
 1

Adrian Brasoveanu Draft June 16th 2003

MINIMAL FUSION NORMAL FORM

I. THE PROBLEM AND THE PROPOSED SOLUTION.

THE PROBLEM: For an arbitrary set of vectors S of cardinality n, S={v1, v2, …, vn},

find a set of vectors S’ such that:

(1) i.S’ equivalent to S (where ‘equivalent’ means ‘true in the same models’, i.e.

characterizing the same set of total constraint rankings)
ii. all the vectors in S’ are independent (where independent means that, for every

vector vi∈S’, there is no non-null subset of S’ which does not contain vi as a member and
which entails vi; ‘entailment’ is defined as: the set of vectors S entails a vector v (S�v) iff
the models in which S is true are a subset of the models in which v is true);

iii. the vectors in S’ ‘make clear/transparent’ what is the set of models in which
they are true, i.e. they ‘make clear/transparent’ what are the necessary and sufficient
ranking conditions enforced by the set S (and S’).

The meaning of ‘make clear/transparent’ in (1iii) is the same as the one behind the

operation of fusion (�) in Prince 2002, namely obtaining a vector with a maximum
number of Ls such that ranking conditions which were previously ‘hidden’ (i.e. not
readable directly from the vector) are now ‘transparent’, i.e. directly readable from the
vector.

The elaboration of the meaning of ‘make clear/transparent’ anticipates the solution.

THE PROPOSED SOLUTION: obtaining the set S’ satisfying the requirements in (1) is

achieved through an intermediary step, namely obtaining a set S’’ of ‘maximally
informative’ vectors corresponding to the vectors in the initial set S.

(2) A vector v’ is maximally informative wrt a vector v and a set S such that v∈S

iff:
i. v’�v
ii. S�v’
iii. ~∃v’’ (v’’≠v’ & v’’�v’ & S�v’’)

For example, if S={WWLW(=a), eeWL (=b)}, the vector which is maximally

informative wrt a and S is the vector a’=WWLL=a�b. The vector a’’=eWLL entails a’ (by
W extension), but is not entailed by S; the same can be said about the vector LLLL,
which entails everything but is not entailed by S unless S is inconsistent (throughout this
paper I will consider only consistent sets of vectors).

As suggested in the above example, a maximally informative vector is obtained by
fusion. However, fusion is not guaranteed to yield a vector entailing any of the vectors

 2

entering the fusion and I will propose a procedure for restricting it depending on the
initial set of vectors S.

The set S’’ obtained by such a restricted fusion will be called (for lack of a better
name), the Fusion Normal Form of the initial set S, i.e. FNF(S).

Once FNF(S) is obtained, we know that it is equivalent to the initial set by the
definition of ‘maximally informative’ provided in (2). Moreover, given that we obtained
the vectors in S’’ by restricted fusion (see below), we also know that (1iii) is satisfied.
However, there is no guarantee that the set S’’ satisfies condition (1ii) above, i.e. that all
the vectors in it are independent. Eliminating the entailed vectors in FNF(S) is the last
step before obtaining the set S’, i.e. the solution to the problem. This last set will be
called the Minimal Fusion Normal Form of the initial set S, i.e. MFNF(S).

MFNF(S) is a possible answer to the problem in (1).

The rest of the paper will provide the procedure for obtaining FNF(S) and MFNF(S)

and relevant examples for each step of the algorithm will be given. The algorithm
specification will also answer the two points left obscure in the above solution summary,
namely (a) what is restricted fusion and (b) obtaining MFNF(S) from FNF(S).

I will not provide the formal proofs that all the steps in the algorithm are necessary
and sufficient to yield the claimed solution; also, I will not attempt a comparison with the
RCD algorithm (see for example Tesar 1995), e.g. the usage of ‘info loss configurations’
– see (5) below for the definition - in RCD and in the present algorithm.

