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Abstract

The paper proposes a novel solution to the problem of scope posed by natural language
indefinites that captures both the difference in scopal freedom between indefinites and
bona fide quantifiers and the syntactic sensitivity that the scope of indefinites does
nevertheless exhibit. Following the main insight of choice functional approaches, we
connect the special scopal properties of indefinites to the fact that their semantics can
be stated in terms of choosing a suitable witness. This is in contrast to bona fide
quantifiers, the semantics of which crucially involves relations between sets of entities.
We provide empirical arguments that this insight should not be captured by adding
choice/Skolem functions to classical first-order logic, but in a semantics that follows
Independence-Friendly Logic, in which scopal relations involving existentials are part
of the recursive definition of truth and satisfaction. These scopal relations are resolved
automatically as part of the interpretation of existentials. Additional support for this
approach is provided by dependent indefinites, a cross-linguistically common class of
special indefinites that can be straightforwardly analyzed in our semantic framework.

1 Main Challenges

This paper approaches the problem of the scope of indefinite noun phrases from a fresh
perspective, aiming to address two inter-related concerns.

The first problem is capturing the contrast between the intra-sentential scopal properties
of simple indefinite DPs on one hand, and universals and other uncontroversially quantified
DPs on the other. Simple indefinites, i.e., DPs whose D is the unmarked a(n) in English
and its closest equivalents in other languages, contrast with bona fide quantificational DPs
in that simple indefinites can have so-called ‘exceptional’ scope over a syntactically higher
quantifier or operator independently of the complexity of the syntactic structure that sep-
arates them, while the inverse scope of universals and other bona fide quantificational DPs
is limited to the clause in which they occur. Subsection 1.2 presents an overview of this
problem. Section 3 presents our account and the way it handles the main hurdles brought
to light by the vast literature on this topic.

The second problem we address concerns the question of how the account developed for
simple indefinite DPs extends to cases of special indefinites, i.e., indefinites whose distri-
bution and scopal properties are more circumscribed. In this paper we discuss the case of
‘dependent’ indefinites, introduced in subsection 1.3 and analyzed in detail in section 4.
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A variety of tools have been used to deal with the first concern. In this paper, we work
out a solution to the exceptional-scope problem that builds on the basic framework and
insights of Independence-Friendly Logic (IFL, see Hintikka 1973, Sandu 1993, Hodges 1997,
Hintikka & Sandu 1997, Väänänen 2007, Caicedo et al 2009 among others). We modify this
framework in various ways so as to better fit the needs of the analysis of simple indefinites
in English and their counterparts in other languages.

The main novelty of this approach is that (in)dependence relationships between variables
bound by different quantifiers is an explicit part of the interpretation procedure, i.e., of the
recursive definition of truth and satisfaction, rather than being indirectly read off of the
syntactic structure of the formula that is being interpreted. We argue that this framework
provides an empirically and theoretically optimal solution to the exceptional scope problem
posed by simple indefinites.

1.1 Basic Distinctions: Dependence vs. Independence, Syntactic vs. Se-
mantic Scope

The essence of scope in natural language semantics can be characterized as follows: an
expression e1 takes semantic scope over an expression e2 if the interpretation of the for-
mer affects the interpretation of the latter. More specifically for present purposes, we are
interested in the special case in which the two expressions are DPs, as exemplified in (1):

(1) Everyx student in my class read ay paper about scope.

How can we tell whether the indefinite in (1) is in the scope of the universal or not? We
can answer this question in two ways.

From a dependence-based perspective, a quantifier Q′y is in the semantic scope of an-
other quantifier Qx iff the values of the variable y may covary with the values of x. The
dependence-based perspective spells out the semantic consequences of being within the se-
mantic scope of a quantifier: when evaluating a sentence in which two quantifiers occur, the
values given to y may covary with the values given to x.

In the case of (1), if the indefinite is within the semantic scope of the universal, the
sentence is true in situations in which different students read (possibly) different papers.
We have (possible) covariation of papers with students: the value given to y is allowed to
change when the value given to x changes, and therefore the interpretation of x is allowed
to affect the interpretation of y.

From an independence-based perspective, Q′y is outside the semantic scope of Qx iff
y’s value is fixed relative to the values of x. The independence-based perspective spells
out the semantic consequences of being outside the scope of a quantifier: when evaluating
a sentence in which the two quantifiers occur, the evaluation of y is not affected by the
evaluation of x.

In the case of (1), if the indefinite is outside the semantic scope of the universal, the
sentence is true in situations in which all the students read the same paper. There is no
covariation of papers with students: the value given to y does not change when the value
given to x changes.

Note that under both perspectives Q′y is within the semantic scope of Qx if the values
of y are allowed to covary with those of x and Q′y is outside the semantic scope of Q′y if
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the values of x are fixed relative to those of y.
This brings us to the first question this paper raises, namely whether the scopal prop-

erties of simple indefinites should be characterized in terms of dependence or in terms of
independence. A dependence-based approach establishes which quantifier(s) Q′y is depen-
dent on, i.e., it establishes which variables y is allowed to covary with. An independence-
based approach establishes which quantifier(s) Q′y is independent of, i.e., it establishes the
variables relative to which the values of y have to be fixed.

Logical semantics has taken both paths to the notion of scope. The classical semantics of
first-order logic (FOL) (or its Skolemized version) is dependence driven while the semantics
of IFL is independence driven. Natural language semantics has only taken the dependence-
based path. We argue here that there are advantages to following an independence-based
approach to the scopal properties of natural language indefinites, and thus to importing the
main insights from IFL into natural language semantics.

The second theoretical issue that arises is whether scope is a matter of syntax, semantics
or both. And if the last answer is correct, one has to establish what the optimal division of
labor is between syntax and semantics so as to best capture the scopal properties of natural
language quantifiers in general and of simple and special indefinites in particular.

Once again, natural language semantics followed the lead of FOL and treated scopal
phenomena as essentially syntactic. In standard approaches, scopal effects emerge as a
consequence of the different ways in which multiple quantifiers occurring in a single sentence
can be composed. In particular, there are two quantifier scopings intuitively associated with
sentence (1) above and at the heart of various accounts that derive them, we find the two
FOL formulas in (2) and (3) below. We adopt a restricted-quantification formalism here
and use [ ] to indicate restrictor formulas and ( ) to indicate nuclear scope formulas.

(2) ∀x[stud(x)] (∃y[paper(y)] (read(x, y)))

(3) ∃y[paper(y)] (∀x[stud(x)] (read(x, y)))

According to classical FOL, formula (2) is true in case different students read (possibly)
different papers, while formula (3) is true only in case the students read the same paper.
Thus, the indefinite is within or outside the semantic scope of the universal depending on
whether it is within or outside its syntactic scope.

In this paper, we depart from this tradition and propose an IFL-style account of scope
that partially separates semantic scope from syntactic configuration. However, we change
the IFL framework in several ways so that the syntax and semantics of scope are only
partially divorced in the resulting logic. The separation has to be partial in order to account
for the fact that the semantic scope of existentials is not totally insensitive to configurational
matters: in natural language, syntactic configuration does not determine the semantic scope
of indefinites, but it nonetheless places systematic constraints on it.

Our concern is primarily with natural language semantics rather than logical systems,
so we define the formal system by incrementally introducing a series of changes to classical
FOL. We point out connections with existing versions of IFL as we go along.1

1One of the initial motivations for developing IFL was the need to account for branching quantifiers
in natural language (see Hintikka 1973, Hintikka & Sandu 1997 among others), exemplified by sentences
like Some book by every author is referred to in some essay by every critic. The treatment of branching
quantification remains outside the scope of this paper.

3



The remainder of this section summarizes the main challenges raised by simple indefi-
nites and provides a brief characterization of the special indefinites we deal with.

1.2 Special Scopal Properties of Ordinary Indefinites

A well-known problem for purely configurational approaches to scope in natural language
is that simple indefinites enjoy free ‘upward scope’, disregarding not only clausal but also
island boundaries. In contrast, the upward scope of universals is clause-bounded (see Farkas
1981, Fodor & Sag 1982, Abusch 1994 among others).

This is exemplified in (4) and (5) below.

(4) John read ax paper that everyy professor recommended.

(5) Everyx student read everyy paper that az professor recommended.

In (4), the universal is in a relative clause restricting an indefinite and, crucially, the uni-
versal cannot scope over that indefinite: covariation between papers and professors is not
possible here, which means that the existential cannot be within the semantic scope of the
universal. Thus, this sentence can only be understood as describing situations in which
John read a paper such that (s.t.) every professor recommended that paper, an interpre-
tation that corresponds to the case where the indefinite is outside the semantic scope of
the universal. The sentence lacks a reading under which John read a set of papers s.t. for
each professor, there is a paper in that set that the professor recommended – with possibly
different papers for different professors. Such a reading would arise if the indefinite was in
the semantic scope of the universal.

In contrast, the indefinite in (5) is in a relative clause restricting a universal which in its
turn is in the syntactic scope of another universal. If the scoping possibilities of indefinites
were parallel to those of universals, the indefinite in (5) would only have the narrowest
possible scope and thus be interpreted as possibly covarying with both x and y. But in
this case we have two more readings, showing that the indefinite can freely scope out of the
relative clause, unlike the universal.

The three readings of (5) are given below. The intermediate scope (IS) reading in (7)
is particularly important because it shows that exceptional scope cannot be analyzed away
as a referential phenomenon (as argued in Farkas 1981 contra Fodor & Sag 1982).

(6) Narrowest Scope (NS):
for every student x,

for every paper y s.t.
◮ there is a professor z that recommended y,

x read y.

(7) Intermediate Scope (IS):
for every student x,
◮ there is a professor z s.t.,

for every paper y that z recommended,
x read y.
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(8) Widest Scope (WS):
◮ there is a professor z s.t.,

for every student x,
for every paper y that z recommended,

x read y.

The scopal freedom of indefinites illustrated above is problematic for theories in which
semantic scope relations reduce to syntactic c-command relations. In order to account
for (7) and (8), such theories have to assume that the indefinite c-commands one or both
universals at some level of representation. This means that the indefinite has to move out
of the relative clause, a problematic result since relative clauses are otherwise islands with
respect to movement. In addition, universals and other bona fide quantificational DPs must
be prevented from being thus moved, given the contrast between (4) and (5) above.

More generally, indefinites pose problems for any theory in which scopal relations can
only arise out of different ways to proceed with semantic composition – whether semantic
composition is exclusively syntax-driven or not. The reason is that such theories need a
special composition rule for indefinites: a rule that grants indefinites, but not universals,
their observed freedom. Whether this rule is embedded in a Cooper-storage account of
scope (as in Abusch 1994) or it simply states that syntactically covert movement for scope
is upward free for indefinites (see Geurts 2000), there is no independent justification for the
fact that such a rule can target only (in)definites, but not any bona fide quantifier.

To conclude, any adequate theory of DP scope must address the following two related
questions:

Question 1: Why are the scopal properties of ordinary indefinites different from those
of universals and other bona fide quantifiers?

Question 2: What explains the freedom of scope of indefinite DPs?

A movement-based account has problems answering both these questions since there is no
principled reason to differentiate between the two types of quantifiers nor is there any reason
to expect indefinites to move in a way that is unprecedented elsewhere in syntax.

Choice/Skolem-function accounts of indefinites (see Reinhart 1997, Winter 1997, Kratzer
1998, Matthewson 1999, Steedman 2007 and Dekker 2008 among others) avoid having to
stipulate a compositional rule for indefinites by encapsulating their scopal freedom into their
lexical meaning or by special existential closure rules that apply to them.

The main idea is that the core semantics of indefinites is different from the semantics
of bona fide quantifiers in that it involves choosing a witness that satisfies the restrictor
and nuclear scope of the indefinite. The different ways in which a witness is chosen is
responsible for the different semantic scopes the indefinite has. In particular, narrow scope
of an indefinite relative to a quantifier Qx binding a variable x reduces to making the
witness choice for the indefinite dependent on the values of the variable x. This amounts
to Skolemization in FOL.

How choice/Skolem-function approaches answer the first question posed above depends
on their details. But the basic insight, which we share, is the same: the scopal properties
of ordinary indefinites are different from those of universals and other bona fide quantifiers
because only indefinites can be interpreted in terms of witness choice.
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Crucially, however, the way this insight is formally spelled out does not always preserve
its initial appeal. Reinhart (1997), for example, formalizes it by means of existentially-bound
functional variables. A special mechanism of existential closure needs to be postulated for
such variables that acts long-distance and does not always take root-level scope. Since this
mechanism is not otherwise motivated, the scopal freedom of indefinites is ultimately not
explained.

In contrast, Kratzer (1998) assumes a single contextually-provided choice function,
which immediately accounts for the widest-scope readings of indefinites without recourse
to special binding mechanisms. This account, however, needs to posit implicit arguments
for this choice function (which, in effect, make it a Skolem-function variable) in order to
account for IS readings like (7) above.

Finally, the account proposed in Steedman (2007) derives the two possible scopes of
the indefinite ay paper about scope in our initial sentence (1) by always interpreting the
indefinite in situ, but letting it contribute a Skolem function f of variable arity. If f ’s
arity is 0, the function is a constant and the choice of the witness is not dependent on the
universal quantifier everyx student in my class. This yields the wide scope reading of the
indefinite relative to the universal, given in (9) below. If f ’s arity is 1, the witness is chosen
in a way that is dependent on the values of the universally-quantified variable x. This yields
the narrow scope reading of the indefinite relative to the universal, given in (10).2

(9) ∀x[stud(x)] ([paper(f)] (read(x, f)))

(10) ∀x[stud(x)] ([paper(f(x))] (read(x, f(x))))

While the insight that different ways of choosing a witness yield different semantic scopes is
an attractive one, the account in Steedman (2007) does not generalize to exceptional scope.
The author suggests that an account along the lines of Kratzer 1998 and/or Schwarzschild
2002 should be pursued for cases of exceptional scope. This system, then, would need to be
supplemented with additional assumptions to capture the IS reading of sentence (5) above.

We turn now to another challenge for theories of scope aiming to account for both
indefinites and regular quantifiers. The issue is that although syntax does not determine
semantic scope, it cannot be altogether disregarded even in the case of indefinites. The
syntactic constraint one has to capture, and which we dub the Binder Roof Constraint, is
formulated in (11) below and its effect is illustrated in (12):

(11) Binder Roof Constraint: an indefinite cannot scope over a quantifier that binds into
its restrictor.

(12) Everyx student read everyy paper that onez of itsy authors recommended.

In (12), onez of itsy authors can have only narrowest scope because scoping over everyy

paper would mean scoping over the quantifier that binds a pronoun in the restrictor of
the indefinite – as observed in Abusch (1994), Chierchia (2001) and Schwarz (2001) among
others. This kind of data raises the following question:

Question 3: What accounts for the existence of the Binder Roof Constraint?

2For ease of comparison, we preserve the syntax in (2) and (3) above rather than using the one in
Steedman (2007).
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Neither independence-friendly nor choice/Skolem-function approaches are able to answer
this question. For a discussion of this problem in the context of choice-function approaches,
see Chierchia (2001) and Schwarz (2001).

We think that the essence of the answer to this question proposed in Steedman (2007) is
right: the ways in which we can choose a suitable witness for an indefinite are constrained by
the presence of bound variables in the restrictor of the indefinite. The restrictor constrains
witness choice and the presence of bound variables in the restrictor renders witness choice
dependent relative to the quantifiers binding these variables.

