
1

Introduction to Dynamic
Semantics

Oslo, 15 September, 2006

Adrian Brasoveanu

Sam Cumming

2

Motivating Dynamic Semantics

A sentence is not an island.

Sentences are embedded in larger

discourses.

They are anaphorically related to

other sentences in the same discourse.

3

Motivating Dynamic Semantics

For example:

(1) John owns a donkey. He feeds it at night.

Notice the anaphoric connection between the

indefinite NP ‘a donkey’ and the subsequent

pronoun ‘it’.

4

Motivating Dynamic Semantics

(2) is a good (enough) paraphrase of (1):

(2) John owns a donkey. John feeds it at night.

5

Motivating Dynamic Semantics

But neither (3) nor (4) is as good:

(3) John owns a donkey. John feeds a donkey

at night.

(4) John owns Benjamin (the donkey). John

feeds Benjamin at night.

6

Motivating Dynamic Semantics

Can’t seem to eliminate the pronoun ‘it’

(bound by the indefinite ‘a donkey’) from

(1).

7

Motivating Dynamic Semantics

This becomes a problem once we decide to

regiment (1) in the notation of First-Order Logic

(FOL):

(5) ∃x(donkey(x) ∧ owns(John, x)) feeds(John, x)

�

(6) ∃x(donkey(x) ∧ owns(John, x)) ∧ feeds(John, x)

�

8

Motivating Dynamic Semantics

What we want:

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))

9

Motivating Dynamic Semantics

The problem is that, to get this meaning, we

must first compose a part of the first sentence

with the second sentence, and then combine

what we have with the remaining part of the

first sentence:

(7): [a donkey] [John owns][He feeds it]

10

Motivating Dynamic Semantics

If we restrict ourselves to completing

sentences before we compose them with

other sentences, then the best we can do

is (6).

(6): [John owns][a donkey] [He feeds it]

11

Motivating Dynamic Semantics

Who needs it? Discourse semantics is too

hard. I’m going to stick with the

semantics of sentences.

12

Motivating Dynamic Semantics

But the donkey is known for its

stubbornness…

(8) If John owns a donkey, he feeds it.

(9) Every farmer who owns a donkey

feeds it.

13

Motivating Dynamic Semantics

Incorrect first-orderizations:

(10) ∃x(donkey(x) ∧ owns(John, x)) →

feeds(John, x)

(11) ∀y(∃x(farmer(y) ∧ donkey(x) ∧ owns(y, x)))

→ feeds(John, x))

In both, the final ‘x’ is not in the scope of ‘∃x’.

14

Motivating Dynamic Semantics

Correct first-orderizations:

(12) ∀x(donkey(x) ∧ owns(John, x) →

feeds(John, x))

(13) ∀y∀x(farmer(y) ∧ donkey(x) ∧ owns(y, x)

→ feeds(John, x))

15

Motivating Dynamic Semantics

Moral: the limitations of FOL (on the

standard semantics) can be seen even

within sentences.

Nor are ‘donkey’ sentences rare animals.

They are as common as the beast of

burden itself.

16

Motivating Dynamic Semantics

A solution:

‘Dynamic semantics’

[due (independently) to Kamp (1981) and

Heim (1982)]

What is dynamic semantics?

17

Dynamic Semantics

Consider the phenomenon of context-

sensitivity.

The same sentence can be true or false,

depending on the context.

18

Dynamic Semantics

‘I am standing.’

True as uttered by Sam.

False as uttered by Herman.

19

Dynamic Semantics

The meaning of a sentence can be

thought of as a function (cf. Kaplan

(1989)),

that takes in a context…

…and gives back a truth-value (T or F).

20

Dynamic Semantics

A parallel phenomenon.

Right now, the sentence below is false:

‘Herman said that snow is black.’

21

Dynamic Semantics

But now Herman says, ‘Snow is black.’

In the context arising immediately after

his utterance, the earlier sentence is true:

‘Herman said that snow is black.’

22

Dynamic Semantics

Call the context immediately before

Herman’s utterance of ‘Snow is black’, c1.

And call the context immediately after

Herman’s utterance, c2.

23

Dynamic Semantics

Clearly, the sentence ‘Herman said snow

is black’ is context-sensitive, since it is

true in c2 but not in c1.

