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Motivating Dynamic Semantics

A sentence is not an island.

Sentences are embedded in larger 

discourses. 

They are anaphorically related to 

other sentences in the same discourse.
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Motivating Dynamic Semantics

For example:

(1) John owns a donkey. He feeds it at night.

Notice the anaphoric connection between the 

indefinite NP ‘a donkey’ and the subsequent 

pronoun ‘it’.
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Motivating Dynamic Semantics

(2) is a good (enough) paraphrase of (1):

(2) John owns a donkey. John feeds it at night.
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Motivating Dynamic Semantics

But neither (3) nor (4) is as good:

(3) John owns a donkey. John feeds a donkey

at night.

(4) John owns Benjamin (the donkey). John

feeds Benjamin at night.
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Motivating Dynamic Semantics

Can’t seem to eliminate the pronoun ‘it’

(bound by the indefinite ‘a donkey’) from 

(1).
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Motivating Dynamic Semantics

This becomes a problem once we decide to 

regiment (1) in the notation of First-Order Logic 

(FOL):

(5) ∃x(donkey(x) ∧ owns(John, x))      feeds(John, x)

�

(6) ∃x(donkey(x) ∧ owns(John, x)) ∧ feeds(John, x)

�
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Motivating Dynamic Semantics

What we want:

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))
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Motivating Dynamic Semantics

The problem is that, to get this meaning, we 

must first compose a part of the first sentence 

with the second sentence, and then combine 

what we have with the remaining part of the 

first sentence:

(7): [a donkey] [John owns][He feeds it]
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Motivating Dynamic Semantics

If we restrict ourselves to completing 

sentences before we compose them with 

other sentences, then the best we can do 

is (6).

(6): [John owns][a donkey] [He feeds it]
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Motivating Dynamic Semantics

Who needs it? Discourse semantics is too 

hard. I’m going to stick with the 

semantics of sentences.
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Motivating Dynamic Semantics

But the donkey is known for its 

stubbornness…

(8) If John owns a donkey, he feeds it.

(9) Every farmer who owns a donkey   

feeds it.
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Motivating Dynamic Semantics

Incorrect first-orderizations:

(10) ∃x(donkey(x) ∧ owns(John, x)) →

feeds(John, x)

(11) ∀y(∃x(farmer(y) ∧ donkey(x) ∧ owns(y, x)))

→ feeds(John, x))

In both, the final ‘x’ is not in the scope of ‘∃x’.
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Motivating Dynamic Semantics

Correct first-orderizations:

(12) ∀x(donkey(x) ∧ owns(John, x) →

feeds(John, x))

(13) ∀y∀x(farmer(y) ∧ donkey(x) ∧ owns(y, x) 

→ feeds(John, x))
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Motivating Dynamic Semantics

Moral: the limitations of FOL (on the 

standard semantics) can be seen even 

within sentences.

Nor are ‘donkey’ sentences rare animals.

They are as common as the beast of 

burden itself.
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Motivating Dynamic Semantics

A solution:

‘Dynamic semantics’

[due (independently) to Kamp (1981) and

Heim (1982)]

What is dynamic semantics?
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Dynamic Semantics

Consider the phenomenon of context-

sensitivity.

The same sentence can be true or false, 

depending on the context.
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Dynamic Semantics

‘I am standing.’

True as uttered by Sam.

False as uttered by Herman.
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Dynamic Semantics

The meaning of a sentence can be 

thought of as a function (cf. Kaplan 

(1989)),

that takes in a context…

…and gives back a truth-value (T or F).
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Dynamic Semantics

A parallel phenomenon.

Right now, the sentence below is false:

‘Herman said that snow is black.’
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Dynamic Semantics

But now Herman says, ‘Snow is black.’

In the context arising immediately after

his utterance, the earlier sentence is true:

‘Herman said that snow is black.’
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Dynamic Semantics

Call the context immediately before 

Herman’s utterance of ‘Snow is black’, c1.

And call the context immediately after 

Herman’s utterance, c2.
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Dynamic Semantics

Clearly, the sentence ‘Herman said snow 

is black’ is context-sensitive, since it is 

true in c2 but not in c1.
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Dynamic Semantics

Equally clearly, Herman’s utterance of 

‘Snow is black’ changed the context from 

c1 to c2.