The account we propose departs from Steedman’s, however, in that for us dependent
choice is a matter of semantics rather than of syntax. Requiring the Skolem function con-
tributed by an indefinite to be obligatorily indexed with a certain subset of the variables
that the indefinite is indexed with, as Steedman does, accounts for the Binder Roof Con-
straint but obscures the intuition that (12) is scopally unambiguous because witness choice
is dependent on the local context of interpretation/evaluation. In our view, the Binder Roof
Constraint should follow from the definition of the interpretation function, which should
require syntactically bound variables to be semantically dependent.

In sum, although simple indefinites exhibit exceptional upward scope, configurational is-
sues cannot be disregarded altogether. Given that choice/Skolem-function approaches pack
the scopal properties of indefinites into their lexical meanings, i.e., into the functions that
they contribute, such accounts need additional syntactic constraints to limit the freedom of
interpretation that they incorrectly predict for simple indefinites with bound pronouns in
their restrictor.

We thus seek an account for the contrast between the scopal behavior of (in)definites and
that of bona fide quantifiers, while still preserving a compositional interpretation procedure
that is driven by and is sensitive to surface syntax.

1.3 Dependent Indefinites

We turn now to the second general concern identified at the outset, namely how to extend
the account of simple indefinites to the case of special ones.

In this paper we focus on one case, namely dependent indefinites, first discussed in Farkas
(1997b). It was noted there that there is a class of indefinites marked by special morphology
that have to be interpreted as covarying with an individual or event/situation variable
bound by a bona fide quantifier, referred to as the licensor of the dependent indefinite. We
exemplify below with Hungarian, where dependent indefinites are marked by reduplication,
and with Romanian, where they are marked by the special morpheme ĉıte.3

Consider first the Hungarian example in (13) below.

(13) Minden
every

vonás
feature

egy-egy

a-a
emlék.
memory

‘Every feature is a memory.’

The reduplicated indefinite must covary with the variable bound by the licensor of the
dependent indefinite, namely the universal determiner minden ‘every’. Here the variable

3Most of the examples below are taken from the web or from naturally occurring conversation and sound
quite natural to native speakers.
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bound by the universal ranges over a non-singleton set of features. In order for the sentence
to be true, each such feature must be associated with a memory (a memorable event).
The reduplicated indefinite article egy-egy requires that there be some variation across
these memories and thus rules out a situation in which each feature is associated with the
same memory. Besides bona fide quantificational DPs, the licensor may be a distributively-
interpreted plural, as in (14) below, or an adverb of quantification, as in (15).

(14) Azzal
with.that

egy-egy

a-a
puszit
kiss

nyomott
planted

az
the

arcunkra
face.1pos.pl

és
and

beült
sat-in

a
the

taxiba.
cab.in

‘With that [she] planted a kiss on our faces and took the cab.’

(15) Olykor-olykor
occasionally

egy-egy

a-a
ember
man

felkiáltott.
cried-out

’Occasionally a man cried out.’

In (14), the licensor is the distributively-interpreted plural (in italics) and the reduplicated
indefinite signals covariation between kisses and the faces they are planted on. In (15), the
licensor is the adverb olykor-olykor – itself reduplicated and because of that, interpreted
as ‘on several occasions’. The reduplicated indefinite signals covariation between occasions
and the persons crying out, ruling out a situation in which the same individual cried out
every single time.

Farkas (2007b) shows that the same effect is obtained in Romanian by having the item
ĉıte precede an indefinite or numeral determiner.

(16) Fiecare
every

băiat
boy

a
has

recitat
recited

ĉıte

ĉıte
un
a

poem.
poem.

‘Every boy recited a poem.’

The addition of the morpheme ĉıte to the simple indefinite un imposes the requirement
that there be covariation between boys and the poems they recited.

In (17) below, we have an example of a dependent indefinite in Romanian licensed by
an adverbial construction with quantificational force and in (18), an example in which the
licensor is a distributively-interpreted plural (both licensors are italicized).

(17) Din
from

ĉınd
when

ı̂n
in

ĉınd,
when

trenul
train.the

se
refl

oprea
stopped

ı̂n
in

ĉıte

ĉıte
o
a
gară.
station

‘Occasionally, the train stopped in a station.’

(18) Am
we-have

decis
decided

să
to

lucrăm
work

amı̂ndoi
both

ĉıte

ĉıte
un
an

album
album

solo.
solo

‘We have decided to each work at a solo album.’

In both languages, sentences like the ones above contrast with sentences that are identical ex-
cept for the replacement of the dependent indefinite with a simple one (the non-reduplicated
indefinite article egy in Hungarian and the simple indefinite article un/o in Romanian). The
witnesses of the dependent indefinite have to covary with those of the licensor, while the
simple indefinite allows both a covariation and a wide-scope/fixed-value interpretation –
just as in the English translation of each example above.
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Assuming that both the indefinite and the universal introduce a variable at LF, we will
say that the variable introduced by the dependent indefinite has to covary with the variable
introduced by the universal, while the simple indefinite is free to covary or not.

Dependent indefinites are not acceptable in the absence of a licensor, as illustrated in
(19) below for Romanian.

(19) *Ĉıte

ĉıte
un
a

student
student

a
has

plecat.
left

‘A student left.’

Example (20) shows that dependent indefinites are not licensed by negation.

(20) *Ana
Ana

nu
not

a
has

adus
brought

ĉıte

ĉıte
o
an

umbrelă.
umbrella

‘Ana didn’t bring an umbrella.’

Finally, (21) shows that a dependent indefinite cannot be licensed by another singular
indefinite. Intuitively, the problem here is that the variable provided by the indefinite does
not vary, so the dependent indefinite does not have a variable to covary with. The facts are
parallel in Hungarian, as discussed in Farkas (1997b).

(21) *Un
a

student
student

a
has

vorbit
talked

cu
with

ĉıte

ĉıte
un
a

profesor.
professor

‘A student talked to a professor.’

Dependent indefinites may impose sortal restrictions on the variable they covary with. In
Romanian and Hungarian, dependent indefinites may covary with individual variables or
with event/situation variables, but not with world-level ones (Farkas 1997b, 2002). In con-
trast, this restriction does not hold in in Russian (Pereltsvaig 2008). As a result, dependent
indefinites in Romanian and Hungarian contrast with the relevant items in Russian in that
the latter, but not the former, can be licensed by modals or intensional predicates. We
exemplify with Romanian below.

(22) *Trebuie
must

să
subj

plece
leave

ĉıte

ĉıte
un
a

student
student.

‘A student must leave.’

The examples discussed so far show that dependent indefinites are special indefinites in that
they involve special morphology (reduplication in Hungarian and the presence of ĉıte in
Romanian) accompanied by special restrictions on interpretation, which result in restricted
distribution.

Pereltsvaig (2008) notes that the World Atlas of Language Structures Online4 lists 189
languages as having such dependent nominals. These are all special indefinites in that they
are marked by affixation (Basque, Turkish, Maori), a free standing morpheme (Russian,
German, Latvian) or reduplication (Bengali, Georgian, Pashto). This suggests that we are

4http://wals.info/feature/description/54.
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dealing with a relatively widespread phenomenon here and any account of ordinary/simple
indefinites should generalize to dependent indefinites in a fairly straightforward way.

In particular, we should account for the fact that the role of the special marking on
dependent indefinites imposes covariation between the variable introduced by the indefinite
and the variable introduced by the licensor. Our analysis will view the covariation require-
ment as a ban against having a fixed witness for the dependent indefinite relative to all the
values of the licensor variable. The licensor, therefore, must have the special indefinite in
its semantic scope and the semantics of the licensor must allow for variation in values so
that covariation with it is possible.5

We take dependent indefinites to require actual and not just possible covariation. A
case where covariation appears to be only possible but not actual is if (16) above were to
be followed by a sentence claiming that, later on, it turned out that the poems were in fact
identical. An account of such examples is left for future research.

In sum, dependent indefinites across languages are morphologically more complex than
ordinary indefinites and the interpretation associated with this dependent morphology re-
stricts the distribution of these indefinites. This raises the final question that we will be
concerned with in this paper:

Question 4: In the case of dependent indefinites, what is the semantic contribution of
the dependent morphology?

A satisfactory answer to this question would show in what way the special morpho-syntax
of dependent indefinites contributes to their special interpretive constraints, which in turn
would explain their special distribution. More precisely, since the dependent morphology
is added to the morphology associated with ordinary indefinites, the semantic contribution
of dependent morphology should combine with the semantics of ordinary indefinites and
constrain it in a way that explains the special properties of dependent indefinites.

It is not obvious how the above-mentioned previous approaches to ordinary indefinites
and their exceptional scope can be extended to allow for an account of dependent indefinites.
The most amenable to such an extension is Steedman (2007). In that kind of approach, the
dependent morphology on indefinites could be taken to constrain the arity of the Skolem
function contributed by indefinites, which would have to be greater than 0. We do not
pursue this line here, however, given that Steedman (2007) does not account for the full
range of scopal possibilities associated with ordinary indefinites.

In sum, we have identified four main issues that need to be addressed by an account of
indefinites and their scopal properties:

(i) capturing the contrast in scopal behavior between indefinites and bona fide quantifiers

(ii) deriving the upwards freedom of scope exhibited by ordinary indefinites

5An issue we leave open is the exact nature of the constraints on the material intervening between the
quantificational licensor and the dependent indefinite. We know that the latter must be in the semantic
scope of the former, but there seem to be limits on the ‘downward’ reach of such quantifiers, e.g., an attitude
report with a quantificational licensor in subject position and a dependent indefinite in the subordinate
clause is degraded, just as a sentence with a quantificational licensor in subject position and a dependent
indefinite in the restrictive relative clause modifying an (in)definite direct object.
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(iii) explaining the sensitivity of this upwards freedom to syntactic considerations

(iv) allowing the semantics of ordinary indefinites to be further enriched so as to account
for the special properties of dependent indefinites

The rest of the paper is organized as follows. Section 2 provides an informal outline of
our independence-based account of exceptional scope and dependent indefinites. Section
3 formalizes this account, thereby answering questions (i) through (iii) above. Section 4
answers question (iv) by providing a formal account of dependent indefinites in the logical
framework introduced in the previous section. Section 5 briefly considers the consequences
of our account with respect to a variety of issues closely connected to the exceptional scope
properties of ordinary indefinites and outlines some of the remaining open problems. Section
6 concludes.

2 Outline of the Account

Following Steedman (2007) and Farkas (1997a), as well as choice-functional approaches,
we interpret indefinites in situ, thus partially divorcing scope from configurational matters.
But we depart from these previous accounts in conceptualizing the scope of indefinites
as an independence-based notion. More concretely, we assume that the semantics of an
indefinite specifies whether the witness it contributes is independent of (or fixed relative
to) other quantifiers. Previous approaches are dependence-based in the sense that for them
the semantic interpretation of the indefinite specifies possible dependency (or covariation)
relative to other quantifiers.

In the approach developed below, the main role of syntactic structure is to provide
constraints on witness choice: if a quantifier Qx syntactically scopes over an indefinite Q′y,
it becomes possible for the values of y to be required to stay fixed relative to the values of
x. If this possibility is taken advantage of, y will be independent of x and thus Q′y will
be outside the semantic scope of Qx. In case this possibility is not taken advantage of, the
values of x do not have to be fixed relative to those of y and thus covariation is possible, in
which case Q′y will be inside the semantic scope of Qx.

Our main proposal has two components:

(i) Just as in choice/Skolem-function approaches, we take the essence of the semantics of
indefinites to be choosing a witness.

(ii) In contrast to choice/Skolem-function approaches, we follow IFL and take witness
choice to be part of the interpretation procedure.

That is, indefinites choose a witness at some point in the evaluation and require its non-
variation from that point on. In contrast to Skolemization, which ensures non-variation by
means of a higher-order functional variable, we ensure non-variation by directly constraining
the values assigned to the first-order variable contributed by the indefinite.

The first component, i.e., taking the core semantics of indefinites to be witness choice,
is essential in accounting for the difference between existentials and bona fide quantifiers
with respect to scope (Question 1 above).
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The second component, i.e., building witness choice into the general interpretation pro-
cedure (that is, into the recursive definition of truth and satisfaction), is crucial for capturing
the details of the scopal behavior of existentials (Questions 2 and 3).

As standardly assumed (albeit sometimes implicitly), we take the set of variables in-
troduced by previous/higher quantifiers to be accessible at the point when an existential is
interpreted. That is, this set of variables is part of the local context of evaluation for the
existential. The existential is free to choose which of these variables the witness choice can
be dependent on and which variables the witness choice is independent of.

Syntax (and, more generally, order of composition) determines which variables are ac-
cessible to a given existential and therefore, which variables an existential may in principle
depend on. Selecting one of the various possibilities is, however, not syntactically deter-
mined but is a matter of interpretive choice.

More specifically, we assume that an existential accesses the set V of variables introduced
by quantifiers taking syntactic scope over it and chooses a subset U ⊆ V relative to which
the values of its witness may covary (in the spirit of Steedman 2007). The variables in U
are those the existential may be dependent on, while the variables in V \ U are those that
the existential is independent of.

In our approach then, an indefinite is syntactically indexed with the set of variables it
is dependent on, and requires semantic non-variation relative to all the other previously
introduced variables. That is, logical representation marks possible dependence: indefinites
are indexed with the variables they possibly covary with. The interpretation rule, on the
other hand, is stated in terms of independence: an indefinite contributes a witness that is
required to be unique/fixed relative to all the variables that the indefinite is not indexed
with.

This seems to be the correct way to capture the morphological makeup of indefinites
on one hand and their semantics on the other hand. On the morphological side, additional
morphological marking (such as reduplication or the use of a special morpheme accompa-
nying the simple indefinite article) is correlated with dependence requirements rather than
independence constraints. For example, the morphological marking occurring in dependent
indefinites across languages requires them to covary with (that is, to be within the seman-
tic scope of) other quantifiers: dependent morphology constrains the witness contributed
by the indefinite to exhibit actual – rather than merely possible – covariation. But there
seem to be no special morphological markers on indefinites requiring them to be indepen-
dent of (that is, take semantic scope over) particular quantificational items. That is, the
morphology of indefinites requires a representation that marks dependence.

On the semantic side, however, we take the essence of indefinite interpretation to be
witness choice, which means that at some point in the interpretation, a referent for the
indefinite is chosen and this choice remains fixed for/independent of the quantificational
items that are subsequently interpreted.

Our core proposal concerning the scope of existentials can be illustrated with the formula
in (23) below, involving an existential in the syntactic scope of two universals.

(23) ∀x[φ] (∀y[φ′] (∃z[φ′′] (ψ)))

The set V of variables accessible to the existential is {x, y}. Suppose that the set of values for
x that satisfy the restrictor formula φ is {α1, α2} and that the set of values for y that satisfy
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the restrictor formula φ′ is {β1, β2}. That is, suppose that the universal ∀x[φ] quantifies
over the set {α1, α2} and the universal ∀y[φ′] quantifies over the set {β1, β2}.

The existential ∃z chooses a witness that satisfies its restrictor formula φ′′ and its nuclear
scope formula ψ. The witness choice can happen in three different ways, as shown in (24)
below:

• it can be fixed relative to no variables (narrowest scope), in which case the subset
U ⊆ V chosen by the existential is {x, y}

• it can be fixed relative to the variable y contributed by the lower universal but possibly
dependent on x (intermediate scope), in which case U = {x}

• finally, it can be fixed relative to both x and y (widest scope), in which case U = ∅

Syntactically, the scope of the existential is the same, namely narrowest scope. Semantically,
however, the existential can have three possible scopes depending on how witnesses are
chosen.