The final version of the algorithm is given below for ease of reference:

(17) The FNF(S) algorithm:
a. Info loss configurations: for a given set S of n vectors that form a matrix with m

columns and n rows, identify all the info loss configurations;
b. Branch construction and elimination: construct a branch/daughter for each info

loss configuration; each daughter contains all the vectors that have an e in that particular
info loss configuration; for any two daughters that are in a subset-superset relation,
eliminate the subset daughter;

c. Fusion of the mother node: if the union of the sets of vectors in all the daughters
is a proper subset of the set of vectors in the mother, then fuse all the vectors in the
mother node;

d. Recursion: for each daughter that has a non-singleton set of vectors, reapply the
steps (a)-(c);

e. Pre-FNF(S) formation: if all the daughters are singleton sets (or empty sets),
form the pre-FNF set, i.e. the set containing all the fusions in the tree and all the vectors
in singleton daughters;

f. W extension, path inspection and FNF(S): test in a bottom-up manner each path
of the tree for W extension entailment, i.e. look only at the nodes that are either singleton
leaves or have a fusion and, if the vector of a node A is entailed by the vector of a node
B, where A dominates B, remove the vector of the node A from pre-FNF. FNF is the set
obtained after all paths in the tree are tested and all the entailed vectors are removed.

(18) MFNF(S): for all nodes that contain a fusion, fuse all the vectors in all its
daughters and check if this ‘total daughter fusion’ is the same as or entails by W

 3

extension the mother fusion. If this is the case, remove the mother fusion from the set
FNF(S).

II. THE ALGORITHM FOR OBTAINING FNF(S) AND MFNF(S).

II.1. OBTAINING FNF(S).

FNF(S) was defined as:

(3) for any set of vectors S, FNF(S) 1 is the set S’’ such that:
i. ∀v [v∈S � ∃v’’ (v’’∈S’’ & v’’ is maximally informative wrt v, S)]
ii. ∀v’’ [v’’∈S’’ � ∃v (v∈S & v’’ is maximally informative wrt v, S)]
i.e. the set S’’ contains all and only the vectors that are maximally informative wrt S

and the vectors in S.

As mentioned above, I will obtain the maximally informative vectors by fusion,

which ‘maximizes’ the number of Ls in any given vector, i.e. it replaces the maximum
number of Ws and e-s with Ls. However, at the same time, fusion will replace e-s with
Ws in any coordinate/column that contains no Ls and at least one W. Both fusion and
(Kleene) conjunction are defined as the min function applied to an input pair of truth
values in a trivalent logic:

(4) i. conjunction (∧): for any x, y in the set {L, e, W}, x∧y=min(x, y) wrt the total

order L<e<W 2;
ii. fusion (�): for any x, y in the set {L, e, W}, x�y=min(x, y) wrt the total order

L<W<e 3, 4.

Conjunction is info preserving, i.e. x∧y � {x, y}, but very often useless, since in

many cases the conjunction of a consistent vectors is a member of L+ 5.
Fusion is better equipped to locally maximize information and make ‘overt/

transparent’ implicit ranking conditions while, at the same time, avoiding to make the
result a member of L+ (as long as the input is a consistent set of vectors). However,

1 It seems like the cardinality of FNF(S) is at most equal to the cardinality of S; however, see (7/7’) below
for an example in which there can be two maximally informative vectors wrt the same vector and set; it
seems more likely that MFNF(S) has a cardinality less than or equal to the cardinality of S.
2 I use ‘∧’ as the symbol for conjunction in the object language, reserving ‘&’ for the metalanguage.
3 the two definitions suggest that fusion can be defined in terms of conjunction and ‘restricted’ W
extension: consider the vectors a=eWLe, b=eeWL; a∧b=eeLL and a�b=eWLL; blindly applying W
extension to a∧b can yield WeLL or WWLL; the ‘restriction’ on W extension is the following: do W
extension only in the coordinate i of the conjunction that (a) contains an e and (b) the column i in the
(matrix) input contains only e-s and at least one W; the ‘restriction’ on w extension is basically the same as
the ‘info loss configuration’ that is defined in the main text and which is central in obtaining the FNF of a
set S.
4 fusion and conjunction can be recursively defined for an arbitrary set of vectors taking the definitions in
(4) as the basic case
5 I will take L+ to be the set of words over the alphabet {e, L}, i.e. {e, L}*; see also Prince 2002.