24

Dynamic Semantics

Equally clearly, Herman’s utterance of

‘Snow is black’ changed the context from

c1 to c2.

(c1 must differ from c2 since it delivers a

different truth-value to the sentence

above).

25

Dynamic Semantics

Dynamics takes the semantics

of context-sensitivity one step further, to

a semantics of context change.

26

Dynamic Semantics

According to dynamic semantics, the

meaning of a sentence is an ‘update’,

that takes in a context,

and gives back a …

CONTEXT.

27

Dynamic Semantics

But hang on, what does this new view of

meaning have to do with the problems with

which we began?

(1) John owns a donkey. He feeds it at night.

(8) If John owns a donkey, he feeds it.

(9) Every farmer who owns a donkey feeds it.

28

Dynamic Semantics

Take the first case:

(1) John owns a donkey. He feeds it at night.

We want it to translate into the FOL:

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))

29

Dynamic Semantics

But the best we can do (compositionally)

is:

(6) ∃x(donkey(x) ∧ owns(John, x)) ∧ feeds(John, x)

30

Dynamic Semantics

What if I told you that, on a dynamic

semantics for FOL, the following

equivalence holds:

∃x(φ) ∧ ψ ⇔DS ∃x(φ ∧ ψ)

31

Dynamic Semantics

Since (6) and (7) fit the schema on the left and

right hand sides, respectively, they are

equivalent on dynamic semantics:

∃x(donkey(x) ∧ owns(John, x)) ∧ feeds(John, x)

⇔DS

∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))

32

Dynamic Semantics

The equivalence means that indefinites can bind

indefinitely rightwards across ∧’s:

∃x(φ) ∧ ψ ∧ ξ ∧ χ

⇔DS ∃x(φ ∧ ψ) ∧ ξ ∧ χ

⇔DS ∃x(φ ∧ ψ ∧ ξ) ∧ χ

⇔DS ∃x(φ ∧ ψ ∧ ξ ∧ χ)

33

Dynamic Semantics

And what about the other cases?

(8) If John owns a donkey, he feeds it.

(9) Every farmer who owns a donkey

feeds it.

34

Dynamic Semantics

For these the equivalence below will

suffice:

∃x(φ) → ψ ⇔DS ∀x(φ → ψ)

(Only sans the usual restriction to cases

where ‘ψ’ doesn’t contain ‘x’ free.)

35

Dynamic Semantics

The 2nd equivalence allows us to turn

existentials in the antecedent of a conditional

into universals taking scope over the whole

conditional (but no further).

∃x(donkey(x) ∧ owns(John, x)) → feeds(John, x)

⇔DS

∀x(donkey(x) ∧ owns(John, x) → feeds(John, x))

36

Dynamic Semantics

∀y(∃x(farmer(y) ∧ donkey(x) ∧ owns(y, x))

→ feeds(y, x))

⇔DS

∀y∀x(farmer(y) ∧ donkey(x) ∧ owns(y, x)

→ feeds(y, x))

37

Dynamic Semantics

We will now proceed to show you how to

construct a dynamic semantics for FOL

on which these hold:

∃x(φ) ∧ ψ ⇔DS ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔DS ∀x(φ → ψ)

38

Dynamic Predicate Logic (DPL)

The particular version of dynamic
semantics we will look at is Dynamic
Predicate Logic (DPL – Groenendijk &
Stokhof 1991).

39

DPL: The Plan.

� semantic values in DPL vs. FOL

- definition of DPL semantics

- relations between DPL connectives

- formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's)
in DPL

40

Dynamic Predicate Logic (DPL)

DPL semantics is minimally different from
the standard Tarskian semantics for
first-order logic.

� instead of interpreting a formula as a set of
variable assignments (i.e. the set of variable
assignments that satisfy the formula in the
given model), we interpret it as a binary
relation between assignments.

41

DPL: Semantics.

Why binary relations between assignments?

For our narrow purposes (i.e. cross-sentential
and ‘donkey’ anaphora), a variable
assignment is an effective model of a context.

All we ask from a context here is that it keep
track of anaphoric relations – hence
assignments.

42

DPL: Semantics.

Why a binary relation between assignments?

Dynamic semantics associates a sentence with
the manner in which it updates any context
(i.e. its context change potential).

The update is modeled as a relation (not a
function) because it is non-deterministic:

updating from a context c1 has different
possible outcomes.