(24) Narrowest scope (NS), U = {x, y}: z is fixed relative to no variable, i.e., z (pos-
sibly) covaries with both x and y

Intermediate scope (IS), U = {x}: z is fixed relative to y and (possibly) co-
varies with x

Widest scope (WS), U = ∅: z is fixed relative to both x and y

The three semantic scopes are schematically depicted by the matrices in (25) below:

• in the NS case, the values of z are (possibly) different for any two different pairs of
values for x and y

• in the IS case, the values of z are (possibly) different for the two values of x, i.e., α1

is associated with witness γ and α2 is associated with witness γ′; but the witnesses
are fixed relative to the two values of y, i.e., witness γ is associated with both β1 and
β2 and so is witness γ′

• in the WS case, the values of z are fixed relative to any combination of values for
x and y: γ is associated with all four pairs of values 〈α1, β1〉, 〈α1, β2〉, 〈α2, β1〉 and
〈α2, β2〉

(25) NS IS WS
x y z

α1 β1 γ

α1 β2 γ′

α2 β1 γ′′

α2 β2 γ′′′

x y z

α1 β1 γ
α1 β2

α2 β1 γ′
α2 β2

x y z
α1 β1

γ
α1 β2
α2 β1
α2 β2

In principle, there is a fourth possibility: the witness choice could be dependent on y, but
fixed relative to x, i.e., U = {x}. Note that this reading is in fact expected under the
independently needed assumption that some clause-bounded scoping mechanism (such as
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Q(uantifier) R(aising)) is needed to assign inverse scope to universals and other bona-fide
quantifiers.

This fourth possibility then is equivalent to QR-ing the existential ∃z[φ′′] to take scope
over the topmost universal ∀x[φ], then QR-ing the other universal ∀y[φ′] to take scope over
the existential and, finally, giving the existential semantic scope in situ. The availability of
this fourth possibility for this particular sentence is thus independent of how one treats the
exceptional scope of indefinites. We return to this matter in subsection 3.5, after introducing
the full formal system and discussing our analysis in more detail.

Turning now to the problem of dependent indefinites, the essence of the requirement
they impose is that witness choice must be dependent on some parameter of evaluation.
Consequently, the WS matrix in (25) is not possible if the variable z is introduced by a
dependent indefinite, nor is it possible to use a dependent indefinite in an environment that
does not provide an appropriate variable for the indefinite to covary with, i.e., a variable
that takes multiple values.

Thus, an account in terms of matrices like the ones in (25) above enables us to immedi-
ately connect the scopal properties of ordinary indefinites and the constraints on interpre-
tation imposed by dependent indefinites.

The next section is dedicated to the formalization of this basic account. We will define
the interpretation function [[·]] in terms of matrices like the one in (25) above and show how
to formalize the non-variation requirement contributed by existentials relative to them.

3 Scope in First-Order Logic with Choice (C-FOL)

Our account is couched in a slightly modified version of the language of classical first-order
logic (FOL): we keep the language first order, i.e., we have variables only over individuals
(no choice/Skolem-function variables), but we add restricted quantification, just as we did
in the discussion and various formulas above.6

While the syntax of the language is fairly standard, the semantics is not. The main
formal novelty is that, in contrast to standard Tarskian semantics where evaluation contexts
are single assignments, our contexts of evaluation have a more articulated structure:

(i) following the (in)dependence logics in Hodges (1997) and Väänänen (2007), we eval-
uate formulas relative to sets of assignments G,H, . . . instead of single assignments
g, h, . . .

(ii) in the spirit of the main insight in Steedman (2007), we evaluate a quantifier relative
to the set of variables V introduced by the syntactically-higher quantifiers, i.e., con-
texts of evaluation contain the set of variables V = {x, y, . . .} introduced by all the
previously interpreted quantifiers Qx,Q′y etc.

6The formulation of a Montague-style compositional translation procedure from English into (a higher-
order version of) this language is left for future research. We might be able to provide such a translation
procedure if we follow the general strategy used in Muskens (1995) to couch situation semantics into a
relational version of type logic and in Muskens (1996) (following Janssen 1986 among others) to couch
dynamic semantics into classical (many-sorted) type logic.
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Sets of assignments can be thought of as matrices like the ones in (25) above, with each
assignment giving each variable a value. The advantage of having sets of assignments is
that they enable us to treat scopal (in)dependence in terms of such matrices because we can
talk of values that are the same or that are different across different rows of such matrices.

In order to say whether a variable x depends on a variable y, it is not enough to
examine which value x takes relative to each value of y separately. We have to consider
the whole relation between the values of x and the values of y. If x has the same value for
all values of y, we can say that x does not depend on y. If the value of x varies relative
to different values of y, we can say that x depends on y. Similar considerations apply to
dependence on more variables. That is, (in)dependence is a global property of an entire
set of assignments relative to which a formula is evaluated, so interpretation has to be
relativized to such sets.7 Adding to this setup the set of previously introduced variables as
an explicit evaluation parameter has the advantage that it allows the existential to choose
which of these variables its witness is (possibly) dependent on.

As already indicated, a set of assignments G can be represented as a matrix with as-
signments g, g′, g′′, . . . as rows, as shown in (26) below.

(26) G . . . x y z . . .

g . . . α1 (= g(x)) α2 (= g(y)) α3 (= g(z)) . . .
g′ . . . β1 (= g′(x)) β2 (= g′(y)) β3 (= g′(z)) . . .
g′′ . . . γ1 (= g′′(x)) γ2 (= g′′(y)) γ3 (= g′′(z)) . . .
. . . . . . . . . . . . . . . . . .

or simply:

. . . x y z . . .

. . . α1 α2 α3 . . .

. . . β1 β2 β3 . . .

. . . γ1 γ2 γ3 . . .

. . . . . . . . . . . . . . .

To keep the formalism as simple as possible and as close as possible to the standard Tarskian
semantics for FOL, we work with total assignments.

Having sets of assignments as contexts of evaluation enables us to encode when a quan-
tifier Q′y is independent of another quantifier Q′′z by requiring the variable y to have a
fixed value relative to the varying values of z. This requirement is given in (27) below; G
is the set of assignments relative to which the formula is evaluated and y is the variable
bound by the quantifier Q′.

(27) Fixed value condition (basic version):
for all g, g′ ∈ G, g(y) = g′(y).

The fixed value condition for y leaves open the possibility that the values of z vary from
assignment to assignment, i.e., that g(z) 6= g′(z) for some g, g′ ∈ G, as shown below.

(28)

y z

γ
β1
β2

7We are indebted to Theo M.V. Janssen for the pertinent observations that form the bulk of this
paragraph.
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Thus, having sets of assignments enables us to state directly in the semantics that y does not
covary with z, without having to go through the intermediary of syntax. We are therefore
able to state that the quantifier Q′y is not in the semantic scope of Q′′z, although it may
well be in its syntactic scope. Partially separating syntactic scope from semantic scope
is one of the crucial features of our proposal. Note also that the condition we give is an
independence condition rather than a dependence one since it require the values of a variable
in a matrix to be fixed.

Let us suppose now that the quantifier Q′y is not in the semantic scope of Q′′z. In this
case it is still possible that a third quantifier, Qx, takes both syntactic and semantic scope
over Q′y. This is exactly what happens in the intermediate scope (IS) configuration in (25)
above (for the formula in (23)), where the values of y are fixed relative to z but covary with
x.

In such intermediate scope cases, the values of some variable y have to be fixed relative
to the values of some other variable z, but they should be free to covary with the values of
a third variable x. To allow for this possibility, we relativize the fixed value condition to
the values of x, as shown in (29) below, where x and y are bound by the quantifiers Q and
Q′ respectively.

(29) Fixed value condition (relativized version):
for all g, g′ ∈ G, if g(x) = g′(x), then g(y) = g′(y).

The matrix below (very similar to the IS matrix in (25) above) satisfies precisely this kind
of relativized fixed value condition.

(30)

x y z

α1 γ
β1

α1 β2
α2 γ′

β1
α2 β2

In sum, the advantage of working with sets of assignments instead of single assignments is
that it enables us to formulate non-variation/fixed-value conditions relativized to particular
variables.

Recall now that we also need to keep track of which variables are introduced by syntac-
tically higher quantifiers, so that we can let existentials contribute fixed-value conditions
relativized to (some of) these variables.

This brings us to the second way in which we add structure to our contexts of evaluation:
they contain the set of variables V = {x, y, . . .} introduced by the previous quantifiers.
These are the variables an existential could in principle covary with – but, in contrast to
the standard Tarskian semantics, the existential does not have to covary with them.

Existentials have a choice. They can choose which ones of the quantifiers that take
syntactic scope over them also take semantic scope over them. As already mentioned, when
we interpret an indefinite, we choose a subset of variables U ⊆ V = {x, y, . . .} containing
the variables that the indefinite possibly covaries with, i.e., the variables that the indefi-
nite is possibly dependent on. The complement set V \ U = {ν ∈ V : ν /∈ U} contains the
variables relative to which the indefinite does not vary, i.e., the variables that the indefinite
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is independent of. We dub the resulting first-order language and its associated semantics
Choice-FOL or C-FOL for short.

In the system we propose, an indefinite in the syntactic scope of a quantifier Qx binding
a variable x is in its semantic scope iff x ∈ U . This makes the following two correct
predictions:

(i) an indefinite may be in the semantic scope of a quantifier Qx only if Qx has syntactic
scope over the indefinite

(ii) an indefinite may in principle be outside the semantic scope of a quantifier Qx that
takes syntactic scope over it

3.1 Existentials in First-Order Logic with Choice (C-FOL)

We turn now to the treatment of existential quantification in C-FOL.
A model M for C-FOL has the same structure as the standard models for FOL, i.e.,

M is a pair 〈D, I〉, where D is the domain of individuals and I the basic interpretation
function. An M-assignment g for C-FOL is also defined just as in FOL: g is a total function
from the set of variables VAR to D, i.e., g ∈ D

VAR.
The essence of quantification in FOL is pointwise (i.e., variablewise) manipulation of

variable assignments. We indicate this by means of the abbreviation h[x]g, defined in (31)
below. Informally, h[x]g abbreviates that the assignments h and g differ at most with
respect to the value they assign to x.

(31) h[x]g := for all variables ν ∈ VAR, if ν 6= x, then h(ν) = g(ν)

Given that we work with sets of variable assignments, we generalize this to a notion of
pointwise manipulation of sets of assignments, abbreviated as H[x]G and defined in (32).
This is the cumulative-quantification style generalization of h[x]g: any h ∈ H has to have
an [x]-predecessor g ∈ G and any g ∈ G has to have an [x]-successor h ∈ H.

(32) H[x]G :=

{
for all h ∈ H, there is a g ∈ G s.t. h[x]g
for all g ∈ G, there is a h ∈ H such that h[x]g

With these basic notions in place, we can define the interpretation function [[·]]M,G,V . We will
generally leave the model superscript M implicit and represent the C-FOL interpretation
function simply as [[·]]G,V , where G is a set of assignments and V a set of variables. Together,
G and V form a context of evaluation.

Atomic formulas are interpreted as shown in (33) below; T and F stand for true and
false respectively.

(33) Atomic formulas:
[[R(x1, . . . , xn)]]

G,V = T iff

a. G 6= ∅

b. {x1, . . . , xn} ⊆ V

c. 〈g(x1), . . . , g(xn)〉 ∈ I(R), for all g ∈ G
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The condition {x1, . . . , xn} ⊆ V in (33b) bans free variables. We assume that deictic
pronouns require the discourse-initial set of variables V to be non-empty, much like the
discourse-initial partial assignments in Discourse Representation Theory (DRT)/File-Change
Semantics (FCS) are required to have a non-empty domain.8

The condition in (33c) is the central one: the set of assignments G satisfies an atomic
formula R(x1, . . . , xn) if each assignment g ∈ G satisfies it. That is, we distribute over the
set G and, in this way, relate the C-FOL notion of set-based satisfaction to the standard
FOL notion of single-assignment-based satisfaction. The non-emptiness condition in (33a)
rules out the case in which the distributive requirement in (33c) is vacuously satisfied.

A set of assignments G = {g, g′, g′′, . . .} that satisfies the atomic formula R(x1, . . . , xn)
in such a distributive way is provided in (34) below.

(34) G . . . x1 . . . xn . . .

g . . . α1 (= g(x1)) . . . αn (= g(xn)) . . .

︸ ︷︷ ︸

〈α1, . . . , αn〉 ∈ I(R)
g′ . . . β1 (= g′(x1)) . . . βn (= g′(xn)) . . .

︸ ︷︷ ︸

〈β1, . . . , βn〉 ∈ I(R)
g′′ . . . γ1 (= g′′(x1)) . . . γn (= g′′(xn)) . . .

︸ ︷︷ ︸

〈γ1, . . . , γn〉 ∈ I(R)
. . . . . . . . . . . . . . . . . .

The interpretation of conjunction is the expected one: we just pass the current context of
evaluation down to each conjunct.

(35) Conjunction:
[[φ ∧ ψ]]G,V = T iff [[φ]]G,V = T and [[ψ]]G,V = T.

We turn now to existential quantification, leaving negation for subsections 3.4 and 5.2 and
disjunction for subsection 5.5.

The interpretation of existential quantification is provided in (36). The novelty here is
that existentials choose a subset of the previously introduced variables and the elements
of this subset are the variables that the witness contributed by the existential may be
dependent on. This choice is encoded by the superscript U :

• the set of variables U is a subset of the current set of variables V contributed by the
previous/higher quantifiers

• the variables in U are those variables in V that the witness contributed by the exis-
tential is allowed to covary with9

8If we were to have a partial/trivalent semantics (avoided here only for presentational simplicity), failure
to satisfy condition (33b) – or (33a), if that condition was still present – would yield undefinedness, not
falsity.

9In a partial/trivalent framework, failure to satisfy condition U ⊆ V would yield undefinedness, not falsity.
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(36) Existential quantification:
[[∃Ux[φ] (ψ)]]G,V = T iff U ⊆ V and [[ψ]]H,V∪{x} = T, for some H s.t.

a. H[x]G

b. [[φ]]H,U∪{x} = T

c.

{
if U = ∅ : h(x) = h′(x), for all h, h′ ∈ H
if U 6= ∅ : h(x) = h′(x), for all h, h′ ∈ H that are U -identical

(37) Two assignments h and h′ are U -identical iff for all variables ν ∈ U , h(ν) = h′(ν).

The fixed-value conditions in (36c), which cover the case in which the superscript U is empty
and the case in which it is non-empty, rule out sets of assignments that contain witnesses
covarying with the variables in V \ U . These conditions formalize what it means to make
one of the allowed choices:

• if U = ∅, the value of the variable bound by the existential is fixed in absolute
terms and the indefinite has widest scope; in this case, the variable must satisfy the
unrelativized fixed-value condition in (27) above

• if U 6= ∅, the values of the variable bound by the existential may vary, but only
relative to the values of the variables in the superscript U of the existential; in this
case, the variable must satisfy a fixed-value condition relativized to the variables in
U , as defined in (29) above10

Thus, an existential formula ∃Ux[φ] (ψ) is interpreted relative to a set of variables V intro-
duced by the sequence of quantifiers that take syntactic scope over the existential. The su-
perscript U on the existential indicates that among the V-quantifiers, only the U -quantifiers
also take semantic scope over the existential. In other words, U indicates the non-variation
of the existential with respect to the quantifiers binding variables in V \ U .

Just like in IFL, our semantics involves independence: we specify how the witness is
fixed/chosen. But unlike IFL, we index existentials with the set of variables the existential
is possibly dependent on.