(c1 must differ from c2 since it delivers a 

different truth-value to the sentence 

above).
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Dynamic Semantics

Dynamics takes the semantics 

of context-sensitivity one step further, to 

a semantics of context change.
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Dynamic Semantics

According to dynamic semantics, the 

meaning of a sentence is an ‘update’,

that takes in a context,

and gives back a …

CONTEXT.
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Dynamic Semantics

But hang on, what does this new view of 

meaning have to do with the problems with 

which we began?

(1) John owns a donkey. He feeds it at night.

(8) If John owns a donkey, he feeds it.

(9) Every farmer who owns a donkey feeds it.
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Dynamic Semantics

Take the first case:

(1) John owns a donkey. He feeds it at night.

We want it to translate into the FOL:

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))
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Dynamic Semantics

But the best we can do (compositionally) 

is:

(6) ∃x(donkey(x) ∧ owns(John, x)) ∧ feeds(John, x)
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Dynamic Semantics

What if I told you that, on a dynamic 

semantics for FOL, the following 

equivalence holds:

∃x(φ) ∧ ψ ⇔DS ∃x(φ ∧ ψ)
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Dynamic Semantics

Since (6) and (7) fit the schema on the left and 

right hand sides, respectively, they are 

equivalent on dynamic semantics:

∃x(donkey(x) ∧ owns(John, x)) ∧ feeds(John, x)

⇔DS

∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))
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Dynamic Semantics

The equivalence means that indefinites can bind 

indefinitely rightwards across ∧’s:

∃x(φ) ∧ ψ ∧ ξ ∧ χ

⇔DS ∃x(φ ∧ ψ) ∧ ξ ∧ χ

⇔DS ∃x(φ ∧ ψ ∧ ξ) ∧ χ

⇔DS ∃x(φ ∧ ψ ∧ ξ ∧ χ)
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Dynamic Semantics

And what about the other cases?

(8) If John owns a donkey, he feeds it.

(9) Every farmer who owns a donkey   

feeds it.
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Dynamic Semantics

For these the equivalence below will 

suffice:

∃x(φ) → ψ ⇔DS ∀x(φ → ψ)

(Only sans the usual restriction to cases 

where ‘ψ’ doesn’t contain ‘x’ free.)



35

Dynamic Semantics

The 2nd equivalence allows us to turn 

existentials in the antecedent of a conditional 

into universals taking scope over the whole 

conditional (but no further).

∃x(donkey(x) ∧ owns(John, x)) → feeds(John, x)

⇔DS

∀x(donkey(x) ∧ owns(John, x) → feeds(John, x))
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Dynamic Semantics

∀y(∃x(farmer(y) ∧ donkey(x) ∧ owns(y, x)) 

→ feeds(y, x))

⇔DS

∀y∀x(farmer(y) ∧ donkey(x) ∧ owns(y, x) 

→ feeds(y, x))
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Dynamic Semantics

We will now proceed to show you how to 

construct a dynamic semantics for FOL 

on which these hold:

∃x(φ) ∧ ψ ⇔DS ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔DS ∀x(φ → ψ)
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Dynamic Predicate Logic (DPL)

The particular version of dynamic 
semantics we will look at is Dynamic 
Predicate Logic (DPL – Groenendijk & 
Stokhof 1991).
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DPL: The Plan.

� semantic values in DPL vs. FOL

- definition of DPL semantics

- relations between DPL connectives

- formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's) 
in DPL
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Dynamic Predicate Logic (DPL)

DPL semantics is minimally different from 
the standard Tarskian semantics for 
first-order logic.

� instead of interpreting a formula as a set of 
variable assignments (i.e. the set of variable 
assignments that satisfy the formula in the 
given model), we interpret it as a binary 
relation between assignments.
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DPL: Semantics.

Why binary relations between assignments?

For our narrow purposes (i.e. cross-sentential 
and ‘donkey’ anaphora), a variable 
assignment is an effective model of a context.

All we ask from a context here is that it keep 
track of anaphoric relations – hence 
assignments.
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DPL: Semantics.

Why a binary relation between assignments? 

Dynamic semantics associates a sentence with 
the manner in which it updates any context 
(i.e. its context change potential).

