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MINIMAL FUSION NORMAL FORM 
 
 
I. THE PROBLEM AND THE PROPOSED SOLUTION. 
 
THE PROBLEM: For an arbitrary set of vectors S of cardinality n, S={v1, v2, …, vn}, 

find a set of vectors S’ such that: 
 
(1) i.S’ equivalent to S (where ‘equivalent’ means ‘true in the same models’, i.e. 

characterizing the same set of total constraint rankings) 
ii. all the vectors in S’ are independent (where independent means that, for every 

vector vi∈S’, there is no non-null subset of S’ which does not contain vi as a member and 
which entails vi; ‘entailment’ is defined as: the set of vectors S entails a vector v (S�v) iff 
the models in which S is true are a subset of the models in which v is true); 

iii. the vectors in S’ ‘make clear/transparent’ what is the set of models in which 
they are true, i.e. they ‘make clear/transparent’ what are the necessary and sufficient 
ranking conditions enforced by the set S (and S’). 

 
The meaning of ‘make clear/transparent’ in (1iii) is the same as the one behind the 

operation of fusion (�) in Prince 2002, namely obtaining a vector with a maximum 
number of Ls such that ranking conditions which were previously ‘hidden’ (i.e. not 
readable directly from the vector) are now ‘transparent’, i.e. directly readable from the 
vector.  

 
The elaboration of the meaning of ‘make clear/transparent’ anticipates the solution. 
 
THE PROPOSED SOLUTION: obtaining the set S’ satisfying the requirements in (1) is 

achieved through an intermediary step, namely obtaining a set S’’ of ‘maximally 
informative’ vectors corresponding to the vectors in the initial set S. 

 
(2) A vector v’ is maximally informative wrt a vector v and a set S such that v∈S 

iff: 
i. v’�v 
ii. S�v’ 
iii. ~∃v’’ (v’’≠v’ & v’’�v’ & S�v’’) 
 
For example, if S={WWLW(=a), eeWL (=b)}, the vector which is maximally 

informative wrt a and S is the vector a’=WWLL=a�b. The vector a’’=eWLL entails a’ (by 
W extension), but is not entailed by S; the same can be said about the vector LLLL, 
which entails everything but is not entailed by S unless S is inconsistent (throughout this 
paper I will consider only consistent sets of vectors). 

As suggested in the above example, a maximally informative vector is obtained by 
fusion. However, fusion is not guaranteed to yield a vector entailing any of the vectors 
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entering the fusion and I will propose a procedure for restricting it depending on the 
initial set of vectors S. 

The set S’’ obtained by such a restricted fusion will be called (for lack of a better 
name), the Fusion Normal Form of the initial set S, i.e. FNF(S). 

Once FNF(S) is obtained, we know that it is equivalent to the initial set by the 
definition of ‘maximally informative’ provided in (2). Moreover, given that we obtained 
the vectors in S’’ by restricted fusion (see below), we also know that (1iii) is satisfied. 
However, there is no guarantee that the set S’’ satisfies condition (1ii) above, i.e. that all 
the vectors in it are independent. Eliminating the entailed vectors in FNF(S) is the last 
step before obtaining the set S’, i.e. the solution to the problem. This last set will be 
called the Minimal Fusion Normal Form of the initial set S, i.e. MFNF(S). 

MFNF(S) is a possible answer to the problem in (1). 
 
The rest of the paper will provide the procedure for obtaining FNF(S) and MFNF(S) 

and relevant examples for each step of the algorithm will be given. The algorithm 
specification will also answer the two points left obscure in the above solution summary, 
namely (a) what is restricted fusion and (b) obtaining MFNF(S) from FNF(S). 

I will not provide the formal proofs that all the steps in the algorithm are necessary 
and sufficient to yield the claimed solution; also, I will not attempt a comparison with the 
RCD algorithm (see for example Tesar 1995), e.g. the usage of ‘info loss configurations’ 
– see (5) below for the definition - in RCD and in the present algorithm. 