Existentials in IFL are syntactically marked for those variables that they have to be in-
dependent of. An IFL existential is represented as ∃x/Y , where the ‘slashed’ set of variables
Y contains the variables that x is independent of. The IFL semantic clause for existentials
and our semantic clause are basically the same, but an IFL existential is syntactically in-
dexed with the variables that it is independent of, while in our system it is indexed with
those variables that it may depend on.

For our limited purposes, translating the IFL treatment into our notation amounts to
superscripting existentials not with U , but with the complement of U , i.e., U = V \ U .11 As

10As Philippe Schlenker points out, the two conditions in (36c) can be unified. They are in fact both
subsumed under the second condition “h(x) = h′(x), for all h, h′ ∈ H that are U-identical”. The reason
is that if U = ∅, it is trivially true that any two assignments h, h′ ∈ H are U-identical since there are no
variables ν ∈ U . The redundant formulation matches the previous informal discussion more closely, so we
keep it here (and in the rest of the paper for consistency).

11We are indebted to Theo M.V. Janssen for this observation and for emphasizing the importance of the
“limited purposes” caveat. The general problem of C-FOL—IFL translation is definitely more complicated
than complementizing superscripts and it is left as an open issue here.
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we will see in detail below, dependent indefinites in natural language provide an empirical
argument for keeping the IFL semantics of independence but marking dependence in the
logical representation/syntax. Moreover, as we will see in subsection 3.3, the Binder Roof
Constraint follows from the fact that the restrictor of the indefinite is interpreted relative to
a context containing the set of variables U and, crucially, not the complement set U = V \U .

Despite this syntactic difference, our system and IFL converge on the idea that the
superscript on existentials constrains witness choice by delimiting possible covariation. Ex-
istentials are compatible with such a superscript because their semantics involves choosing
a witness, while universals and other bona fide quantifiers cannot meaningfully occur with
such a superscript because their semantics cannot be given in terms of single-witness choice.

This idea, which we also share with choice/Skolem-function approaches, is central to
our account and explains why we never have superscripts on universals or other bona fide
quantifiers. The semantic scope of existentials is different from the semantic scope of bona
fide quantifiers because of the essential difference between the interpretations of the two
types of nominal phrases:

• The interpretation of existentials involves choosing a witness and that choice may
depend on the values of other variables.

• The interpretation of bona fide quantifiers cannot be formulated in terms of single-
witness choice, so the superscripting mechanism that constrains this choice cannot
meaningfully apply to them.

While the semantic scope of existentials is determined by their superscripted set of variables
U , the scope of bona fide quantifiers is exclusively determined by (clause-bounded) quantifier
raising or whatever other quantifier-scoping mechanism the reader favors.12

It is by means of this mechanism that the universal every meeting in sentence (38) below
can take scope over the indefinite in subject position.

(38) Ax representative of our organization was present at everyy meeting.

If the universal everyy meeting is scoped above the indefinite in subject position, it is
semantically evaluated before this indefinite. Hence, the variable y it contributes is an
element of V when the indefinite is interpreted and it becomes available for the indefinite
to covary with (i.e., y is a possible element of the superscripted set U).

We return to the interpretation of universals below. Our aim here is to emphasize
that the way we determine the semantic scope of existentials and universals is intrinsically
different and, therefore, that there is no reason to expect the scopal properties of existentials
to be similar to those of universals and other bona fide quantifiers. Thus, our answer to
Question 1 (the contrast between existentials and universals) is semantic in nature.

12Recall that indexing an ordinary indefinite with a variable y contributed by a quantifier requires possible,
not actual, covariation with y. For example, as Theo M.V. Janssen points out, the sentence Everyy man

is protected by ax woman who prays for himy requires the indefinite to have narrow scope relative to the
universal if the universal is coindexed with/binds the pronoun in the restrictor of the indefinite. But this
does not exclude an interpretation of this sentence in which every man is protected by the same woman,
e.g., Virgin Mary, who prays for everyone. In this case, the narrow-scope indefinite accidentally happens to
select the same witness x for each value of y – which our semantic clause for existentials allows for.

20



Our answer to Question 2 (the free upward scope of existentials) is again essentially
semantic: the scope of an existential is a matter of relating that existential to a set of
previously introduced variables. There is no reason to think that this relation might be
syntactically local, e.g., sensitive to syntactic islands, since there is no requirement for the
existential to c-command all the quantifiers it is independent of.

The relation between U and V , which is what determines the semantic scope of the
existential, is similar to what we find in anaphoric relations. Both phenomena connect the
interpretation of an expression to the interpretation of a previous expression. In the case
of scope, we connect an existential to the previously evaluated quantifiers. In the case of
anaphoric relations, we connect the anaphor to the previously evaluated antecedent. This
parallel is responsible for the fact that both phenomena are insensitive to syntactic islands.

But although both phenomena involve some form of variable coindexation in syntax
(an assumption we make in part for expository reasons; see subsection 3.5 below for an
alternative formulation), the associated semantic rules are fundamentally different. For
scopal (in)dependence, the set of variables that the indefinite is indexed with provides the
parameters relative to which we choose the new entity introduced by the indefinite. For
referential dependencies, e.g., anaphoric or bound pronouns, the variable that the pronoun
is indexed with provides the old entity that the pronoun refers back to.

Moreover, anaphoric links can be established simply by inspecting single assignments,
i.e., we examine a given set of assignments one assignment at a time. In contrast, scopal
(in)dependence is a global property of the whole set of assignments relative to which a
formula is evaluated.13

Finally, although V keeps track of previously introduced variables in a way that is
parallel to how DRT/FCS keeps tracks of previously introduced variables by means of
(the domains of) their partial variable assignments, the two sets of variables are crucially
different: the purpose of the set V is to store variables that are possible candidates for
quantificational covariation, not anaphoric retrieval, so V keeps track only of the intra-
sententially-introduced variables and, as a general rule, it is reset to the empty set ∅ every
time a new sentence is interpreted. In contrast, the DRT/FCS partial variable assignments
are preserved across sentential boundaries and monotonically increase as we incrementally
process sentences in discourse.

3.2 Universals and Exceptional Scope in C-FOL

Defining the interpretation of universally quantified formulas ∀x[φ] (ψ) in C-FOL requires
some care because existential quantifiers can occur both in the restrictor formula φ and in
the nuclear scope formula ψ.

Let us disregard for the moment the possibility that existential quantifiers can occur in
the restrictor of universals and give a simpler, preliminary definition as a stepping stone
towards our final one. This preliminary definition is provided in (39) below. The main idea
is that the nuclear scope formula ψ of a universal quantifier is evaluated relative to the set
of all assignments that satisfy the restrictor formula φ. That is, we collect all assignments h
s.t. φ is true relative to the singleton set of assignments {h} and pass the set H consisting
of all these assignments to the nuclear scope formula ψ.

13We are grateful to Philippe Schlenker for this observation.
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(39) Universal quantification (preliminary):
[[∀x[φ] (ψ)]]G,V = T iff [[ψ]]H,V∪{x} = T, where H is the maximal set of assignments
that satisfies φ relative to x, G and V .

(40) H is the maximal set of assignments that satisfies φ relative to the variable x, the
set of assignments G and the set of variables V iff
H =

⋃

g∈G

{
h : h[x]g and [[φ]]{h},V∪{x} = T

}
.

For example, consider the sentence in (41) below and its C-FOL translations in (42) and
(43). We assume that the indefinite is interpreted in situ and is translated by an existential
that can have any superscript licensed by the interpretation of the previous quantifiers in
the sentence. Given that the indefinite ay paper is evaluated after the universal quantifier
everyx student, it is interpreted relative to the non-empty set of variables {x}, so there are
two possible superscripts, namely ∅ and {x}.

(41) Everyx student read ay paper.

(42) ∀x[stud(x)] (∃∅y[paper(y)] (read(x, y)))

(43) ∀x[stud(x)] (∃{x}y[paper(y)] (read(x, y)))

The only difference between the C-FOL translations in (42) and (43) is the superscript on
the existential quantifier:

• if the superscript is ∅, as in (42), the existential receives a wide-scope interpretation

• if the superscript is {x}, as in (43), the existential receives a narrow-scope interpre-
tation

Thus, in contrast to the two FOL formulas in (2) and (3) above, C-FOL does not capture
the wide vs narrow scope readings of sentence (41) by means of two syntactically different
formulas. The indefinite always has narrow scope syntactically, but at the point when it is
interpreted, we may choose to select a witness that is independent of the higher universal
quantifier, effectively removing the indefinite from the semantic scope of the universal.

In more detail, assume that the C-FOL formulas in (42) and (43) are interpreted relative
to an arbitrary non-empty set of assignments G and the empty set of variables ∅. This is
what is required by the definition of truth for C-FOL, provided in (44) below.

(44) Truth: a formula φ is true (in model M) iff [[φ]]G,∅ = T for any non-empty set of
assignments G, where ∅ is the empty set of variables.

Assume that there are exactly three students in our model M, namely {stud1, stud2, stud3}.
Then, the interpretation of the formulas in (42) and (43) proceeds as shown in (45) below.
First, the universal quantifier ∀x[stud(x)] introduces the set of all students relative to the
variable x and relative to each assignment g ∈ G. Then, the existential ∃∅/{x}y[paper(y)]
introduces a paper and chooses whether it is the same for every student (if the superscript
is ∅) or whether it is possibly different from student to student (if the superscript is {x}).
Finally, we check that, for each variable assignment in the resulting set of assignments, the
x-student in that assignment read the y-paper in that assignment.
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(45)
. . . . . . . . . . . .
. . . . . . . . . . . .

∀x[stud(x)]
=======⇒

. . . x . . . . . .

. . . stud1 . . . . . .

. . . stud2 . . . . . .

. . . stud3 . . . . . .






∃
∅y[paper(y)]

========⇒

. . . x y . . .

. . . stud1
paper

. . .
. . . stud2 . . .
. . . stud3 . . .

read(x,y)
======⇒

stud1 read paper
stud2 read paper
stud3 read paper

∃
{x}y[paper(y)]

==========⇒

. . . x y . . .

. . . stud1 paper . . .

. . . stud2 paper′ . . .

. . . stud3 paper′′ . . .

read(x,y)
======⇒

stud1 read paper
stud2 read paper′

stud3 read paper′′

Our preliminary definition in (39) above accounts for the scopal interaction between univer-
sals and indefinites in their nuclear scope. But it makes incorrect predictions for indefinites
in the restrictor of universals.

A typical case is our exceptional scope sentence in (5) above. Its C-FOL translation is
provided in (46) below. The three readings, i.e., the WS, IS and NS readings, are obtained
by letting the superscript on the indefinite be ∅, {x} and {x, y}, respectively.

(46) ∀x[stud(x)]
(∀y[paper(y) ∧
∃∅/{x}/{x,y}z[prof(z)] (recom(z, y))]
(read(x, y)))

Consider now the IS reading more closely. The superscript {x} on the existential quantifier
∃{x}z[prof(z)] indicates that only the first universal quantifier ∀x[stud(x)] takes semantic
scope over it. That is, for each student x, we choose a professor z and require x to have
read every paper that z recommended.

However, the interpretation of universal quantification in (39)&(40) above fails to cap-
ture this reading. This is because when we evaluate the restrictor formula of the universal
quantifier ∀y[paper(y) ∧ ∃{x}z[prof(z)] . . . ], we do not have access to the entire previous
set H of assignments that stores all the x-students: according to definition (40), we only
examine one assignment h in that set at a time.

Hence, we vacuously satisfy the relativized fixed-value condition contributed by the exis-
tential ∃{x}z because this condition has the form: for all h′, h′′ ∈ {h}, if h′(x) = h′′(x), then
h′(z) = h′′(z). Fixed-value conditions are always satisfied by singleton sets of assignments.
So we fail to ensure that a single z-professor is chosen for each x-student.

In order to account for our intuitions about exceptional scope in sentences that have
indefinites in the restrictor of universals, we need to modify the C-FOL semantic clause for
universally quantified formulas as in (47) below.

(47) Universal quantification (final version):
[[∀x[φ] (ψ)]]G,V = T iff [[ψ]]H,V∪{x} = T, for some H that is a maximal set of assign-
ments relative to x, φ, G and V .

(48) H is a maximal set of assignments relative to a variable x, a formula φ, a set of
assignments G and a set of variables V iff
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a. H[x]G and [[φ]]H,V∪{x} = T

b. there is no H ′ 6= H s.t. H ⊆ H ′ and:
H ′[x]G and [[φ]]H

′,V∪{x} = T

The crucial difference between (39)&(40) and (47)&(48) is that:

• in (39)&(40), we obtain the maximal set of assignments H in a distributive way, i.e.,
by evaluating the restrictor formula φ relative to each assignment h ∈ H

• in (47)&(48), we obtain a maximal set of assignments H in a collective way, i.e., by
evaluating the restrictor formula φ relative to H as a whole

Note that the set H is the maximal set according to (39)&(40), while according to (47)&(48)
it is merely a maximal set. This captures cases in which the restrictor formula φ contains
existentials for which we could choose any individual from a non-singleton set of witnesses:
for any choice of a single witness, we would obtain a possibly different maximal set H.14

The final definition in (47)&(48) above allows us to correctly capture the IS reading
of indefinite ∃{x}z[prof(z)] in the restrictor of the universal quantifier ∀y[paper(y) ∧ . . . ]
because we now have access to the entire set of assignments that stores the values of the
variable x bound by the higher universal ∀x[stud(x)].

The new definition yields the same results as the old one for cases where there are no
indefinites in the restrictor of the universal, such as (41) above.

3.3 Deriving the Binder-Roof Constraint

We turn now to Question 3, namely to our account of the fact that an existential cannot
have scope over a quantifier that binds a variable in its restrictor.

Note first that any account in which the syntactic scope of an existential fully determines
its semantic scope immediately captures this constraint: if an indefinite takes semantic scope
over a quantifier, it must c-command that quantifier and therefore the quantifier cannot c-
command, much less bind, any variable in the restrictor of the indefinite.

But if existentials are interpreted in situ, as in our present account, the Binder Roof
Constraint no longer follows. Thus, both independence-friendly and choice-function based
approaches predict that indefinites with bound variables in their restrictors are able to

14As Theo M.V. Janssen points out, the definition of universal quantification in (47) also comes with a
built-in existential commitment: “for some H that . . . ” effectively requires the restrictor formula φ to be
satisfied by a non-empty set of individuals. That is, contrary to received wisdom (and FOL semantics), the
sentence Every female student passed the test is false if there are no female students. While this restrictor non-
emptiness requirement does seem to be part of the interpretation of at least some natural language quantifiers,
it is definitely not obvious that it should be part of the at-issue/asserted content of quantificational items as
opposed to being one of their presuppositions (or perhaps implicatures). We make it part of the assertion
here just for presentational simplicity. As suggested by Theo M.V. Janssen, a more adequate treatment
of quantification would involve a partial/trivalent logic and quantificational structures that do not satisfy
the restrictor non-emptiness requirement would simply be undefined. This way of dealing with the case of
empty quantificational domains has the added advantage of avoiding the problem of weak truth conditions
for conditionals such as If we invite a philosopher at our party, Alice will be happy where the existential has
wide scope over the conditional but the restrictor of the indefinite is interpreted in situ; for more discussion
of this problem, see Abusch (1994) and Reinhart (1997) among others.
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take exceptional scope over the binders of those variables, and therefore cannot block the
unattested IS or WS readings for sentence (12) above (see Chierchia 2001 and Schwarz 2001
for detailed discussions of this problem for choice-function approaches).

