no relative scope (mainly cumulative
readings) were ‘co-tagged’ with the same number

• this is merely a convenience for examples with 2 quantifiers
(we could simply not tag them in such cases) . . .

9. Exactly six&1# employees must be assigned to exactly
three&1# committees.
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Tagged Categories

Scope (ctd.)

• . . . but necessary for sentences with 3 or more quantifiers,
where 2 quantifiers may take wide scope relative to a 3rd, but
not relative to one another

10. Exactly six&2# of seven&1# jugglers are each&3# assigned
to exactly one&4# of three&1# positions.

In cases where no truth conditional difference was clear, we used
the felicity of “such that” paraphrases as our ultimate criterion.
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Tagged Categories

Linear order

• linear order was not explicitly tagged for since this information
is implicit in the sequence of assigned tags

Grammatical function

• we distinguished four syntactic roles as follows: Subject,
Object, Pivot, Adjunct

• for prepositions, we tagged individual prepositions separately
(today, we only analyze S and O)

Lexical identity

• if the determiner / pre-restrictor material was complex, we
tagged it as a unit – e.g., more.than.two, a.different etc.
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Some Examples

11. Each&1 S each# tape is to be assigned to a
different&2 to a.different# time slot, . . .

12. . . . and no&1 S no# tape is longer than any&2 than any#
other tape.

13. Each&1 S each# professor has one or&2 O or# more
specialities.

14. The judge of the show awards exactly
four&1 O exactly.four# ribbons to four&1 to four# of the
dogs.
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The Dataset

• we focus on sentences with 2 quantifiers only

• we remove the cumulative sentences

• we focus on S and O only (we drop the other grammatical
functions)

• we are left with 497 observations

• we have double counting: some sentences have both an S and
an O quantifier and the scope of one completely determines
the scope of the other

• 139 doubly counted sentences

• we randomly sample one quantifier from each of them
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The Dataset

• final N(umber of observations): 358

Response variable

• scope: factor with 2 levels (narrow, wide); ‘success’ level:
wide

Fixed effects

1 lin.ord: factor with 2 levels (first, last); reference level: first

2 gram.fun: factor with 2 levels (S, O); reference level: S

Random effects

1 lex.real: factor with 17 levels (a, a.different, all, . . . )

2 lex.real.other: factor with 19 levels (a, a.different,
a.time, all, . . . )
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The Dataset

lin.ord by gram.fun by scope
first last

S
O

narrow wide narrow wide
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Examples for various conditions

gram.fun=S, lin.ord=first

• scope=wide:
Each chair is occupied by exactly one representative.

• scope=narrow:
Exactly one child sits in each chair.

gram.fun=S, lin.ord=last

• scope=wide:
Every week six crews – A,B,C,D,E,F – were ranked from first
(most productive) to sixth (least productive).

• scope=narrow:
On each day of other days of hiring, exactly one worker was
hired.



Examples for various conditions

gram.fun=O, lin.ord=first



Examples for various conditions

gram.fun=O, lin.ord=first

• scope=wide:
He did not wash any two of the objects at the same time.



Examples for various conditions

gram.fun=O, lin.ord=first

• scope=wide:
He did not wash any two of the objects at the same time.

• scope=narrow:
The nine flowers used in the corsages must include at least
one flower from each of the four types.



Examples for various conditions

gram.fun=O, lin.ord=first

• scope=wide:
He did not wash any two of the objects at the same time.

• scope=narrow:
The nine flowers used in the corsages must include at least
one flower from each of the four types.

gram.fun=O, lin.ord=last



Examples for various conditions

gram.fun=O, lin.ord=first

• scope=wide:
He did not wash any two of the objects at the same time.

• scope=narrow:
The nine flowers used in the corsages must include at least
one flower from each of the four types.

gram.fun=O, lin.ord=last

• scope=wide:
Exactly three girls perform each dance.



Examples for various conditions

gram.fun=O, lin.ord=first

• scope=wide:
He did not wash any two of the objects at the same time.

• scope=narrow:
The nine flowers used in the corsages must include at least
one flower from each of the four types.

gram.fun=O, lin.ord=last

• scope=wide:
Exactly three girls perform each dance.