43

DPL: Semantics.

c2 [Benjamin]

C1 c3 [Lucius]

c4 [Patience]

‘John owns a donkey’,

where John actually owns three donkeys:

Benjamin, Lucius and Patience.

44

DPL: The Plan.

√ semantic values in DPL vs. FOL

� definition of DPL semantics

- relations between DPL connectives

- formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's) in DPL

45

DPL: Semantics.

The definition of the DPL interpretation
function ║φ║

DPL
M relative to a standard

first-order model M=<DM, IM>, where:

D is the domain of entities

I is the interpretation function which
assigns to each n-place relation R a subset
of Dn:

46

DPL: Semantics.

1. For any pair of M-variable assignments <g, h>:

a. Atomic formulas ('lexical' relations and

identity):

║R(x1, …, xn)║<g, h> = T

iff g=h and <g(x1), …, g(xn)>∈I(R)

║x1=x2║<g, h> = T iff g=h and g(x1)=g(x2)

47

DPL: Semantics.

b. Connectives:

Dynamic Conjunction

║φ ∧ ψ║<g, h> = T iff

there is a k s.t.║φ║<g, k> = T and ║ψ║<k, h> = T

48

DPL: Semantics.

Dynamic Negation

║~φ║<g, h> = T iff

g=h and there is no k s.t. ║φ║<g, k> = T

i.e. ║~φ║<g, h> = T iff g=h and g∉Dom(║φ║),

where:

Dom(║φ║) := {g: there is an h s.t. ║φ║<g, h> = T}

49

DPL: Semantics.

c. Existential Quantifier:

║∃x(φ)║<g, h> = T iff

there is a k s.t. g[x]k and ║φ║<k, h> = T

where g[x]k means that k differs from g at most with
respect to the value it assigns to x,

i.e. for any variable υ, if υ≠x then g(υ)=k(υ).

50

DPL: Semantics.

d. Truth:

A formula φ is true with respect to an input
assignment g iff

there is an output assignment h s.t. ║φ║<g, h> = T

i.e. φ is true with respect to g iff g∈Dom(║φ║).

NB: Dynamic meanings are more fine-grained than

truth-conditions.

51

DPL: Semantics.

Dynamic Conjunction:

- not commutative:

║~Fx ∧ ∃x(Fx)║ ≠ ║∃x(Fx) ∧ ~Fx║

Exercise: Prove this.

52

DPL: Semantics.

Dynamic Conjunction:

- not idempotent:

║~Fx ∧ ∃x(Fx)║ ≠ ║~Fx ∧ ∃x(Fx) ∧ ~Fx ∧ ∃x(Fx)║

Exercise: Prove this.

53

DPL: The Plan.

√ semantic values in DPL vs. FOL

√ definition of DPL semantics

� relations between DPL connectives

- formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's) in DPL

54

DPL: Abbreviations.

2.a. Abbreviations – connectives:

Anaphoric closure: !φ := ~~φ

i.e. ║!φ║={<g, h>: g=h and g∈Dom(║φ║)}

Exercise: Prove this.

55

DPL: Abbreviations.

2.a. Abbreviations – connectives:

Disjunction: φ ∨ ψ := ~(~φ ∧ ~ψ)

i.e.║φ ∨ ψ║={<g, h>: g=h and
g∈Dom(║φ║)∪Dom(║ψ║)}

Exercise: Prove this.

56

DPL: Abbreviations.

Implication: φ → ψ := ~(φ ∧ ~ψ)

i.e. ║φ → ψ║={<g, h>: g=h and

for any k s.t.║φ║<g, k> = T,

there is an l s.t.║ψ║<k, l> = T}

Exercise: Prove this.

57

DPL: Abbreviations.

Implication as inclusion:

║φ → ψ║={<g, h>: g=h and (φ)g ⊆ Dom(║ψ║)}

where

(φ)g := {h: ║φ║<g, h> = T}

Exercise: Prove this.

58

DPL: Abbreviations.

b. Abbreviation – universal quantifier:

∀x(φ) := ~∃x(~φ)

i.e. ║∀x(φ)║={<g, h>: g=h and
for any k s.t. g[x]k,

there is an l s.t.║φ║<k, l> = T}

Exercise: Prove this.

59

DPL: Abbreviations.