The C-FOL account does not suffer from this overgeneration problem. The interpreta-
tion clause for existentials in (36) above allows the available NS reading of (12) but not the
problematic IS and WS interpretations. Crucially, our interpretation rule for existentials
ensures that their restrictor formula φ is interpreted only relative to the variables that the
indefinite possibly depends on. That is, the restrictor of an existential ∃U is interpreted
relative to the set of variables U and not relative to the full set of contextually-available
variables V . This captures the Binder Roof Constraint because it ensures that the semantic
scope of the restrictor formula φ is the same as the semantic scope of the existential ∃U .

For example, making the indefinite onez of itsy authors in sentence (12) above indepen-
dent from the universal everyy paper makes the variable y contributed by the pronoun itsy
a free variable, which is ruled out by the interpretation clause for atomic formulas in (33)
above.

To see in more detail how this works out formally, consider the simpler example in (49)
below. The existential contributed by the indefinite in this example can in principle have
two superscripts, as shown in (50).

(49) Everyx boy who talked to ay friend of hisx left.

(50) ∀x[boy(x) ∧
∃∅/{x}y[friend-of(y, x)] (talk-to(x, y))]
(leave(x))

Suppose now that the superscript is ∅. Then by clause (36b) in the semantic rule for
existentials, the restrictor formula friend-of(y, x) is interpreted relative to a context of
evaluation whose set of variables is just {y}. Therefore, by the semantic rule for atomic
formulas in (33) above (in particular, clause (33b)), friend-of(y, x) is necessarily false.

This, in turn, means that the entire restrictor of the universal is false. Hence, by the
semantic rule for universals in (47)&(48) above, the whole universal quantification is false
because there is no set whatsoever of assignments H that satisfies the restrictor of the
universal, so there cannot be any maximal set of assignments H that satisfies the restrictor.

In our approach, violating the Binder Roof Constraint yields falsity; in a partial/trivalent
version, it would yield undefinedness. In contrast, the usual FOL way of combining unre-
stricted universal quantification and material implication would incorrectly yield trivially
true formulas.

3.4 Negation, Downward-entailing Contexts and Indefinites

This subsection discusses some aspects of the interaction between indefinites and nega-
tion (and other downward-entailing contexts) in the extensional C-FOL system introduced
above. An intensional version of negation is introduced in subsection 5.2 below.

3.4.1 Negation in Extensional C-FOL

The semantic clause for negation is provided below.
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(51) Negation:
[[¬φ]]G,V = T iff G 6= ∅ and [[φ]]H,V = F, for any H ⊆ G s.t. H 6= ∅

Note that closure under non-empty subsets, i.e., the requirement to evaluate the formula φ
relative to every H ⊆ G s.t. H 6= ∅, is necessary because a simpler semantic interpretation
rule like the one in (52) below makes incorrect predictions for sentences in which universals
take scope over sentential negation.15

(52) Negation without closure under subsets:
[[¬φ]]G,V = T iff G 6= ∅ and [[φ]]G,V = F

To see this, consider the sentence in (53) below under the “wide-scope universal” reading
provided in (54).

(53) Everyx boy didn’t leave.

(54) ∀x[boy(x)] (¬leave(x))

The interpretation of the formula proceeds as shown in (55) below. In particular, the nuclear
scope formula ¬leave(x) is interpreted relative to the set of assignments storing the set of
all boys under the variable x, i.e., {boy1, boy2, boy3} (we assume that there are only three
boys in the model).

If negation is interpreted as in (52) above, i.e., without requiring closure under subsets,
we derive overly weak truth-conditions: we merely require at least one of the boys to not
have left. However, if negation is interpreted as in (51) above, we derive the correct truth
conditions: we require each boy to not have left.

(55)
. . . . . . . . . . . .
. . . . . . . . . . . .

∀x[boy(x)]
======⇒

. . . x . . . . . .

. . . boy1 . . . . . .

. . . boy2 . . . . . .

. . . boy3 . . . . . .






¬leave(x) (52)
=========⇒

boy1 or boy2 or boy3
did not leave

¬leave(x) (51)
=========⇒

boy1 did not leave
boy2 did not leave
boy3 did not leave

The sentence in (53) can also have a reading under which the universal takes narrow scope
relative to negation, represented in (56) below. Any quantifier-scoping mechanism in the
literature can be used to derive these two readings; C-FOL does not require us to commit
to any specific scoping mechanism here. The meaning for negation in (51) above derives
the intuitively correct truth conditions for this reading too.

15As Theo M.V. Janssen points out, we might be able to define negation along the lines of (52) if we
have a partial/trivalent logic – see the relevant discussions in Hodges (1997) and Caicedo et al (2009).
Such a definition, together with a suitable definition of disjunction, yields a better behaved logic in which
the de Morgan laws hold. We do not follow that route only for presentational reasons: besides providing
a unified and formally explicit account for the phenomena introduced in section 1, our goal is to argue
that an independence-based semantics for quantification can be a useful addition to the toolbox of working
semanticists; we therefore try to keep the semantics of our logical system as close as possible to the familiar
two-valued semantics of classical FOL.
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(56) ¬∀x[boy(x)] (leave(x))

Similarly, the sentence in (57) below can have both a narrow-scope and a wide-scope in-
definite reading, represented in (58) and (59). Once again, our interpretation for negation
derives the correct truth conditions.

(57) John didn’t bring anx umbrella.

(58) ¬∃∅x[umbrella(x)] (bring(john, x))

(59) ∃∅x[umbrella(x)] (¬bring(john, x))

Note that the indefinite can only have one superscript, namely ∅. The superscript, however,
does not interact semantically with sentential negation since negation does not introduce
any variable. Under this extensional version of negation, the treatment of the semantic scope
of an indefinite relative to negation is identical to that found in classical FOL: syntactic
and semantic scope go hand in hand.

An obvious drawback is that the semantic scope of indefinites relative to negation has
the same freedom as its scope relative to extensional or intensional quantifiers. We address
this problem in subsection 5.2 below, where we provide our final, intensional account of
negation. Before doing that, we briefly discuss the issue of indefinites in other downward
entailing contexts.

3.4.2 Downward-entailing Contexts and Exceptional Scope

Armed with the semantic rule for negation given above, we can turn to the analysis of
the much discussed issue of exceptional scope of indefinites in other downward-entailing
contexts.

Chierchia (2001) (see also Schwarz 2001) draws attention to these contexts and to the
problem they pose for the “free choice/Skolem-function variable” approaches in Kratzer
(1998) and Matthewson (1999). To see what the problem is, consider sentence (60) be-
low. Its most salient reading, provided in (61), has the indefinite somez problem taking
exceptional scope intermediately between the two universal quantifiers.

(60) Everyx linguist that studied everyy solution that somez problem might have has
become famous.

(61) The most salient reading of (60) (in classical FOL):
∀x(ling(x) ∧
∃z(prob(z) ∧
∀y(sol(y) ∧might-have(z, y)→ study(x, y)))

→ become-famous(x))

As Chierchia (2001) observes, “free choice-function variable” approaches like the one in
Kratzer (1998) represent sentence (60) as shown in (62) below, while the “intermediate
existential closure” approaches in Reinhart (1997) and Winter (1997) represent it as shown
in (63).16 In both cases, f is a variable over choice functions, i.e., whenever it is applied to
a set of entities X, the selected individual x = f(X) is s.t. x ∈ X.

16The representation we get in “top level existential closure” approaches like Matthewson (1999) is, for
our current purposes, virtually identical to that given by “free choice-function variable” approaches.
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(62) ∀x(ling(x) ∧
∀y(sol(y) ∧might-have(f(prob), y)→ study(x, y))

→ become-famous(x))

(63) ∀x(ling(x) ∧
∃f(
∀y(sol(y) ∧might-have(f(prob), y)→ study(x, y)))

→ become-famous(x))

If we assume together with Chierchia (2001) that any choice function can in principle be
assigned to a free choice-function variable (but see Kratzer 2003 for an argument against
this assumption), then the former kind of approaches derive truth conditions that are too
weak: (62) is verified by any problem for which some linguist didn’t study every solution.
Such a problem makes the restrictor formula ling(x)∧∀y(sol(y)∧ . . . ) false and the whole
formula in (62) true. See also the argument in Schwarz (2001) that “free choice-function
variable” approaches undergenerate.

Approaches like the one exemplified in (63) that countenance intermediate existential
closure of choice-function variables enable us to give the indefinite exceptional scope se-
mantically, while syntactically leaving it in situ. But allowing such non-local existential
closure nullifies much of the initial motivation for choice-function approaches: if this kind
of existential closure is needed, allowing for non-local existential closure of individual-level
variables as in Abusch (1994), which obviates the need for choice functions, might prove to
be the more parsimonious choice.

In contrast, C-FOL derives the correct intermediate-scope reading for example (60)
without any additional stipulations. This reading is represented as shown in (64) below.

(64) ∀x[ling(x) ∧
∀y[sol(y) ∧
∃{x}z[prob(z)] (might-have(z, y))] (study(x, y))]

(become-famous(x))

The C-FOL analysis does not face the same problems as choice/Skolem-function analyses
because the determiner every is not analyzed in terms of material implication:17 we treat
every in terms of restricted quantification, i.e., as contributing a maximal set of assign-
ments satisfying the restrictor and passing it on to the nuclear scope. The nuclear scope is
interpreted relative to this maximal set of assignments, which is tantamount to saying that
the nuclear scope further elaborates on the quantificational dependencies introduced in the
restrictor.

The superscript {x} on the existential effectively ensures that the resulting reading is the
same as the classical-FOL one in (61) above (with the addition that the sets of individuals
satisfying the restrictors of the two universals need to be non-empty). There is no need
for an additional existential-closure operator that takes intermediate scope because the
indefinite itself has existential force.

17The material-implication problem is not specific to choice/Skolem-function analyses (see Abusch 1994
for an early discussion).
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The C-FOL analysis also generalizes to other kinds of downward-entailing contexts be-
sides the restrictor of every. Consider, for example, the “wide-scope negation” sentence in
(65) below, also from Chierchia (2001).

(65) Not everyx linguist studied everyy solution that somez problem might have.

The intermediate-scope reading for this sentence, which is the most salient one, is provided
in (66) below. As the second formula in (66) explicitly shows, this reading says that there
is a sloppy unsystematic linguist that failed to study some solution of every single problem.

(66) a. The most salient reading of (65) (in classical FOL):
¬∀x(ling(x)→
∃z(prob(z) ∧
∀y(sol(y) ∧might-have(z, y)→ study(x, y))))

b. This is equivalent to the simpler formula below (again, in classical FOL):
∃x(ling(x) ∧
∀z(prob(z)→
∃y(sol(y) ∧might-have(z, y) ∧ ¬study(x, y))))

The C-FOL representation of the intermediate-scope reading is given in (67) below. Just
as before, we interpret the indefinite in situ and specify its semantic scope by means of the
superscript {x}.

(67) ¬∀x[ling(x)] (∀y[sol(y) ∧ ∃{x}z[prob(z)] (might-have(z, y))]
(study(x, y)))

Informally, the C-FOL formula in (67) is true iff the formula in the scope of negation is
false. This means that, if we introduce all the linguists and store them under variable x,
there is no way to introduce a problem z for each linguist x, store all the solutions of z
under the variable y and satisfy the requirement that x studied every solution y.

The existential force is contributed by the indefinite itself, so once again we do not need
an existential-closure operator with intermediate scope (as Reinhart 1997 or Winter 1997),
a special storage mechanism (as Abusch 1994) or a special presupposition associated with
specific indefinites that would have to be accommodated neither globally nor locally, but in
an intermediate position (as Geurts 2007).

3.5 Further Restrictions on Exceptional Scope

We turn now to the discussion of the fourth exceptional scope reading that we predict for
sentence (8), namely the reading that we obtain if the indefinite is superscripted with {y}:
the indefinite covaries with the direct object universal everyy paper, but not with the subject
universal everyx student. This reading, provided in (68) below, is intuitively represented by
the matrices in (69).

(68) ∀x[stud(x)]
(∀y[paper(y) ∧
∃{y}z[prof(z)] (recom(z, y))]
(read(x, y)))
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(69) The other IS reading The other IS reading (rows reordered)

x y z

α1 β1 γ
α1 β2 γ′

α2 β1 γ
α2 β2 γ′

x y z

α1 β1 γ
α2 β1

α1 β2 γ′
α2 β2

As noted above, the existence of this reading is predicted by any system that adheres to the
usual assumptions about the way in which universal quantifiers take scope: the entire direct
object everyy paper that . . . can be raised to take scope over the subject everyx student.
In the resulting logical form, if the indefinite takes the narrowest scope it can, we generate
exactly this reading.

In this particular case then, C-FOL does not overgenerate – at least not more than any
of the usual scoping mechanisms generally assumed in the literature. But more problematic
cases can be constructed where the freedom of choosing superscripts for existentials, specific
to IFL-based systems like ours, may in fact lead to overgeneration.

To illustrate, note that sentence (70) below appears to lack the reading provided in
(71). That is, the indefinite az gift, whose syntactic scope is fixed by the double object
construction, cannot scope over everyx man and, at the same time, under mosty women.

(70) Everyx man decided to give mosty women az gift.

(71) most women are s.t.
there is a gift s.t.

every man
decided to give that gift to (each of) them

Another example supporting the same point is provided in (72). This sentence does not
seem to have the reading in (73), where the indefinite az paper scopes over the matrix
subject mostx students, but under the embedded subject everyy professor.18

(72) Mostx students noticed that everyy professor recommended az paper about scope.

(73) for every professor,
there is a paper s.t.

most students
noticed that the professor recommended the paper

The missing readings are perfectly possible in the account developed above: the existential
accesses the set of previously introduced variables and is free to choose any variables in this
set as the variables it may depend on.19

18In the paraphrase of (70), given in (71) above, and the paraphrase of (72), given in (73) below, the lower
quantifier appears to scope over a higher non-clausemate quantifier violating the restriction delimiting the
scope of bona fide quantifiers to their own clause. This is simply the consequence of our attempt to give a
linear paraphrase of the intended readings.

19The same issues arise for systems where the existential is syntactically indexed with the variables it is
independent of.
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Determining the available or missing readings of the sentences in (71) and (73) is very
difficult. Let us assume that our claim about these missing readings is actually true. These
readings then would be ruled out by a plausible constraint on the scopal properties of
indefinites which we dub the No Skipping Constraint, formulated in (74) below. This
constraint states that an indefinite cannot take scope over a quantifier Q without taking
scope over everything below that quantifier:

(74) No Skipping Constraint: if an indefinite is independent relative to a quantifier Q, it
is independent relative to all quantifiers Q′ that are in the (syntactic and semantic)
scope of Q.

Our current account does not capture this constraint. More careful empirical work needs to
be done to ascertain whether the No Skipping Constraint is in fact operative, but we will
assume in this subsection that it is.

The general principle behind it is the following: indefinites have to respect the evaluation
order of the quantifiers in the sentence. Note that what has to be respected is evaluation
order, i.e., the order of interpretation, not syntactic c-command or linear order.

Thus, even when indefinites take exceptional scope, they should still respect the back-
ground evaluation order of the sentence in which they occur. Ultimately, this principle is
just methodological parsimony at work: we relax the classical FOL interpretation procedure
with its rigid evaluation order only as much as we need to capture the exceptional scope of
indefinites, but not more than that.

We provide below a way of reformulating the semantics of C-FOL that reflects this
more constrained theory of exceptional scope. Instead of merely keeping track of the set of
variables V introduced by the previous/higher quantifiers, we keep track of the sequence in
which these variables have been introduced (see Bittner 2003 and Schlenker 2005 for two
recent related proposals and Dekker 1994 for one of the first relevant discussions in the
linguistic literature).