The update is modeled as a relation (not a 
function) because it is non-deterministic:

updating from a context c1 has different 
possible outcomes.
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DPL: Semantics.

c2 [Benjamin]

C1 c3 [Lucius]

c4 [Patience]

‘John owns a donkey’,

where John actually owns three donkeys:

Benjamin, Lucius and Patience.
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DPL: The Plan.

√ semantic values in DPL vs. FOL

� definition of DPL semantics

- relations between DPL connectives

- formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's) in DPL
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DPL: Semantics.

The definition of the DPL interpretation 
function ║φ║

DPL
M relative to a standard 

first-order model M=<DM, IM>, where:

D is the domain of entities

I is the interpretation function which 
assigns to each n-place relation R a subset 
of Dn:



46

DPL: Semantics.

1. For any pair of M-variable assignments <g, h>:

a. Atomic formulas ('lexical' relations and 

identity):

║R(x1, …, xn)║<g, h> = T 

iff g=h and <g(x1), …, g(xn)>∈I(R)

║x1=x2║<g, h> = T iff g=h and g(x1)=g(x2)
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DPL: Semantics.

b. Connectives:

Dynamic Conjunction

║φ ∧ ψ║<g, h> = T iff  

there is a k s.t.║φ║<g, k> = T and ║ψ║<k, h> = T
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DPL: Semantics.

Dynamic Negation

║~φ║<g, h> = T iff 

g=h and there is no k s.t. ║φ║<g, k> = T

i.e. ║~φ║<g, h> = T iff g=h and g∉Dom(║φ║), 

where:

Dom(║φ║) := {g: there is an h s.t. ║φ║<g, h> = T}
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DPL: Semantics.

c. Existential Quantifier:

║∃x(φ)║<g, h> = T iff

there is a k s.t. g[x]k and ║φ║<k, h> = T

where g[x]k means that k differs from g at most with 
respect to the value it assigns to x, 

i.e. for any variable υ, if υ≠x then g(υ)=k(υ).
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DPL: Semantics.

d. Truth:

A formula φ is true with respect to an input 
assignment g iff 

there is an output assignment h s.t. ║φ║<g, h> = T

i.e. φ is true with respect to g iff   g∈Dom(║φ║).

NB: Dynamic meanings are more fine-grained than 

truth-conditions.
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DPL: Semantics.

Dynamic Conjunction:

- not commutative:

║~Fx ∧ ∃x(Fx)║ ≠ ║∃x(Fx) ∧ ~Fx║

Exercise: Prove this.



52

DPL: Semantics.

Dynamic Conjunction:

- not idempotent:

║~Fx ∧ ∃x(Fx)║ ≠ ║~Fx ∧ ∃x(Fx) ∧ ~Fx ∧ ∃x(Fx)║

Exercise: Prove this.
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DPL: The Plan.

√ semantic values in DPL vs. FOL

√ definition of DPL semantics

� relations between DPL connectives

- formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's) in DPL
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DPL: Abbreviations.

2.a. Abbreviations – connectives:

Anaphoric closure: !φ := ~~φ

i.e. ║!φ║={<g, h>: g=h and g∈Dom(║φ║)} 

Exercise: Prove this.
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DPL: Abbreviations.

2.a. Abbreviations – connectives:

Disjunction: φ ∨ ψ := ~(~φ ∧ ~ψ)

i.e.║φ ∨ ψ║={<g, h>: g=h and 
g∈Dom(║φ║)∪Dom(║ψ║)}

Exercise: Prove this.
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DPL: Abbreviations.

Implication: φ → ψ := ~(φ ∧ ~ψ)

i.e. ║φ → ψ║={<g, h>: g=h and 

for any k s.t.║φ║<g, k> = T, 

there is an l s.t.║ψ║<k, l> = T}

Exercise: Prove this.
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DPL: Abbreviations.

Implication as inclusion:

║φ → ψ║={<g, h>: g=h and (φ)g ⊆ Dom(║ψ║)} 

where

(φ)g := {h: ║φ║<g, h> = T}

Exercise: Prove this.
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DPL: Abbreviations.

b. Abbreviation – universal quantifier:

∀x(φ) := ~∃x(~φ)

i.e. ║∀x(φ)║={<g, h>: g=h and 
for any k s.t. g[x]k, 

there is an l s.t.║φ║<k, l> = T}

Exercise: Prove this.
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DPL: Abbreviations.