Exercise:

Show that ║∀x(φ)║ = ║[x] → φ ║, where:

║[x]║ = {<g, h>: for any variable υ,
if υ≠x then g(υ)=h(υ)}

60

DPL: The Plan.

√ semantic values in DPL vs. FOL

√ definition of DPL semantics

√ relations between DPL connectives

� formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)
∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRS's) in DPL

61

DPL: Equivalence.

Let’s return to the general equivalences we wanted
to prove.

Equivalence:

Two formulas are DPL-equivalent, symbolized as
'⇔DPL', iff they denote the same set of pairs of
variable assignments,

i.e. iff they denote the same binary relation over
assignments.

62

DPL: Equivalence.

That is:

φ ⇔DPL ψ iff ║φ║DPL = ║ψ║DPL

More explicitly:

φ ⇔ ψ iff for any pair of assignments <g, h>:
║φ║ <g, h> = ║ψ║<g, h>

i.e. both ║φ║ <g, h> and ║ψ║<g, h> are T
or both are F

63

DPL: Equivalence.

Since DPL denotations determine truth-conditions,
two DPL-equivalent formulas will have the same
truth-conditions.

Recall that:

φ is true with respect to g iff g∈Dom(║φ║).

Thus:

Suppose φ ⇔ ψ. Then ║φ║ = ║ψ║.

Then Dom(║φ║) = Dom(║ψ║).

64

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

∃x(φ) ∧ ψ ⇔DPL ∃x(φ ∧ ψ)

l.h.s. denotes:

{<g, h> : there is an l s.t.║∃x(φ)║<g, k> = T and
║ψ║<l, h> = T}

{<g, h> : there is a k and an l s.t. g[x]k and

║φ║<k, l> = T and ║ψ║<l, h> = T}

65

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h

[x] ║ φ ║ ║ψ║

66

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

r.h.s. denotes:

{<g, h> : there is a k s.t. g[x]k and ║φ ∧ ψ║<k, h> =
T}

{<g, h> : there is a k and an l s.t. g[x]k and ║φ║<k,
l> = T and ║ψ║<l, h> = T}

l.h.s. = r.h.s.

67

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h

[x] ║ φ ║ ║ψ║

68

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

Now let’s ensure that DPL gives the intuitively

correct truth-conditions to ‘∃x(φ ∧ ψ)’.

We will instantiate the schema with our favorite

example:

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))

69

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

(7): {<g, h> : there is a k and an l s.t. g[x]k

and ║donkey(x) ∧ owns(John, x)║<k, l> = T
and ║feeds(John, x)║<l, h> = T}

{<g, h> : there are k, l and m s.t. g[x]k

and ║donkey(x)║<k, m>

and ║owns(John, x)║<m, l> = T

and ║feeds(John, x)║<l, h> = T}

70

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

(7) ∃x(donkey(x) ∧ owns(John, x) ∧ feeds(John, x))

Now we apply the definition of truth (1d).

(7) is true with respect to an input assignment g iff
there is an output assignment h and intermediate
assignments k, l and m s.t.

g[x]k and ║donkey(x)║<k, m>

and ║owns(John, x)║<m, l> = T

and ║feeds(John, x)║<l, h> = T

71

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

iff there is an h s.t.

g[x]h and h(x) ∈ I(donkey)

and <John, h(x)> ∈ I(owns)

and <John, h(x)> ∈ I(feeds)

iff there is an individual a s.t.

a∈I(donkey) and <John, a>∈I(owns)

and <John, a>∈I(feeds)

72

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

And now for the second equivalence:

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

l.h.s. denotes:

{<g, h>: g=h and for any k s.t. ║∃x(φ)║<g, k> = T,
there is an l s.t.║ψ║<k, l> = T}

{<g, h>: g=h and for any k, m s.t.

g[x]m and║φ║<m, k> = T,

there is an l s.t.║ψ║<k, l> = T}

73

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1 k1 l1

g m2 k2 l2

m3 k3 l3

[x] ║φ║ ║ψ║

74

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

r.h.s denotes:

{<g, h>: g=h and for any m s.t. g[x]m,
there is an n s.t.║φ → ψ║<m, n> = T}

{<g, h>: g=h and for any k, m s.t.

g[x]m and║φ║<m, k> = T,

there is an l s.t.║ψ║<k, l> = T}

l.h.s. = r.h.s.