Thus, the interpretation function has the sequence-based form [[·]]G,〈x1,...,xn〉 instead of
the simpler set-based form [[·]]G,{x1,...,xn} – or, using our more concise set-based notation,
[[·]]G,V .

The set of variables V = {x1, . . . , xn} contains the variables introduced by the previously
evaluated quantifiers Q1x1, . . . ,Qnxn. The sequence of variables 〈x1, . . . , xn〉 contains the
variables introduced by the previously evaluated quantifiers too but in addition, the se-
quence lists them in the order in which these quantifiers have been evaluated.

Given these finer-grained contexts of evaluation, the semantic contribution of existentials
is as follows. An existential accesses the sequence of variables 〈x1, . . . , xn〉 contributed by
the previously-evaluated quantifiers and breaks this sequence into two subsequences, a left
one and a right one. That is:

• the existential chooses a position m in the sequence of variables 〈x1, . . . , xn〉, which

we can depict as
〈x1, . . . , xn〉
← m→

• then the existential breaks the sequence 〈x1, . . . , xn〉 at position m, which yields two
subsequences 〈x1, . . . , xm〉 and 〈xm+1, . . . , xn〉.
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The existential now contributes a fixed value condition relative to these subsequences. The
witness choice is independent of the values of the variables in the right subsequence, i.e.,
the witness is chosen in such a way that it is invariant relative to the values of the variables
xm+1, . . . , xn. In contrast, the left subsequence 〈x1, . . . , xm〉 stores the variables that the
indefinite possibly covaries with.

Under this view, an indefinite that is in the syntactic scope of a quantifier binding a
variable xn is in its semantic scope iff xn is in the left sequence of variables.

The definitions below formally spell out this proposal. Note in particular the definition
of existential quantification: witness choice is determined by the superscript m targeting
the sequence of variables 〈x1, . . . , xn〉 contributed by the previous/higher quantifiers:

• ifm = 0, the value of the variable contributed by the existential is fixed in the absolute
terms of (27), so the existential has widest scope

• if m 6= 0, the value is fixed relative to 〈xm+1, . . . , xn〉, i.e., it is fixed in the relativized
terms of (29)

(75) [[R(xi1 , . . . , xin′ )]]
G,〈x1,...,xn〉 = T iff

a. G 6= ∅

b. {xi1 , . . . , xin′} ⊆ {x1, . . . , xn}

c.
〈
g(xi1), . . . , g(xin′ )

〉
∈ I(R), for all g ∈ G

(76) [[φ ∧ ψ]]G,〈x1,...,xn〉 = T iff [[φ]]G,〈x1,...,xn〉 = T and [[ψ]]G,〈x1,...,xn〉 = T

(77) [[∃mx[φ] (ψ)]]G,〈x1,...,xn〉 = T iff 0 ≤ m ≤ n and [[ψ]]H,〈x1,...,xn,x〉 = T, for some H s.t.

a. H[x]G

b. [[φ]]H,〈x1,...,xm,x〉 = T (if m = 0, this is simply [[φ]]H,〈x〉 = T)

c.

{
if m = 0 : h(x) = h′(x), for all h, h′ ∈ H
if m 6= 0 : h(x) = h′(x), for all h, h′ ∈ H that are {x1, . . . , xm}-identical

(78) [[∀x[φ] (ψ)]]G,〈x1,...,xn〉 = T iff [[ψ]]H,〈x1,...,xn,x〉 = T, for some H that is a maximal set
of assignments relative to x, φ, G and 〈x1, . . . , xn〉

(79) H is a maximal set of assignments relative to a variable x, a formula φ, a set of
assignments G and a sequence of variables 〈x1, . . . , xn〉 iff

a. H[x]G and [[φ]]H,〈x1,...,xn,x〉 = T

b. there is no H ′ 6= H s.t. H ⊆ H ′ and:
H ′[x]G and [[φ]]H

′,〈x1,...,xn,x〉 = T

(80) Truth: a formula φ is true (in model M) iff [[φ]]G,〈〉 = T for any non-empty set of
assignments G, where 〈〉 is the empty sequence of variables.

Besides being more restrictive, this sequence-based semantics for C-FOL makes clear the
fact that the formalization of scopal (in)dependence is different from the formalization of
anaphoric dependencies: anaphoric dependencies are captured by variable coindexation,
but existentials are not indexed with variables.

That is, since we work with variable sequences now, witness choice can be constrained
without making reference to any particular variables in the sequence: we only need to select
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a particular position m and break the sequence of variables relative to which the existential
is interpreted into two subsequences.

All our previous results are preserved if we give C-FOL a finer-grained semantics along
these lines. Consider, for example, the sentence in (41) above, where an existential is in the
scope of a universal. We represent the two possible scopes of the indefinite by means of the
two possible superscripts 0 (wide scope) and 1 (narrow scope).

(81) ∀x[stud(x)] (∃0y[paper(y)] (read(x, y)))

(82) ∀x[stud(x)] (∃1y[paper(y)] (read(x, y)))

The novelty is that the system now captures the No Skipping Constraint because scopal
independence is established relative to the sequence of previously introduced variables. The
order of the variables in this sequence is the order in which the quantifiers were evaluated,
i.e., the order in which the quantifiers take semantic scope.

The superscript on the existential breaks this sequence of variables into two subse-
quences. We are free to choose this superscript, i.e., the position where we break the
sequence, but we cannot choose an arbitrary subsequence or an arbitrary subset of vari-
ables. Existentials still have a choice, i.e., they can still take exceptional scope, but the
choices are more constrained.

For example, our exceptional scope sentence in (5) above can only have the three intu-
itively available readings WS, IS and NS that we want to capture. The superscript on the
existential can only be 0 (WS), 1 (IS) or 2 (NS), no other choices are possible relative to
the sequence of variables 〈x, y〉.

(83) ∀x[stud(x)]
(∀y[paper(y) ∧
∃0/1/2z[prof(z)] (recom(z, y))]
(read(x, y)))

Theo M.V. Janssen points out that incorporating the No Skipping Constraint into the
system can also be motivated on logical grounds. As Hodges (1997) observes (see Hintikka
& Sandu 1997 and Janssen 2002 for more discussion), the IFL formula ∀x∃y/x(x = y) is
(generally) not true, but the formula ∀x∃z∃y/x(x = y) is true if we always choose the value
of x for z and then for y, we choose the value of z. The No Skipping Constraint rules out
cases like this in which independence conditions are undermined by ‘signalling’.

While the more restrictive, sequence-based semantics for C-FOL seems appealing, we
continue to work in this paper with the simpler, less restricted system based on sets of
variables. This is both for expository simplicity and because we leave a systematic empirical
investigation of the No Skipping Constraint for future research.

4 Dependent Indefinites in C-FOL

The C-FOL analysis of ordinary indefinites has two crucial ingredients:

(i) the superscript on the existential that stores the set of parameters relative to which
the indefinite may covary
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(ii) the fixed-value constraint that makes use of this superscript and that constrains the
values of the indefinite stored in the resulting matrix

We therefore expect the existence of special indefinites that target the same superscript and
enforce further constraints on the values stored in the matrix. We provide here an account
of dependent indefinites in which they do exactly this. While simple indefinites contribute a
fixed-value condition relativized to their superscript, dependent indefinites add a non-fixed
value condition relativized to the same superscript.

The interpretation rule for dependent indefinites is provided in (84) below. It is identical
to the interpretation rule for ordinary indefinites in (36) above except for the last clause in
(84d), which is contributed by the dependent morphology.

(84) [[dep-∃Ux[φ] (ψ)]]G,V = T iff U ⊆ V and [[ψ]]H,V∪{x} = T, for some H s.t.

a. H[x]G

b. [[φ]]H,U∪{x} = T

c.

{
if U = ∅ : h(x) = h′(x), for all h, h′ ∈ H
if U 6= ∅ : h(x) = h′(x), for all h, h′ ∈ H that are U -identical

d. h(x) 6= h′(x), for at least two h, h′ ∈ H that are not U -identical

The clause in (84d) requires covariation because it requires the set of variables U that
contains parameters of possible covariation to be non-empty: there have to be at least
two assignments h, h′ ∈ H that are not U -identical, which means that there has to be at
least one variable ν ∈ U s.t. h(ν) 6= h′(ν). Therefore, the fixed-value condition in (84c) is
effectively reduced to the second case in which U 6= ∅.

Furthermore, we also correctly predict that dependent indefinites require a bona fide
quantifier in order to be licensed. This is because only such quantifiers can introduce
multiple values for the same variable. If all the variables in V are introduced by (in)definites,
each variable stores only one value throughout G, and thus there can be no assignments
that are U -non-identical (since U ⊆ V). For an analysis of the covariation requirement
contributed by dependent indefinites in a related dynamic framework, see Wang et al (2006).

Consider, for example, the sentence in (85) below, which is the Romanian counterpart
of the English sentence in (41) above, with the addition of the dependent-indefinite marker
ĉıte. This example is represented in C-FOL as shown in (86) below.

In (86), we indicate that the empty set ∅ is not a possible superscript for the existential
by starring it: ∗∅. We indicate that the singleton set {x} is a possible superscript for the
existential by adding a checkmark: X {x}

(85) Fiecarex student a citit ĉıte uny articol.

(86) ∀x[stud(x)] (dep-∃
∗∅ /X{x}y[paper(y)] (read(x, y)))

(87)
. . . . . . . . . . . .
. . . . . . . . . . . .

∀x[stud(x)]
=======⇒

. . . x . . . . . .

. . . stud1 . . . . . .

. . . stud2 . . . . . .

. . . stud3 . . . . . .
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





dep-∃
∗∅y[paper(y)]

============⇒

. . . x y . . .

. . . stud1
paper

. . .
. . . stud2 . . .
. . . stud3 . . .

condition (84d) is not satisfied –
for all h, h′: h(y) = h′(y) = paper

dep-∃
X{x}y[paper(y)]

==============⇒

. . . x y . . .

. . . stud1 paper . . .

. . . stud2 paper′ . . .

. . . stud3 paper′′ . . .

read(x,y)
======⇒

stud1 read paper
stud2 read paper′

stud3 read paper′′

The way the evaluation proceeds is depicted in (87) above. First, the restrictor of the
universal introduces the set of all students in column x. We then evaluate the dependent
existential. If the existential is superscripted with the empty set ∅, we fail to satisfy the
variation condition (84d) contributed by the morpheme ĉıte: the variable y introduced by
the existential has a unique value – namely the entity paper, which makes any variation or
covariation impossible.

Thus, the dependent existential can only have the superscript {x}. This makes it possible
for the variable y introduced by the existential to covary with the variable x introduced by
the universal. The variation condition (84d) contributed by ĉıte requires this covariation
to actually be realized. That is, at least one of the following three inequalities has to be
true: paper 6= paper′ or paper 6= paper′′ or paper′ 6= paper′′. Finally, the nuclear scope of
the indefinite checks that each x-student read the corresponding y-paper.

The semantic contribution of dependent morphology given above is too permissive for
languages like Romanian and Hungarian, where modals cannot license dependent indefinites.
For these languages, the covariation condition in (84d) has to be refined so as to be sensitive
to the distinction between world and non-world variables.

To capture this, we need to identify the sort of the variables in the set of variables U . We
will take UD to be the set of variables over individuals in U and UW to be the set of variables
over worlds in U . In order to rule out modal licensors for dependent indefinites in Hungarian
and Romanian we assume that the condition contributed by dependent morphology is not
the general one in (84d) above, but rather the more specific one given below:

(88) h(x) 6= h′(x), for at least two h, h′ ∈ H that are UW-identical but not UD-identical

In this way, we require dependent indefinites to covary with a variable over individuals
rather than a variable over worlds. For languages such as Russian, where sortal distinctions
on licensors are not relevant, dependent morphology brings in the general condition given
in (84d). Note that this account correctly predicts that dependent indefinites are licensed
by bona fide quantifiers but not by other indefinites or by negation.

The account of dependent indefinites given here treats them as necessarily being ‘eval-
uation plurals’ in the sense of Brasoveanu (2007, 2008), where two notions of plurality are
distinguished: domain plurality and evaluation (or discourse) plurality.

Domain/ontological plurality is the usual notion of plural reference, i.e., reference to a
non-atomic individual, which in our system involves a possibly non-atomic value for the
relevant variable stored in one of the cells of the current matrix G of variable assignments.

Evaluation/discourse plurality, on the other hand, involves non-atomic reference relative
to the whole matrix G of variable assignments, i.e., the column in the matrix G that stores
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the values of the relevant variable has to store a non-singleton set of entities (each of which
can be atomic or non-atomic).20

Evaluation plurality involves precisely the type of quantificational dependency encoded
by dependent morphology. The existence of this type of special morphology provides inde-
pendent support the distinction between these two types of plurality.21

Moreover, connecting dependent indefinites with this generalized, two-faceted notion of
plurality helps us understand why the morphological process of reduplication is used in
some languages to encode domain plurality, while in others it is used to encode evaluation
plurality.

Finally, note that the treatment of dependent indefinites given above allows us to make
a welcome connection between indefinite article reduplication in Hungarian and another
reduplicative process in this language that involves verbal morphology. As discussed in
Farkas (2001), Hungarian also uses reduplication in the verbal realm to signal the repetition
of an event. This reduplicative process involves the verbal particle that accompanies many
verbs in Hungarian. It is illustrated below, where the particle is boldfaced.

(89) Az
the

éjszaka
night

folyamán
during

a
the

gyerek
child

felébredt.
PART.woke

‘During the night, the child woke up.’

(90) Az
the

éjszaka
night

folyamán
during

a
the

gyerek
child

fel-fel

PART-PART
ébredt.
woke

‘During the night, the child kept waking up.’

The crucial distinction between these two examples is that (89) is true in case there is a
single event of the child waking up during the night whereas in order for (90) to be true,
there must be several such events. Without going into the details here, we suggest that the
semantics of verbal particle reduplication requires covariation between an event variable and
a temporal variable in a manner that is analogous to the covariation requirement imposed
by the indefinite-determiner reduplication.

To conclude, we have proposed here an account of dependent indefinites in C-FOL that
isolates the contribution of dependent morphology and treats it as imposing a covariation
requirement between the variable associated with the indefinite and another variable. The
formal system developed to account for the exceptional-scope properties of ordinary indef-
inites was shown to extend in a natural way to account for the existence, distribution and
some special properties of dependent indefinites.

5 Consequences, Extensions and Open Questions

This section is devoted to further issues in the semantics of indefinites, each of which deserves
a lengthier treatment than what we are able to provide here. Our discussion is hopefully
sufficient to provide the gist of what a full account would look like.

20See Farkas (2001) for a connection between an intuitively characterized notion of evaluation plurality
and dependent indefinites.

21Brasoveanu (2007, 2008), building on van den Berg (1996) and Nouwen (2003) among others, provided
arguments for this distinction based on intra- and cross-sentential anaphora.
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5.1 Indefinites in There-existentials

The fact that indefinites have free upwards scope as part of their lexical meaning does not
mean that certain constructions cannot trap their scope. There are several such scope-
freezing environments of which we briefly discuss only one here, namely there-existentials.
Indefinites in there-existentials, exemplified in (91) below, are always interpreted as tak-
ing narrow scope relative to quantifiers in the coda (for a recent discussion, see Francez
2009:33).22

(91) There was ax linguist at everyy conference.

We can derive this generalization under our current account of indefinite scope if we as-
sume that there-existentials contribute an operator δ over pivots that distributes over the
set of assignments in the context of evaluation. As Theo M.V. Janssen points out, this
distributivity operator is closely related to the flattening operator introduced in Hodges
(1997) (flattening because it ‘flattens’ the interpretation to the first-order level).