 4

fusion is not info-preserving, i.e. it is not generally the case that x�y � {x, y}, although
the other direction of the entailment always holds, i.e. {x, y} � x�y 6.

It is precisely the input {e, W} that causes fusion to loose information (the same
diagnostic is implicit in the notion of W compliance in Prince 2002); thus, whenever we
fuse a column/coordinate that contains an e and a W, the row/vector that contains the e
will be ‘weakened’ by the addition of a W, i.e. of one extra disjunction. Generally, I will
define ‘info loss configuration’ as:

(5) a column/coordinate in a set/matrix of vectors that contains no Ls and at least

one W is an info loss configuration.

Hence, in fusing vectors, one should note all the info loss configurations and

‘reassert’ the vectors that have an e in an info loss configuration, since those vectors
contain the information that is lost in the fusion.

An example will make the above observations clearer. Consider the set of vectors
given in (6) below:

(6)

 1 2 3 4 5
a W L e e W
b e W L W L
c e e W L W

a�b�c W L L L L

Given the set of vectors (the matrix) in (6), we look for the info loss configurations

and we identify one in column 1, i.e. in the column of the constrain C1. Vectors b and c
have an e in that column so, if we are to fuse all three vectors a�b�c, we will loose
information in those vectors; hence, they need to be reasserted. However, as far as vector
a is concerned, the fusion only adds information. Actually, a�b�c is maximally
informative wrt vector a and the set {a, b, c}.

Since the set of all reasserted vectors is a subset of the vectors in the mother node,

it makes sense to fuse all the vectors in the mother in order to obtain a maximally
informative vector; if the set of all reasserted vectors (i.e. the vectors in the daughters)
equals the set of vectors in the mother node, fusing the vectors in the mother node
would not maximize the information in any vector, hence it would be useless.

The next step is to reassert vectors b and c, as in (6’) below.

(6’)

 1 2 3 4 5
a W L e e W

6 unlike in the case of conjunction (!) – consider a consistent set of vectors {x, y} (where consistent means
that it is satisfiable by at least one model, i.e. there is at least one model/constraint ranking in which is is
true) whose conjunction is a member of L+; a member of L+ is not satisfiable by any model, i.e. it is false in
all models, i.e. it characterizes the empty set of constraint rankings; hence, it is not the case that {x, y} �
x∧y.

 5

b e W L W L
c e e W L W

a�b�c W L L L L

 1 2 3 4 5
b e W L W L
c e e W L W

b�c e W L L L

Looking at b and c, we identify an info loss configuration in column 2, i.e.

constraint C2; thus, fusing b and c will maximize the information in vector b - b�c is
maximally informative wrt b and {a, b, c} (not only {b, c}); however, the fusion will
loose information in vector c, which needs to be reasserted, as in (6’’) below:

(6’’)

 1 2 3 4 5
a W L e e W
b e W L W L
c e e W L W

a�b�c W L L L L

 1 2 3 4 5
b e W L W L
c e e W L W

b�c e W L L L

 1 2 3 4 5
c e e W L W

The FNF is obtained by putting together all the leaves of the tree thus obtained

and all the fusions (if any) found at the nonterminal nodes.

For the set of vectors in example (6), FNF({a, b, c}) = {a�b�c, b�c, c}. It so happens

that all these vectors are independent, hence FNF({a, b, c}) = MFNF({a, b, c}) = {a�b�c,
b�c, c}.