Exercise: 

Show that ║∀x(φ)║ = ║[x] → φ ║, where:

║[x]║ = {<g, h>: for any variable υ, 
if υ≠x then g(υ)=h(υ)}
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DPL: The Plan.

√ semantic values in DPL vs. FOL

√ definition of DPL semantics

√ relations between DPL connectives

� formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)
∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's) in DPL
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DPL: Equivalence.

Let’s return to the general equivalences we wanted 
to prove.

Equivalence:

Two formulas are DPL-equivalent, symbolized as 
'⇔DPL', iff they denote the same set of pairs of 
variable assignments,

i.e. iff they denote the same binary relation over 
assignments.
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DPL: Equivalence.

That is:

φ ⇔DPL ψ iff     ║φ║DPL = ║ψ║DPL

More explicitly:

φ ⇔ ψ iff     for any pair of assignments <g, h>:
║φ║ <g, h> = ║ψ║<g, h> 

i.e. both ║φ║ <g, h> and ║ψ║<g, h> are T 
or both are F
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DPL: Equivalence.

Since DPL denotations determine truth-conditions, 
two DPL-equivalent formulas will have the same 
truth-conditions.

Recall that:

φ is true with respect to g iff     g∈Dom(║φ║).

Thus: 

Suppose φ ⇔ ψ. Then ║φ║ = ║ψ║. 

Then Dom(║φ║) = Dom(║ψ║).
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

∃x(φ) ∧ ψ ⇔DPL ∃x(φ ∧ ψ)

l.h.s. denotes:

{<g, h> : there is an l s.t.║∃x(φ)║<g, k> = T and 
║ψ║<l, h> = T}

{<g, h> : there is a k and an l s.t. g[x]k and

║φ║<k, l> = T and ║ψ║<l, h> = T}
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h

[x] ║ φ ║ ║ψ║
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

r.h.s. denotes:

{<g, h> : there is a k s.t. g[x]k and ║φ ∧ ψ║<k, h> = 
T}

{<g, h> : there is a k and an l s.t. g[x]k and ║φ║<k,
l> = T and ║ψ║<l, h> = T}

l.h.s. = r.h.s.
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h

[x] ║ φ ║ ║ψ║
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

Now let’s ensure that DPL gives the intuitively 

correct truth-conditions to ‘∃x(φ ∧ ψ)’.

We will instantiate the schema with our favorite 

example:

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

(7): {<g, h> : there is a k and an l s.t. g[x]k

and ║donkey(x) ∧ owns(John, x)║<k, l> = T 
and ║feeds(John, x)║<l, h> = T}

{<g, h> : there are k, l and m s.t. g[x]k

and ║donkey(x)║<k, m> 

and ║owns(John, x)║<m, l> = T 

and ║feeds(John, x)║<l, h> = T}
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))

Now we apply the definition of truth (1d).

(7) is true with respect to an input assignment g iff 
there is an output assignment h and intermediate 
assignments k, l and m s.t.

g[x]k and ║donkey(x)║<k, m> 

and ║owns(John, x)║<m, l> = T 

and ║feeds(John, x)║<l, h> = T
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

iff there is an h s.t. 

g[x]h and h(x) ∈ I(donkey) 

and <John, h(x)> ∈ I(owns) 

and <John, h(x)> ∈ I(feeds)

iff there is an individual a s.t. 

a∈I(donkey) and <John, a>∈I(owns) 

and <John, a>∈I(feeds)
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DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

And now for the second equivalence:

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

l.h.s. denotes:

{<g, h>: g=h and for any k s.t. ║∃x(φ)║<g, k> = T, 
there is an l s.t.║ψ║<k, l> = T}

{<g, h>: g=h and for any k, m s.t. 

g[x]m and║φ║<m, k> = T, 

there is an l s.t.║ψ║<k, l> = T}
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DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1 k1 l1

g m2 k2 l2

m3 k3 l3

[x] ║φ║ ║ψ║
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DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

r.h.s denotes:

{<g, h>: g=h and for any m s.t. g[x]m,
there is an n s.t.║φ → ψ║<m, n> = T}

{<g, h>: g=h and for any k, m s.t. 

g[x]m and║φ║<m, k> = T, 

there is an l s.t.║ψ║<k, l> = T}

l.h.s. = r.h.s.
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DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1 k1 l1

g m2 k2 l2

m3 k3 l3

[x] ║φ║ ║ψ║
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DPL: The Plan.