(92) Distributivity over sets of assignments:
[[δ(φ)]]G,V = T iff G 6= ∅ and [[φ]]{g},V = T, for every g ∈ G

The fact that the indefinite in (91) can only have narrow scope is a consequence of the se-
mantics contributed by the existential construction, which forces the pivot to be interpreted
distributively, rather than collectively, relative to the set of assignments in the context of
evaluation.

While such a distributive evaluation procedure was undesirable for the restrictors of
universal quantifiers (as discussed in subsection 3.2 above), it is exactly what we need for
there-existentials.

The distributivity operator δ conflates all the scoping possibilities for the indefinite
pivot to narrow scope, irrespective of the superscript on the existential contributed by the
indefinite. This is because fixed-value conditions, whether relativized or not, are vacuously
satisfied relative to singleton sets of assignments.

This approach allows us to scopally trap an indefinite without constraining the gamut
of superscripts that it can have. This is so because, crucially, the superscript does not have
an interpretation by itself but rather, it is simply a way of expressing constraints on the
structure of matrices/sets of assignments. We can limit or nullify its contribution by means
of other, independent constraints on the structure of these matrices.

The example in (91) above is analyzed as shown in (93) below. We consider only the
superscript ∅ on the existential quantifier, which would give the indefinite wide scope in the
absence of the operator δ.

(93) ∀y[conference(y)] (δ(∃∅x[ling(x)] (x = x)))

(94)
. . . . . . . . . . . .
. . . . . . . . . . . .

∀y[conference(y)]
===========⇒

. . . y . . . . . .

. . . conf1 . . . . . .

. . . conf2 . . . . . .

. . . conf3 . . . . . .

22We are grateful to Cleo Condoravdi for bringing this issue to our attention.
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δ
=⇒







. . . y . . . . . .

. . . conf1 . . . . . .
∃
∅x[ling(x)]

=======⇒
. . . y x . . .
. . . conf1 ling1 . . .

. . . y . . . . . .

. . . conf2 . . . . . .
∃
∅x[ling(x)]

=======⇒
. . . y x . . .
. . . conf2 ling2 . . .

. . . y . . . . . .

. . . conf3 . . . . . .
∃
∅x[ling(x)]

=======⇒
. . . y x . . .
. . . conf3 ling3 . . .







This analysis enables us to combine the account of exceptional scope of indefinites proposed
here and the account of existential constructions with quantified codas in Francez (2009).

5.2 Negation in Intensional C-FOL

The extensional account of the interaction of indefinites and negation given in subsection
3.4 above left unsolved the issue of the relative scope of negation and indefinites. The
generalization to be captured is that an ordinary indefinite within the syntactic scope of
negation can freely escape its semantic scope in a manner parallel to the interaction of
indefinites and other quantifiers or modal operators.

We provide an intensional treatment of negation here which accounts for the scopal inter-
action of indefinites and negation. Note that an intensional system has to provide a suitable
intensional meaning for sentential negation quite independently of any matters related to
the exceptional scope of indefinites, so we simply take advantage of that independently-
needed intensional treatment of negation to account for the fact that indefinites can take
exceptional scope relative to negation.

Consider again the sentence in (95) below, repeated from above.

(95) John didn’t bring an umbrella.

The standard way of interpreting this sentence in intensional logic involves two steps. First,
we extract the set of possible worlds that satisfy the sentence radical John bring an umbrella
(we ignore tense throughout this paper for simplicity), i.e., we λ-abstract over the sentence
radical. Second, we check that the actual world w@ is not among the worlds in this set.

(96) w@ /∈ λw. John brought an umbrella in w

When we work with a semantics based on sets of assignments (as opposed to single assign-
ments), we have to decide how to formalize this kind of λ-abstraction.

Recall that the main motivation for sets of assignments was that they enable us to
encode both sets of entities and the quantificational dependencies between them – and
λ-abstraction is fundamentally quantificational in this sense. This is because it enables
us to extract a maximal set of entities that satisfy certain properties and enter particular
dependencies with the values of the other variables that are in the scope of the λ-abstractor.

Thus, λ-abstraction should be formalized in our system as maximization over sets of
variable assignments. This enables us to extract and store both maximal sets of entities
and the various quantificational dependencies these entities are part of.

In fact, we have already implicitly defined this very notion of λ-abstraction as part of
the semantic rule for universal quantification: the nuclear scope of a universal is interpreted
relative to the maximal set of assignments that satisfies its restrictor.
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We therefore revise our analysis of negation and analyze it as universal quantification
over possible worlds, where the sentence in the syntactic scope of negation provides the
restrictor formula. The nuclear scope formula requires any world satisfying the restrictor
to be distinct from the actual world w@.

(97) notw@ φ  ∀w[φ] (w 6= w@)

(98) w 6= w@ := ¬w = w@

a. ¬ is interpreted as in (51) above

b. w = w@ is interpreted as an ordinary atomic formula, i.e., following the format
in (33) above

Given that we now make use of a designated world variable w@, the value of which is
contextually-specified to be the actual world, we need to change our context-independent
definition of truth in (44) above to the notion of truth-in-a-context defined in (99) below.23

(99) A formula φ is true relative to a context of evaluation consisting of a set of assign-
ments G and the set of variables V iff [[φ]]G,V = T.

We take all the relevant contexts of evaluation consisting of a set of assignments G and the
set of variables V to be such that: w@ ∈ V and for all g, g′ ∈ G, g(w@) = g′(w@).

The sentence in (95) above is represented as shown in (100) below.

(100) a. ∀w[∃{w
@}x[umbrella(w@, x)] (bring(w, john, x))] (w 6= w@)

b. ∀w[∃{w}x[umbrella(w, x)] (bring(w, john, x))] (w 6= w@)

If the superscript on the existential is the singleton set
{
w@

}
containing the actual-world

variable, as in (100a), the indefinite an umbrella is interpreted de re relative to the modal
quantification contributed by negation, i.e., the indefinite has wide scope. In this case, the
restrictor formula of the indefinite has to be relativized to the actual world w@, given the
ban against free variables built into the semantic rule for atomic formulas.

If the superscript on the existential is the singleton set {w} – as in (100b), the indefinite
an umbrella is interpreted de dicto relative to the modal quantification contributed by
negation, i.e., the indefinite has narrow scope. In this case, the restrictor formula of the
indefinite has to be relativized to the variable w contributed by negation.24

Finally, there is another way to give the indefinite narrow scope relative to the modal
quantification contributed by negation, i.e., to interpret the indefinite de dicto, given in
(101) below. In both formulas in (101), the superscript on the existential contains both the
actual-world variable w@ and the variable w contributed by negation. But the restrictor
formula of the existential can be relativized either to the variable w contributed by nega-
tion, i.e., umbrella(w, x), as shown in (101a), or to the actual-world variable w@, i.e.,
umbrella(w@, x), as shown in (101b).

(101) a. ∀w[∃{w
@,w}x[umbrella(w, x)] (bring(w, john, x))] (w 6= w@)

23This definition of truth is similar to the IFL one in Caicedo et al (2009).
24As Theo M.V. Janssen points out, Hintikka (1996) was the first to suggest that the de re-de dicto

ambiguity could be analyzed in terms of IFL-style (in)dependence.
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b. ∀w[∃{w
@,w}x[umbrella(w@, x)] (bring(w, john, x))] (w 6= w@)

The formula in (101a) is simply an alternative way to represent the de dicto reading for
the indefinite an umbrella. The formula in (101b) interprets the existential in a de dicto
way, i.e., the existential has narrow scope relative to negation, but the restrictor formula
is relativized to the actual world w@, so it has ‘scope’ outside the modal quantification
contributed by negation.

Thus, the semantic scope of the existential relative to a possible-world variable and the
‘scope’ of the restrictor of the existential relative to that same world variable are distinct:
the restrictor formula can always be interpreted relative to a ‘higher’ world variable and,
therefore, appear to take ‘exceptional scope’.

Importantly, this is not an actual case of exceptional scope. It is simply non-local
binding of the world variable on the predicate umbrella, much like the pronoun hisx is
non-locally bound by the subject quantifier everyx boy in the example below.

(102) Everyx boy gave everyy girl thez gift that hisx mother suggested.

The intensional treatment of negation, unlike the extensional version, enables us to account
for the fact that indefinites can have exceptional scope relative to negation, just as they can
take exceptional scope relative to quantifiers. Consider the example in (103) below (we are
indebted to Philippe Schlenker for this example and relevant discussion).

(103) Joe will not hire any applicant who worked with a (certain) linguist.

The most salient reading of (103) gives the indefinite a (certain) linguist exceptional scope
relative to the sentential negation will not : there is a certain linguist y s.t. Joe will not
hire any applicant x who worked with y. This reading is obtained by making a (certain)
linguist independent from negation, as shown below.

(104) ∀w[∃{w}x[app(w, x) ∧ ∃{w
@}y[ling(w@, y)] (work-with(w, x, y))]

(hire(w, joe, x))]
(w 6= w@)

Summarizing, the treatment of negation given here accounts for the scopal interactions
between indefinites and negation (in general, between indefinites and downward-entailing
contexts). We also correctly predict that dependent indefinites in Romanian and Hungarian
will not be licensed by negation given that negation contributes a modal variable that is
not an appropriate variable for the dependent indefinite to covary with.

As Philippe Schlenker points out, however, we also predict that negation will be an
appropriate licensor for dependent indefinites in Russian, since dependent indefinites in
this language may covary with modal variables bound by modal operators. This prediction
appears to be incorrect, as shown by the example in (105) below from Pereltsvaig (2008).

(105) *Vanya ne pročital kakoe-nibud’ stixotvorenie.
Vanya didn’t read a poem.

More work needs to be done to give the right intensional treatment of negation and capture
all the details of dependent indefinites in Russian, but for the time being we leave this
important problem open.
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5.3 The Scope of Cardinal Indefinites

Cardinal (plural) indefinites have two interpretations, a collective one and a distributive
one. To analyze such indefinites, we build on Link (1983) and Schwarzschild (1996) among
others and assume that the domain of individuals D is the powerset of a designated set of
entities IN minus the empty set, i.e., D = ℘+(IN) = ℘(IN) \ ∅.

The cardinality of an individual x, i.e., the number of atoms it consists of, is symbolized
as |x|. Atomic individuals are the singleton sets in ℘+(IN), identified by a predicate atom,
defined below. Individuals that contain two atoms are the doubleton sets in ℘+(IN), iden-
tified by a predicate 2.atoms etc. The ‘part of’ relation ≤ over individuals is set inclusion
over ℘+(IN).

(106) [[atom(x)]]G,V = T iff G 6= ∅, x ∈ V and |g(x)| = 1, for all g ∈ G

(107) [[2.atoms(x)]]G,V = T iff G 6= ∅, x ∈ V and |g(x)| = 2, for all g ∈ G

(108) [[x ≤ y]]G,V = T iff G 6= ∅, {x, y} ⊆ V and g(x) ⊆ g(y), for all g ∈ G

Collective cardinal indefinites are interpreted as shown in (109) below for the cardinal
numeral three. They are interpreted exactly like we interpreted singular indefinites up until
now, with the addition of a cardinality requirement 3.atoms(x) in their restrictor.

(109) [[∃Ux[3.atoms(x) ∧ φ] (ψ)]]G,V = T iff U ⊆ V and [[ψ]]H,V∪{x} = T, for some H s.t.

a. H[x]G

b. [[3.atoms(x) ∧ φ]]H,U∪{x} = T

c.

{
if U = ∅ : h(x) = h′(x), for all h, h′ ∈ H
if U 6= ∅ : h(x) = h′(x), for all h, h′ ∈ H that are U -identical

Thus, if a cardinal indefinite is interpreted collectively, the cardinality requirement specifies
the number of atoms that the chosen witness consists of. The number of atoms is the only
difference between collectively-interpreted cardinal indefinites and ordinary singular indefi-
nites, the semantic clause for which is repeated in (110) below for convenience. This clause
is identical to the one provided in (36) above except for the addition of the atom(x) con-
junct in the restrictor. Hence, all the scopal properties of ordinary indefinites are predicted
to be shared by collective cardinal indefinites.

(110) [[∃Ux[atom(x) ∧ φ] (ψ)]]G,V = T iff U ⊆ V and [[ψ]]H,V∪{x} = T, for some H s.t.

a. H[x]G

b. [[atom(x) ∧ φ]]H,U∪{x} = T

c.

{
if U = ∅ : h(x) = h′(x), for all h, h′ ∈ H
if U 6= ∅ : h(x) = h′(x), for all h, h′ ∈ H that are U -identical

We take the distributive interpretations of cardinal indefinites to be due to the presence of
a covert distributive operator δyx adjoined at the VP-level. Such operators are needed to
derive the intuitively correct truth conditions of VP-conjunction sentences like (111) below
(see Winter 2000 and references therein), where the first VP-conjunct contains a collective
predicate and the second one contains an indefinite that covaries with the atomic individuals
that are part of the subject.
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(111) Threex girls met and δyx(had anz espresso).

Such distributive operators are simply universal quantifiers over atoms, as shown in (112)
below. The universal quantification over atoms contributed by distributive operators is
interpreted in the usual C-FOL way. For convenience, the semantic rule is repeated in
(114)&(115) below.

(112) δyx(φ) := ∀y[atom(y) ∧ y ≤ x] (φyx)

(113) φyx is the formula obtained by substituting every occurrence of the variable x in φ
with the variable y, where y is a fresh variable.

(114) [[∀x[atom(x) ∧ φ] (ψ)]]G,V = T iff [[ψ]]H,V∪{x} = T, for some H that is a maximal set
of assignments relative to x, atom(x) ∧ φ, G and V .

(115) H is a maximal set of assignments relative to a variable x, a formula atom(x) ∧ φ,
a set of assignments G and a set of variables V iff

a. H[x]G and [[atom(x) ∧ φ]]H,V∪{x} = T

b. there is no H ′ 6= H s.t. H ⊆ H ′ and:
H ′[x]G and [[atom(x) ∧ φ]]H

′,V∪{x} = T

By definition, covert distributors δyx(φ) have the same scopal properties as universals, so we
correctly predict that they cannot exhibit exceptional scope. This is shown by the example
in (116) below (see Winter 1997:420), which can have a wide-scope reading for the cardinal
indefinite relative to the conditional – but even then, the distributor has to scope within
the conditional. This reading is paraphrased in (117) below.

(116) If three workers on our staff have a baby soon, we will have to face some hard
organizational problems.

(117) There are three workers such that, if each of them has a baby soon, we will have to
face some hard organizational problems.

In C-FOL, we capture the fact that collective cardinal indefinites can take exceptional
scope out of conditionals in much the same way in which we capture exceptional scope out
of the restrictors of universal quantifiers. For simplicity, we will formalize the simpler Ruys
conditional in (118) below (see Ruys 1992) rather than the example in (116) above.

(118) If three relatives of mine die, I will inherit a house.

We are interested in the wide-scope collective reading provided in (119) below. Importantly,
the Ruys conditional in (118) above does not have a wide-scope distributive reading to the
effect that there are three relative of mine s.t., for each of them, if s/he dies, I will inherit
a house (see Winter 1997:416 et seqq and references therein for more discussion) – a fact
that we correcty predict.

(119) There are three relatives of mine s.t., if they (all) die, I will inherit a house.

We analyze indicative conditionals as universal quantifiers over the worlds in the current
context setW@ (see Stalnaker 1978), i.e., over the set of live candidates for the actual world.

42



As it is usually done, we expand our models with a set of worlds W and we let vari-
ables w,w′, w@, . . . over possible worlds take entities in W as values. We use variables
W,W ′,W@, . . . over sets of worlds to restrict modal quantification.