A more complicated example can illustrate additional complications in the
algorithm and, at the same time, highlight one of its central benefits. Consider the set of
vectors in (7) below:

(7)

 1 2 3 4 5 6 7
a W L W e e e W
b W L W L e e e
c e W L L L e W

 6

d W L L e e L e

We identify 2 info loss configurations (C1 and C7), so we construct 2 branches in

the tree, one for each info loss configuration.
However, before doing that, note the logical relations between the vectors in (7):

b�a, b�d�b(�a) and b�d�d (note that b and d are W compliant). The fusion b�d is
capable of sweeping through the tableau/matrix in (7) and eliminate a considerable
amount of redundancies – this being one of the great advantages of fusion as
characterized in Prince 2002. The general problem is to identify such fusions, given an
arbitrary set of vectors – and the algorithm for obtaining FNF seems capable of solving
this problem.

After identifying the info loss configurations, the next step in obtaining FNF(S)

consists in constructing a branch for each info loss configuration and reassert the
vectors that loose information in each such configuration.

(7’)

 1 2 3 4 5 6 7
a W L W e e e W
b W L W L e e e
c e W L L L e W
d W L L e e L e

a�b�c�d W L L L L L W

On the second branch of the tree, i.e. on the branch which reasserts b and d, we look

again for an info loss configuration (C1); this info loss configuration does not contain any
e, so no vectors need to be reasserted; since the set of reasserted vectors (i.e. the empty
set) is a subset of the vectors in the mother (i.e. the set {b, d}), we fuse the two vectors
and the fusion b�d is maximally informative with respect to both b and d; this is how the
present algorithm captures W compliance.

On the first branch we are left with only one vector (c), hence we stop.
FNF({a, b, c, d}) = {a�b�c�d, c, b�d}
As anticipated, the FNF algorithm identifies the ‘powerful’ fusion b�d. However,

we lost part of its ‘power’, namely the entailment b�d�a. Thus, the minimal set
equivalent to the initial set is actually MFNF(S)={c, b�d} and FNF(S) contains the
redundant fusion a�b�c�d.

Example (7) establishes the point that FNF is not yet a solution to the problem in
(1), since the vectors in FNF are not independent. Hence, an independent mechanism is

 1 2 3 4 5 6 7
b W L W L e e e
d W L L e e L e

b�d W L L L e L e

 1 2 3 4 5 6 7
c e W L L L e W

 7

needed to ‘prune’ such redundant vectors in FNF; as we will see later on, all such
redundancies can be linked more or less directly to entailment by W extension 7.

(The key to eliminate the redundant fusion a�b�c�d will be the requirement that, at
each step of constructing daughters/branches for a mother node which contains a fusion
(remember that a mother node contains a fusion iff the set of vectors in the daughters is a
proper subset of the set of vectors in the mother), one should fuse all the vectors in
daughters and check if this ‘total daughter fusion’ is the same as or entails by W
extension the fusion in the mother. In the present example, note that the ‘total daughter
fusion’ c�b�d is the same as the mother fusion a�b�c�d.)

Example (7) makes the additional point that, given a vector v and a set S (v∈S),

there might be more than one vector which is maximally informative wrt v, S (according
to the definition in (2)). Thus, the vector a�b�c�d is maximaly informative wrt a, {a, b, c,
d} and the vector b�d is also maximally informative wrt a, {a, b, c, d}. In particular, note
that b�d does not entail a�b�c�d and a�b�c�d does not entail b�d.

As far as I know, there is no principled way to identify that in FNF({a, b, c, d}) =
{a�b�c�d, c, b�d} there are two vectors maximally informative wrt the same vector a.

I will examine two more things before giving the final form of the FNF(S)

algorithm; first, I will look at certain sets of info loss configurations and improve the ‘tree
construction’ procedure suggested above; second, I will look at how the algorithm fares
wrt initial sets of vectors that contain entailments by W extension and L retraction.

Info loss configurations, ‘branch elimination’ and maximum number of

branches/daughters per node.
Consider the vectors in (8) below:

(8)

 1 2 3 4 5
a W L e W W
b e W L e e
c e e L W e

There are 3 info loss configurations in (8), namely C1, C4 and C5. The algorithm as

previously stated would have to construct a branch/daughter for all three of them;
however, the third daughter corresponding to C5 would just repeat the first daughter,
hence it would be redundant as far as FNF goes. Moreover, the second daughter would
contain only {b} which is a subset of the set in the first daughter {b, c} – hence,
constructing a branch for C2 would be again redundant, since that branch will certainly be
a sub-branch of the daughter corresponding to C1.