• scope=narrow:
The official will also assign each runner to represent a
different charity.
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Modeling and Resulting Generalizations

• we start with the full model for the fixed effects (the two main
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Modeling and Resulting Generalizations

• we start with the full model for the fixed effects (the two main
effects and their interaction) and intercept-only random
effects for lex.real and lex.real.other

• the interaction of lin.ord and gram.fun is not significant
(p=0.70), so we drop it

• but adding gram.fun to the model with lin.ord as the only
fixed effect significantly reduces deviance (p=0.005)

• similarly, adding lin.ord to the model with gram.fun as the
only fixed effect significantly reduces deviance (p=1.04e-07)

• adding random effects for the lin.ord and / or gram.fun
slopes is not significant (when the MLEs of the resulting
models can be estimated, which is not always possible)

• but dropping the intercept random effects for lex.real or
lex.real.other significantly increases deviance (p=
3.21e-11 and p=2.08e-13, respectively)
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Final Mixed-effects Logistic Regression Model

• intercept random effects for both lex.real and
lex.real.other

• fixed effects for lin.ord and gram.fun (no interaction)

Maximum Likelihood Estimates (MLEs):

random
effects

std.dev.

lex.real 3.45
lex.real.other 5.55

fixed
effects

estimate std.error p-value

intercept 4.60 1.86 0.014
lin.ord-last -6.16 1.42 1e-05
gram.fun-O -2.49 0.93 0.007



MLEs for Random Effects
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Main Results

• lexical effects on scoping preferences seem more important
than linear order or grammatical function

• in particular, the relational aspect of these lexical effects is
important: lex.real.other seems to be at least as good a
predictor of scope as lex.real

• this provides a new kind of empirical support for relational
theories of quantification that derive scopal behavior by
focusing on the way in which one quantifier affects the
context of interpretation for another quantifier, e.g.,
(in)dependence logic or dynamic plural logic
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Main Results

• the notion of interpretation context formalized in these logics
is inherently relational because it focuses on context change

• i.e., on the way in which an expression sets up the context of
interpretation for a subsequent expression

• syntactic scoping mechanisms that focus on hierarchies of
(classes of) quantifiers, e.g., Beghelli & Stowell (1997), are
also supported



Future Directions

Semantics and processing

• identifying patterns of scoping behavior for quantifiers should
ultimately enable us to group them into classes

• we might want our semantic theories to assign different kinds
of semantic representations to these classes . . .

• . . . and / or we might want to hypothesize different processing
strategies for these classes
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Future Directions

Typology

• looking at the system of quantifiers in English opens the way
towards examining cross-linguistic variation at system level,
not only between individual (classes of) quantifiers

Applied linguistics

• identifying and examining quantifier usage patterns is
important for designing education and assessment materials in
mathematics and sciences
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Appendix: Model Fit

• C is an index of concordance between predicted probability
and observed response

• Somers’ Dxy is a rank correlation between predicted
probabilities and observed responses related to C

The final mixed-effects logistic regression model

• C: 0.996

• Dxy: 0.992

Compare with the fixed-effects only model

• C: 0.859

• Dxy: 0.717

Compare with the random-effects only model

• C: 0.982

• Dxy: 0.965
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Appendix: Model Fit

• Nagelkerke R2: a common pseudo-R2 measure for
(mixed-effects) logit models assessing how much of the
‘variance’ in the response is accounted for by the predictors

• it assesses the quality of a model with regard to the model
with only the intercept

Nagelkerke R2

• our final model relative to the mixed intercept model: 0.404

• our final model relative to the ordinary intercept model: 0.847

• the mixed intercept model relative to the ordinary intercept
model: 0.743
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Appendix: Bayesian Estimates

We can quantify these wide / narrow scope preferences more
precisely based on the Bayesian estimates of their posterior
distributions.

Priors

• fixed effects: the priors for the intercept and the non-reference
levels of lin.ord and gram.fun are all independent normals
N�0, 102�

• random effects: we assume independent normal distributions
N�0, σ2� and N�0, τ2� for the lex.real and
lex.real.other random effects; the priors for the standard
deviations σ and τ are independent uniforms Unif�0, 30�

MCMC estimation: 3 chains, 3.5e+06 iterations per chain, 1e+06
burnin, 2500 thinning.



Appendix: Bayesian Estimates

Summaries of the posterior distributions

The means and standard deviations of the posterior distributions
for the random and fixed effects are fairly close to the MLEs:

random
effects

mean std.dev.

σ 5.37 2.48
τ 9.65 4.32

fixed ef-
fects

mean std.dev.

intercept 4.77 3.13
lin.ord-last -7.22 2.64
gram.fun-O -2.67 1.07



Posteriors for Fixed Effects and Random Effect Std.Dev.s

intercept lin.ord-last gram.fun-O
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Random Effects (Means and 95% CRIs)
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Lex. Pref.s for Wide Scope (Median Prob.s and 95% CRIs)
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