75

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1 k1 l1

g m2 k2 l2

m3 k3 l3

[x] ║φ║ ║ψ║

76

DPL: The Plan.

√ semantic values in DPL vs. FOL

√ definition of DPL semantics

√ relations between DPL connectives

√ formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)

∃x(φ) → ψ ⇔ ∀x(φ → ψ)

� Discourse Representation Structures (DRS's)
in DPL

77

DPL: Representing DRS's.

To represent Discourse Representation Structures

(DRS's), i.e. 'boxes', in DPL, we first need to

define:

- the semantic notion of test

- the syntactic notion of condition.

78

DPL: Representing DRS's.

Tests: A wff φ is a test iff ║φ║ ⊆ {<g, g>: g∈G},
where G is the set of all M-variable assignments,

Conditions: The set of conditions is the smallest set

of wff's:

- containing atomic formulas and negative

formulas (i.e. negation '~' is the main

connective)

- and closed under dynamic conjunction.

79

DPL: Representing DRS's.

Negative formulas include:

- ~φ

- anaphoric closure, since !φ := ~~φ

- disjunctions, since φ ∨ ψ := ~(~φ ∧ ~ψ)

- implications, since φ → ψ := ~(φ ∧ ~ψ)

- universal quantifications, since ∀x(φ) := ~∃x(~φ)

80

DPL: Representing DRS's.

The relation between tests (semantic notion) and

conditions (syntactic notion):

Among non-contradictory formulas,

φ is a condition iff φ is a test.

where: φ is contradictory iff ║φ║= Ø

81

DPL: Representing DRS's.

Tests / Conditions are externally static – they do not
pass on bindings to conjuncts yet to come:

(14) Every donkey is in the corral. #It is happy.

(15) It is not true that John owns a donkey.
#He feeds it at night.

82

DPL: Representing DRS's.

Conjunctions and existential quantifiers are
externally dynamic – they pass on bindings to
conjuncts yet to come:

(16) A farmer owns a donkey. He feeds it at night.

83

DPL: Representing DRS's.

But test / conditions can be internally dynamic, i.e.
they can pass bindings between sub-formulas:

(17) Every farmer who owns a donkey feeds it at
night.

84

DPL: Representing DRS's.

We indicate that a formula is a condition by placing

square brackets around it,

e.g. [φ] is a wff iff φ is a condition and ║[φ]║ = ║φ║

That is, square brackets are just a graphical way of

showing that a formula is a condition.

85

DPL: Representing DRS's.

Abbreviation: [φ1, …, φm] := [φ1] ∧ … ∧ [φm]

Exercise: Prove that conjunction is
commutative over conditions,

i.e. ║[φ1] ∧ [φ2]║ = ║[φ2] ∧ [φ1]║.

Exercise: Prove that conjunction is
idempotent over conditions,

i.e. ║[φ]║ = ║[φ] ∧ [φ]║.

86

DPL: Representing DRS's.

Abbreviation: [x1, …, xn] := [x1] ∧ … ∧ [xn],

where:

║[x]║ = {<g, h>: for any variable υ, if υ≠x then
g(υ)=h(υ)}

[x] is called a random assignment of value to x.

Exercise: Prove that conjunction is commutative and
idempotent over random assignments, i.e.:

║[x1] ∧ [x2]║ = ║[x2] ∧ [x1]║ and ║[x]║ = ║[x] ∧ [x]║.

87

DPL: Representing DRS's.

DRS's, a.k.a. boxes:

[x1, …, xn | φ1, …, φm] := [x1, …, xn] ∧ [φ1, …, φm]

║[x1, …, xn | φ1, …, φm]║:=

{<g, h>: g[x1, …, xn]h and

║φ1║<h, h> = T and … ║φm ║<h, h> = T}

Exercise: Prove that

[x1, …, xn | φ1, …, φm] ⇔ ∃x1…∃xn([φ1, …, φm])

88

DPL: The Duality of ∃ and ∀.

The existential and universal quantifiers are partly
duals:

~∃x(φ) ⇔ ∀x(~φ)

(Exercise: Prove this.)

Clearly, ∃x(~φ) ⇔ ~∀x(φ) doesn't hold:

~∀x(φ) is a test, while ∃x(~φ) isn't.