7 the algorithm as developed up until now is incapable of ‘detecting’ entailment by W extension, although it
can ‘detect’ and eliminate all entailments/redundancies based on L retraction – this is due to the nature of
fusion and to our definition of info loss configuration; more about this later.

 8

Thus, at any point in the construction of the tree, there should be a ‘branch
elimination’ step, requiring that, for all info loss configurations that would license
daughter nodes that contain set of vectors in the subset-superset relation, construct a
branch only for the info loss configuration that licenses the superset.

Thus, the next step in the algorithm is to construct only one branch/daughter

containing the set {b, c}. Moreover, since the set of vectors in the daughters is a proper
subset of the vectors in the mother node, we fuse the vectors in the mother node, as in
(8’) below:

(8’)

 1 2 3 4 5
a W L e W W
b e W L e e
c e e L W e

a�b�c W L L W W

 1 2 3 4 5
b e W L e e
c e e L W e

At this point, we identify two info loss configurations in the daughter, namely C2

and C4. For each of them, we construct a branch, each containing a single vector (b and c
respectively); since all the daughters in all the branches are singleton sets, the
computation stops and FNF({a, b, c}) ={a�b�c, b, c}.

However, there is one thing in (8’) suggesting that the computation should stop and

that all the vectors in the set {b, c} are in the final FNF: given the info loss configurations
in the set {b, c} we should construct a number of branches/daughters equal to the number
of vectors in the mother node even after branch elimination.

There seems to be a generalization at work: if, after the application of ‘branch
elimination’ (see the discussion above), the number of daughters to be constructed for a
mother node is equal to or greater than the number of vectors in the mother node, then
the mother node is a subset of the final FNF, i.e. all the vectors in the mother node should
be added to the FNF.

The generalization seems confirmed by the sets of vectors in (9) and (10) below.

(9)

 1 2 3 4 5
a W e L e e
b e W L e e
c e e W L W

 9

The FNF of the set in (9) is identical to the initial set of vectors. A similar

computation yields a FNF identical to the initial set in (10) below – where the number of
branches is greater than the number of vectors of the mother node 8.

(10)

 1 2 3 4 5 6
a W W e W e L
b W e W e W L
c e W W e e L
d e e e W W L

However, the set of vectors in (11) below provides a counterexample to the

proposed generalization:

(11)

 1 2 3 4 5 6 7 8
a e e e W e L W e
b e e W e e L L W
c e W e e W L e W
d W e e e W L e e
e W W W W e L W L

We have to construct 5 branches.
The 1st branch is C1:

C1 1 2 3 4 5 6 7 8
a e e e W e L W e
b e e W e e L L W
c e W e e W L e W

8 I am indebted to Alan Prince for pointing out a major error in my previous observations about these
matters.

 1 2 3 4 5
b e W L e e
c e e W L W

 1 2 3 4 5
a W e L e e
c e e W L W

 1 2 3 4 5
a W e L e e
b e W L e e

 1 2 3 4 5
c e e W L W

 1 2 3 4 5
a W e L e e

 1 2 3 4 5
b e W L e e

 10

Looking at the info loss configurations in C2, C3 and C4, we see that this case is
similar to the one in (9), hence it will ‘break up’ in the set {a, b, c}.

The 2nd branch is C2:

C2 1 2 3 4 5 6 7 8
a e e e W e L W e
b e e W e e L L W
d W e e e W L e e

Again, the info loss configurations in C1, C3 and C4 reduce this branch to (9), i.e. to

the set {a, b, d}.
The 3rd branch is C3:

C3 1 2 3 4 5 6 7 8
a e e e W e L W e
c e W e e W L e W
d W e e e W L e e

The info loss configurations in C1, C2 and C4 reduce this branch to (9), i.e. to the set

{a, c, d}.
The 4th branch is C4:

C4 1 2 3 4 5 6 7 8
b e e W e e L L W
c e W e e W L e W
d W e e e W L e e

The info loss configurations in C1, C2 and C3 reduce this branch to (9), i.e. to the set

{b, c, d}.
The 5th branch is C5:

C5 1 2 3 4 5 6 7 8
a e e e W e L W e
b e e W e e L L W
e W W W W e L W L

a�b�e W W W W e L L L

 1 2 3 4 5 6 7 8
a e e e W e L W e
b e e W e e L L W

 1 2 3 4 5 6 7 8
a e e e W e L W e

 1 2 3 4 5 6 7 8
b e e W e e L L W

 11

Thus, the final FNF({a, b, c, d, e}) = {a, b, c, d, a�b�e}, despite constructing 5

branches for the top node of the tree.
I do not know whether the generalization suggested above (linking the number of

vectors in a node and the maximum possible number of daughters for that node after
‘branch elimination’) captures a real regularity; if something like the above
generalization is true, the complexity of the FNF algorithm will be more tightly limited
by the number of initial vectors. As it stands, the algorithm predicts that the maximum
number of branches for a node with n vectors (after ‘branch elimination’) is: (a) n choose
n/2 for n an even natural number and (b) n choose (n-1)/2 (equal to n choose (n+1)/2) for
n an odd natural number.

In any case, note that the number of branches for a given node does not depend on
the number of constraints, but only on the number of vectors.

I will now turn to the examination of initial sets of vectors that contain entailments

by L retraction or/and W extension.
Consider the set of vectors in (12) below, in which a entails b by L retraction:

(12)

 1 2 3
a W L L
b W L e

a�b W L L

As expected, if there are vectors entailed by L retraction only, they are W compliant

and the FNF algorithm successfully identifies and ‘reduces’ them to the more informative
vector.

However, due to the definition and role of fusion and info loss configuration, the
FNF algorithm cannot identify and eliminate vectors that are entailed by W extension, as
shown by (13) below:

(13)

 1 2 3
a e W L
b W W L

a�b W W L

 1 2 3
a e W L

By the definition of fusion, the fusion of two vectors a and b such that a�b by L

retraction is identical with the more informative vector, i.e. a�b=a; however, the fusion of
two vectors a and b such that a�b by W extension is identical with the less informative
vector, i.e. a�b=b. In this case, the FNF algorithm correctly identifies the info loss

 12

configuration and reasserts the more informative vector; however, it includes in the final
FNF a vector which is NOT maximally informative; in example (13), the maximally
informative vector wrt b, {a, b} is a and NOT a�b=b.

Hence, an extra step has to be added in the FNF algorithm:

Once the entire tree is constructed, collect all fusions and leaves in the tree; call

this set pre-FNF. Then, test in a bottom-up manner each path of the tree for W
extension entailment; that is, look only at nodes that are either leaves or have a fusion
and, if the vector of a node A is entailed by the vector of a node B, where A dominates
B, remove the vector of the node A from the set pre-FNF. FNF is the set obtained after
all paths in the tree are tested in this way and all the entailed vectors are removed from
pre-FNF 9.

Note that it makes sense to test a path only if its leaf vector contains at least one e.
The same point is established by the following set of vectors:

(14)

 1 2 3 4
a W L W W
b W L e e
c L e W e

a�b�c L L W W

The fusion b�c entails the fusion a�b�c. The FNF is {b, b�c}. Thus, the algorithm

correctly identifies that b�a by W extension and, moreover, that b�c is maximally
informative wrt both c, {a, b, c} and a, {a, b, c}.

I will now look at some examples that involve entailment by both L retraction and
W extension and show that the FNF algorithm with the extra step of bottom-up path
inspection correctly identifies and eliminates the entailed vectors.

Consider the set of vectors in (15) below, which combine entailment by L retraction
and W extension:

(15)

9 a proof has to be provided that the test for W extension should be limited only to bottom up path
inspection, i.e. that it is impossible to have two nodes A and B such that A�B by W extension and A is not
dominated by B or identical to some node C that is dominated by B.