The definition of universal modal quantification is provided in (120)&(121) below. Given
that we make use of contextually-provided restrictors, we need the notion of truth-in-context
provided in (99) above.

(120) [[∀w ∈W [φ] (ψ)]]G,V = T iff [[ψ]]H,V∪{w} = T, for some H that is a maximal set of
assignments relative to w ∈W , φ, G and V .

(121) H is a maximal set of assignments relative to a variable w ∈ W , a formula φ, a set
of assignments G and a set of variables V iff

a. H[w]G and for all h ∈ H, h(w) ∈ h(W ) and [[φ]]H,V∪{w} = T

b. there is no H ′ 6= H s.t. H ⊆ H ′ and:
H ′[w]G and for all h ∈ H ′, h(w) ∈ h(W ) and [[φ]]H

′,V∪{w} = T

The wide-scope reading of the Ruys conditional is represented as shown in (122) below. The
variable w@ is the designated variable for the actual world, the variable x@ is the designated
variable for the speaker and W@ is the designated variable for the context set.

(122) ∀w ∈W@[∃{w
@,x@}x[3.atoms(x) ∧ relatives-of(w@, x, x@)]

(die(w, x))]
(∃{w}y[atom(y) ∧ house(w, y)] (inherit(w, x@, y)))

The representation of the Ruys conditional in (122) is interpreted as shown in (123) below.

(123)
. . . x@ w@ W@ . . .
. . . me @ conx-set . . .

∀w∈W@[∃{w
@

,x
@}

x[3.atoms(x)∧relatives-of(w@,x,x@)] (die(w,x))]
============================================⇒

. . . x@ w@ W@ w x . . .

. . .

me @ conx-set

u1

3-relatives

. . .
. . . u2 . . .
. . . u3 . . .
. . . . . . . . .

∃
{w}y[atom(y)∧house(w,y)] (inherit(w,x@,y))

=============================⇒

. . . x@ w@ W@ w x y . . .

. . .

me @ conx-set

u1

3-relatives

house1 . . .
. . . u2 house2 . . .
. . . u3 house3 . . .
. . . . . . . . . . . .

First, we assume that the context of evaluation has already brought to salience the des-
ignated variables for the speaker x@, actual world w@, and context set W@, i.e., V =
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{
x@, w@,W@

}
and the initial set of assignments G provides suitable values for these desig-

nated variables, i.e., the actual speaker me, the actual world @ and the current context set
conx-set.

Then, we interpret the antecedent of the conditional relative to this context of evaluation.
Since the cardinal indefinite three relatives of mine takes exceptional scope outside the
antecedent of the conditional, as indicated by its superscript

{
w@, x@

}
, we store only one

individual relative to x consisting of three atoms that are relatives of the speaker x@. Also,
we then introduce all the worlds w ∈ W@, namely {u1, u2, u3, . . .}, in which this particular
group of relatives dies.

Finally, we interpret the consequent of the conditional: for each world w, there has to
be a house y (possibly different from world to world) that the speaker x@ inherits in w.

Importantly, we do not predict that the conditional is vacuously satisfied if the speaker
has no relatives. This is because C-FOL does not interpret conditionals (and universal
quantifiers in general) in terms of material implication.

The predicate die in the nuclear scope of the cardinal indefinite three relatives of mine
is lexically distributive, so there is no need for the (optional) insertion of a distributive
operator of the form δzx to derive the intuitively correct interpretation. However, if the
nuclear scope contained an indefinite like in (111) or (116) above, inserting a distributive
operator as shown in (124) below would be necessary to derive the correct truth conditions.

(124) ∀w ∈W@[∃{w
@,x@}x[3.atoms(x) ∧ relatives-of(w@, x, x@)]

(δzx(die(w, z)))]
(∃{w}y[atom(y) ∧ house(w, y)] (inherit(w, x@, y)))

5.4 Anaphora to Dependencies and Apparent Cases of Exceptional Scope

Schlenker (2006:299 et seq.) introduces the example in (125a) below as a counterargument
to the Binder Roof constraint. The broader argument is that the full power of Skolem
functions is useful and the limited form of quantification over Skolem functions implicit in
IFL and, therefore, C-FOL is insufficient for natural language semantics.

(125) [Context: Every student in my syntax class has one weak point – John doesn’t
understand Case Theory, Mary has problems with Binding Theory etc. Before the
final, I say:]

a. If each student makes progress in some/a<n> (certain) area, nobody will flunk
the exam.

b. Intended Reading: There is a certain distribution of fields per student s.t. if
each student makes progress in the field assigned to him/her (say, the one that
he is weakest in), nobody will flunk the exam.

c. #If each student makes progress in at least one area, nobody will flunk the
exam.

As Schlenker (2006) notes, in a situation in which every student made progress in some area
he was already good in but I still flunked some of the students, (125a) can still be uttered
truthfully, but (125c) cannot.
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That is, (125a) has the reading given in (125b), while (125c) doesn’t. On the reading we
are interested in, the choice of the area is crucially dependent on the student. This reading
is preserved if a certain area is replaced with a certain area he is weak in (as Philippe
Schlenker pointed out to us).

We take the strong need for contextual support in this kind of examples to be the
crux of the matter. That is, we think that examples like (125) above are not instances of
exceptional scope, but simply instantiate anaphora to previously established quantificational
dependencies of the kind needed for the analysis of quantificational and modal subordination
(see Brasoveanu 2007, 2010 for a recent discussion and an analysis in a closely related
dynamic framework).

We only outline here how the C-FOL analysis of anaphora to dependencies would be ex-
ecuted. The main addition is the introduction of domain-restricting variables for universals
and existentials, which is a rather uncontroversial enrichment of our semantic representa-
tions (see von Fintel 1994 among many others).

The new definitions are given below. They are minimally different from the previous
ones: we just require the quantified-over variables to take values from a restricted domain.
Domain-restricting variables r, r′, . . . store possibly non-atomic individuals relative to each
assignment g ∈ G and the values of a newly-introduced variable x are required to be parts
of these individuals: x ≤ r. Adding this domain-restricting requirement is the only thing
we need to account for examples like (125a) above.

(126) [[∃Ux ≤ r[φ] (ψ)]]G,V = T iff U ⊆ V and [[ψ]]H,V∪{x} = T, for some H s.t.

a. H[x]G and h(x) ≤ h(r), for all h ∈ H

b. [[φ]]H,U∪{x} = T

c.

{
if U = ∅ : h(x) = h′(x), for all h, h′ ∈ H
if U 6= ∅ : h(x) = h′(x), for all h, h′ ∈ H that are U -identical

(127) [[∀x ≤ r[φ] (ψ)]]G,V = T iff [[ψ]]H,V∪{x} = T, for some H that is a maximal set of
assignments relative to x ≤ r, φ, G and V .

(128) H is a maximal set of assignments relative to a variable x ≤ r, a formula φ, a set of
assignments G and a set of variables V iff

a. H[x]G and for all h ∈ H, h(x) ≤ h(r) and [[φ]]H,V∪{x} = T

b. there is no H ′ 6= H s.t. H ⊆ H ′ and:
H ′[x]G and for all h ∈ H ′, h(x) ≤ h(r) and [[φ]]H

′,V∪{x} = T

Importantly, domain restriction happens in an assignment-wise way: for every assignment
h ∈ H, we require h(x) ≤ h(r). Therefore, if we have two domain restrictors r and r′ that
are correlated in a particular way – e.g., the binary relation {〈g(r), g(r′)〉 : g ∈ G} encodes
a contextually-specified dependency between students and areas – the restricted variables
x ≤ r and y ≤ r′ will preserve this correlation/dependency and further elaborate on it.

The resulting representation of sentence (125a) is provided in (130) below. The inter-
pretation procedure is depicted in (131), where we omit the world variable w for simplicity.

(129) Ifw eachx≤r student makes progress in any≤r′ area, nobodyz≤x will flunk.

(130) ∀w ∈W@[∀x ≤ r[stud(w, x)] (∃{w,x}y ≤ r′[area(w, y)] (prog(w, x, y)))]
(∀z ≤ x[person(w, z)] (¬(flunk(w, z))))
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(131)

. . . W@ r r′ . . .

. . . u1 stud1 area1 . . .

. . . u2 stud2 area2 . . .

. . . . . . . . . . . . . . .

∀w∈W@[∀x≤r[stud(w,x)] (∃{w,x}y≤r′[area(w,y)] (prog(w,x,y)))]
=========================================⇒

. . . W@ r r′ x ≤ r y ≤ r′ . . .

. . . u1 stud1 area1 stud1 area1 . . .

. . . u2 stud2 area2 stud2 area2 . . .

. . . . . . . . . . . . . . . . . . . . .

∀z≤x[person(w,z)] (¬(flunk(w,z)))
======================⇒

. . . W@ r r′ x ≤ r y ≤ r′ z ≤ x . . .

. . . u1 stud1 area1 stud1 area1 stud1 . . .

. . . u2 stud2 area2 stud2 area2 stud2 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Thus, our account treats the dependency between students and areas not as a scopal matter,
but rather as a matter of contextual domain restriction in a framework that allows anaphora
to contextually-established dependencies between variables.

5.5 Disjunction as Existential

Following the IFL analysis of disjunction and the arguments in Schlenker (2006:303 et seqq),
we take disjunction to exhibit scopal properties that are similar to indefinites.

For example, the sentence in (132) below is identical to our initial sentence in (5) above,
except that the indefinite az professor has been substituted with the disjunction Mary
orz Jane. This sentence also has three readings – widest scope, intermediate scope and
narrowest scope, paraphrased below.

(132) Everyx student read everyy paper that Mary orz Jane recommended.

(133) a. Narrowest Scope (NS): for every student x, for every paper y s.t. Mary or Jane
recommended y, x read y.

b. Intermediate Scope (IS): for every student x, there is a person that is either
Mary or Jane s.t., for every paper y that she recommended, x read y.

c. Widest Scope (WS): one of Mary or Jane is s.t., for every student x, for every
paper y that she recommended, x read y.

We capture the parallel behavior of disjunctions and indefinites directly by taking dis-
junction to introduce an existential quantifier, just like indefinites do. The existential can
quantify over individuals or over possible worlds.

Let us consider disjunction over individuals first. The translation schema for such dis-
junctions is provided in (134) below. It relies on the sentential connective ∨, whose semantic
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clause is given in (135).25 This semantic clause is just the static counterpart of the dynamic
definition of disjunction independently proposed in Brasoveanu (2008:205, fn. 94) to account
for cases of donkey anaphora to disjunctive antecedents.

(134) name1 or
x
name2 φ  ∃Ux[x = name1 ∨ x = name2] (φ)

(135) C-FOL disjunction:
[[φ ∨ ψ]]G,V = T iff at least one of the three cases below obtains

a. [[φ]]G,V = T

b. [[ψ]]G,V = T

c. there exist G′ and G′′ s.t. G = G′ ∪G′′ and [[φ]]G
′,V = T and [[ψ]]G

′′,V = T

Thus, in the NP disjunction translation schema in (134) above, we take the existential over
individuals to be contributed by the NP part, not by the disjunction itself.

Supporting evidence for the hypothesis that the nature of the disjuncts (in this case, the
fact that they are both singular, referential NPs) contributes semantic information available
at the level of the whole disjunction is provided by the fact that such disjuncts can bind
singular pronouns. For example, if we find a purse after a party and Mary and Jane were
the only guests with purses, we can say: Mary or Jane forgot her purse.

According to the translation schema in (134), the sentence in (136) below is represented
as shown in (137).

(136) Mary orx Jane smiled.

(137) ∃∅x[x = mary ∨ x = jane] (smile(x))

Disjunction can also introduce an existential quantifier over possible worlds, as shown in
(138) below. For example, the disjunctive sentence in (139) is translated as shown in (140).

(138) φ orw ψ  ∃Uw[φ ∨ ψ] (w = w@)

(139) It rained or it snowed.

(140) ∃∅w[rain(w) ∨ snow(w)] (w = w@)

The two sentential disjuncts restrict the existential over possible worlds contributed by or
and the nuclear scope requires the actual world w@ to satisfy at least one of these disjuncts.

The sentence in (132) above exemplifying exceptional scope for disjunction is represented
as shown in (141) below. The three readings of the sentence correspond to the three different
superscripts ∅, {x} and {x, y} on the existential, just as they did for the parallel example
with an indefinite instead of a disjunction.

(141) ∀x[stud(x)]
(∀y[paper(y) ∧
∃∅/{x}/{x,y}z[z = mary ∨ z = jane] (recom(z, y))]
(read(x, y)))

25We are indebted to Theo M.V. Janssen for pointing out an error in a previous version of this clause.
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Thus, our account captures the parallel behavior of existentials and disjunctions by treating
disjunction as an indefinite over individuals or over worlds. The scopal similarity between
the two follows by definition.

As Theo M.V. Janssen points out, disjunctions are analyzed in IFL in parallel to ex-
istentials (see Hodges 1997, Hintikka & Sandu 1997, Caicedo et al 2009 – their clause for
disjunction is basically the final case in (135c) above). However, in contrast to the analysis
sketched above, no actual existential (over individuals or possible worlds) is stipulated as
part of the translation of natural language disjunctions into IFL. The exceptional scope of
disjunctions is obtained in the same way as it is for existentials – we ‘slash’ disjunctions
with the variables we want them to be semantically independent of.

We leave it as an open problem whether a C-FOL account of disjunction that is parallel
to the simpler IFL one is possible and if it is, whether such an account is empirically more
adequate than the one we sketched above.

6 Conclusion

This paper has proposed a novel solution to the problem of scope posed by natural language
indefinites that captures both the fact that, unlike other quantifiers, indefinites have free
upwards scope and the fact that the scopal freedom of indefinites is nonetheless syntactically
constrained.

As in independence-friendly logic, the special scopal properties of indefinites are at-
tributed to the fact that their semantics can be stated in terms of choosing a suitable
witness at a certain point during semantic evaluation. This is in contrast to bona fide quan-
tifiers, the semantics of which cannot be given in terms of single witnesses because their
semantics necessarily involves relations between sets of entities.

The syntactic constraints on the interpretation of indefinites follow from the fact that
witness choice arises as a natural consequence of the process of (syntax-based) compositional
interpretation of sentences and it is not encapsulated into the lexical meaning of indefinites,
as choice/Skolem-function approaches would have it.

We therefore expect an unmarked, ordinary indefinite to have free upwards scope, exactly
as we find in English and other languages that have an unmarked indefinite article.

One way an indefinite can be special is by having constraints on its scopal independence,
i.e., by requiring it to covary with some other quantifier. The cross-linguistic typology of
indefinites appears to support this picture. In particular, dependent indefinites use addi-
tional morphology on top of the ordinary indefinite morphology to mark scopal dependence
– e.g., in Hungarian, the indefinite article is reduplicated, while in Romanian the particle
ĉıte is added immediately before the indefinite article. We have provided an approach in
which this special morphology makes a specific semantic contribution which predicts the
scopal restrictions that these special indefinites are subject to.

The question that arises now is how the tools introduced here can be used to capture the
rich variety of cross-linguistically attested special indefinites. In particular, an important
issue that remains open is the interaction of the topical status of indefinites with exceptional
scope discussed recently in Endriss (2009). Another issue that remains open is how the
perspective adopted here can be broadened to deal with various other types of specificity
and special indefinites discussed in the literature (see, for instance Bende-Farkas & Kamp
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2006 and references therein). Finally, as mentioned above, more work needs to be done to
account for the interaction of dependent indefinites and negation as well as for the various
scope-freezing constructions.
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