√ semantic values in DPL vs. FOL

√ definition of DPL semantics

√ relations between DPL connectives

√ formula equivalence in DPL: 

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

� Discourse Representation Structures (DRS's) 
in DPL
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DPL: Representing DRS's.

To represent Discourse Representation Structures 

(DRS's), i.e. 'boxes', in DPL, we first need to 

define:

- the semantic notion of test

- the syntactic notion of condition.
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DPL: Representing DRS's.

Tests: A wff φ is a test iff ║φ║ ⊆ {<g, g>: g∈G}, 
where G is the set of all M-variable assignments, 

Conditions: The set of conditions is the smallest set 

of wff's:

- containing atomic formulas and negative 

formulas (i.e. negation '~' is the main 

connective) 

- and closed under dynamic conjunction.



79

DPL: Representing DRS's.

Negative formulas include:

- ~φ

- anaphoric closure, since !φ := ~~φ

- disjunctions, since φ ∨ ψ := ~(~φ ∧ ~ψ)

- implications, since φ → ψ := ~(φ ∧ ~ψ)

- universal quantifications, since ∀x(φ) := ~∃x(~φ) 
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DPL: Representing DRS's.

The relation between tests (semantic notion) and 

conditions (syntactic notion):

Among non-contradictory formulas,

φ is a condition iff φ is a test.

where: φ is contradictory iff ║φ║= Ø



81

DPL: Representing DRS's.

Tests / Conditions are externally static – they do not 
pass on bindings to conjuncts yet to come:

(14) Every donkey is in the corral. #It is happy.

(15) It is not true that John owns a donkey.
#He feeds it at night.
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DPL: Representing DRS's.

Conjunctions and existential quantifiers are 
externally dynamic – they pass on bindings to 
conjuncts yet to come:

(16) A farmer owns a donkey. He feeds it at night.
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DPL: Representing DRS's.

But test / conditions can be internally dynamic, i.e. 
they can pass bindings between sub-formulas:

(17) Every farmer who owns a donkey feeds it at 
night.
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DPL: Representing DRS's.

We indicate that a formula is a condition by placing 

square brackets around it, 

e.g. [φ] is a wff iff φ is a condition and ║[φ]║ = ║φ║

That is, square brackets are just a graphical way of 

showing that a formula is a condition.
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DPL: Representing DRS's.

Abbreviation: [φ1, …, φm] := [φ1] ∧ … ∧ [φm]

Exercise: Prove that conjunction is 
commutative over conditions, 

i.e. ║[φ1] ∧ [φ2]║ = ║[φ2] ∧ [φ1]║.

Exercise: Prove that conjunction is 
idempotent over conditions, 

i.e. ║[φ]║ = ║[φ] ∧ [φ]║.
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DPL: Representing DRS's.

Abbreviation: [x1, …, xn] := [x1] ∧ … ∧ [xn],

where:

║[x]║ = {<g, h>: for any variable υ, if υ≠x then 
g(υ)=h(υ)}

[x] is called a random assignment of value to x.

Exercise: Prove that conjunction is commutative and 
idempotent over random assignments, i.e.:

║[x1] ∧ [x2]║ = ║[x2] ∧ [x1]║ and  ║[x]║ = ║[x] ∧ [x]║.
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DPL: Representing DRS's.

DRS's, a.k.a. boxes:

[x1, …, xn | φ1, …, φm] := [x1, …, xn] ∧ [φ1, …, φm]

║[x1, …, xn | φ1, …, φm]║:= 

{<g, h>: g[x1, …, xn]h and 

║φ1║<h, h> = T and … ║φm ║<h, h> = T}

Exercise: Prove that 

[x1, …, xn | φ1, …, φm] ⇔ ∃x1…∃xn([φ1, …, φm])
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DPL: The Duality of ∃ and ∀.

The existential and universal quantifiers are partly 
duals:

~∃x(φ) ⇔ ∀x(~φ)  

(Exercise: Prove this.)

Clearly, ∃x(~φ) ⇔ ~∀x(φ) doesn't hold: 

~∀x(φ) is a test, while ∃x(~φ) isn't.