 1 2 3 4
b W L e e
c L e W e

b�c L L W e

 1 2 3 4
b W L e e

 13

 1 2 3 4
a L W e W
b L W L e

a�b L W L W

As desired, FNF({a, b})={b}
The same welcome result is given for the set of vectors in (16) below, where L

retraction and W extension apply in a slightly more complicated fashion:

(16)

 1 2 3 4
a W L L e
b W L W W

a�b W L L W

Summarizing, the algorithm for obtaining FNF(S) is the following:

(17) The FNF(S) algorithm:
a. Info loss configurations: for a given set S of n vectors that form a matrix with m

columns and n rows, identify all the info loss configurations;
b. Branch construction and elimination: construct a branch/daughter for each info

loss configuration; each daughter contains all the vectors that have an e in that particular
info loss configuration; for any two daughters that are in a subset-superset relation,
eliminate the subset daughter;

c. Fusion of the mother node: if the union of the sets of vectors in all the daughters
is a proper subset of the set of vectors in the mother, then fuse all the vectors in the
mother node;

d. Recursion: for each daughter that has a non-singleton set of vectors, reapply the
steps (a)-(c);

e. Pre-FNF(S) formation: if all the daughters are singleton sets (or empty sets),
form the pre-FNF set, i.e. the set containing all the fusions in the tree and all the vectors
in singleton daughters;

f. W extension, path inspection and FNF(S): test in a bottom-up manner each path
of the tree for W extension entailment, i.e. look only at the nodes that are either singleton
leaves or have a fusion and, if the vector of a node A is entailed by the vector of a node
B, where A dominates B, remove the vector of the node A from pre-FNF. FNF is the set
obtained after all paths in the tree are tested and all the entailed vectors are removed.

 1 2 3 4
b L W L e

 1 2 3 4
a W L L e

 14

II.2. OBTAINING MFNF(S).

As noted in the previous section, the FNF(S) is not guaranteed to contain only

independent vectors. The set of vectors in (7/7’), repeated below, provides a relevant
example:

(7/7’)

 1 2 3 4 5 6 7
a W L W e e e W
b W L W L e e e
c e W L L L e W
d W L L e e L e

a�b�c�d W L L L L L W

FNF({a, b, c, d}) = {a�b�c�d, c, b�d}. However, a�b�c�d=c�b�d, but the step in (17f)

above (entailment by W extension) – even if not restricted to paths (!) – is not capable of
detecting this entailment; we see here an interesting consequence of the FNF algorithm
(more exactly of the interaction between branch construction based on info loss
configurations and the condition on mother node fusion): if vector c would have had an e
instead of an L in column C5, step (17f) (W extension) would have been enough to detect
the entailment. Also, it is precisely this configuration that generates two different vectors
(i.e. both b�d and c�b�d= a�b�c�d) as maximally informative wrt a, {a, b, c, d}.

This example shows that FNF is not yet a solution to the problem in (1), since the
vectors in FNF are not independent.

In order to eliminate the redundant fusion a�b�c�d from the FNF and obtain the
MFNF, a final step will be added to the algorithm in (17):

(18) MFNF(S): for all nodes that contain a fusion, fuse all the vectors in all its

daughters and check if this ‘total daughter fusion’ is the same as or entails by W
extension the mother fusion. If this is the case, remove the mother fusion from the set
FNF(S).

References:

• Prince, Alan 2002. Entailed Ranking Arguments, ROA 500.

RCD references:

• Tesar, Bruce 1995. Computational Optimality Theory, PhD Dissertation, University of
Colorado, ROA-90.

• Tesar, Bruce and Paul Smolensky 1998. Learnability in Optimality Theory, Linguistic
Inquiry 29.2, 229-268.

• Tesar, Bruce and Paul Smolensky 2000. Learnability in Optimality Theory, MIT Press.

 1 2 3 4 5 6 7
b W L W L e e e
d W L L e e L e

b�d W L L L e L e

 1 2 3 4 5 6 7
c e W L L L e W