The final version of the algorithm is given below for ease of reference: 
 
(17) The FNF(S) algorithm: 
a. Info loss configurations: for a given set S of n vectors that form a matrix with m 

columns and n rows, identify all the info loss configurations; 
b. Branch construction and elimination: construct a branch/daughter for each info 

loss configuration; each daughter contains all the vectors that have an e in that particular 
info loss configuration; for any two daughters that are in a subset-superset relation, 
eliminate the subset daughter; 

c. Fusion of the mother node: if the union of the sets of vectors in all the daughters 
is a proper subset of the set of vectors in the mother, then fuse all the vectors in the 
mother node; 

d. Recursion: for each daughter that has a non-singleton set of vectors, reapply the 
steps (a)-(c); 

e. Pre-FNF(S) formation: if all the daughters are singleton sets (or empty sets), 
form the pre-FNF set, i.e. the set containing all the fusions in the tree and all the vectors 
in singleton daughters; 

f. W extension, path inspection and FNF(S): test in a bottom-up manner each path 
of the tree for W extension entailment, i.e. look only at the nodes that are either singleton 
leaves or have a fusion and, if the vector of a node A is entailed by the vector of a node 
B, where A dominates B, remove the vector of the node A from pre-FNF. FNF is the set 
obtained after all paths in the tree are tested and all the entailed vectors are removed. 

(18) MFNF(S): for all nodes that contain a fusion, fuse all the vectors in all its 
daughters and check if this ‘total daughter fusion’ is the same as or entails by  W 



 3

extension the mother fusion.  If this is the case, remove the mother fusion from the set 
FNF(S). 

 
 
II. THE ALGORITHM FOR OBTAINING FNF(S) AND MFNF(S). 
 
II.1. OBTAINING FNF(S). 
 
FNF(S) was defined as: 
 
(3) for any set of vectors S, FNF(S) 1 is the set S’’ such that: 
i. ∀v [v∈S � ∃v’’ (v’’∈S’’ & v’’ is maximally informative wrt v, S)] 
ii. ∀v’’ [v’’∈S’’ � ∃v (v∈S & v’’ is maximally informative wrt v, S)] 
i.e. the set S’’ contains all and only the vectors that are maximally informative wrt S 

and the vectors in S. 
 
As mentioned above, I will obtain the maximally informative vectors by fusion, 

which ‘maximizes’ the number of Ls in any given vector, i.e. it replaces the maximum 
number of Ws and e-s with Ls. However, at the same time, fusion will replace e-s with 
Ws in any coordinate/column that contains no Ls and at least one W. Both fusion and 
(Kleene) conjunction are defined as the min function applied to an input pair of truth 
values in a trivalent logic: 

 
(4) i. conjunction (∧): for any x, y in the set {L, e, W}, x∧y=min(x, y) wrt the total 

order L<e<W 2; 
ii. fusion (�): for any x, y in the set {L, e, W}, x�y=min(x, y) wrt the total order 

L<W<e 3, 4. 
 
Conjunction is info preserving, i.e. x∧y � {x, y}, but very often useless, since in 

many cases the conjunction of a consistent vectors is a member of L+ 5. 
Fusion is better equipped to locally maximize information and make ‘overt/ 

transparent’ implicit ranking conditions while, at the same time, avoiding to make the 
result a member of L+ (as long as the input is a consistent set of vectors). However, 

                                                 
1 It seems like the cardinality of FNF(S) is at most equal to the cardinality of S; however, see (7/7’) below 
for an example in which there can be two maximally informative vectors wrt the same vector and set; it 
seems more likely that MFNF(S) has a cardinality less than or equal to the cardinality of S. 
2 I use ‘∧’ as the symbol for conjunction in the object language, reserving ‘&’ for the metalanguage. 
3 the two definitions suggest that fusion can be defined in terms of conjunction and ‘restricted’ W 
extension: consider the vectors a=eWLe, b=eeWL; a∧b=eeLL and a�b=eWLL; blindly applying W 
extension to a∧b can yield WeLL or WWLL; the ‘restriction’ on W extension is the following: do W 
extension only in the coordinate i of  the conjunction that (a) contains an e and (b) the column i in the 
(matrix) input contains only e-s and at least one W; the ‘restriction’ on w extension is basically the same as 
the  ‘info loss configuration’ that is defined in the main text and which is central in obtaining the FNF of a 
set S. 
4 fusion and conjunction can be recursively defined for an arbitrary set of vectors taking the definitions in 
(4) as the basic case 
5 I will take L+ to be the set of words over the alphabet {e, L}, i.e. {e, L}*; see also Prince 2002. 
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fusion is not info-preserving, i.e. it is not generally the case that x�y � {x, y}, although 
the other direction of the entailment always holds, i.e. {x, y} � x�y 6. 

It is precisely the input {e, W} that causes fusion to loose information (the same 
diagnostic is implicit in the notion of W compliance in Prince 2002); thus, whenever we 
fuse a column/coordinate that contains an e and a W, the row/vector that contains the e 
will be ‘weakened’ by the addition of a W, i.e. of one extra disjunction. Generally, I will 
define ‘info loss configuration’ as: 

 
(5) a column/coordinate in a set/matrix of vectors that contains no Ls and at least 

one W is an info loss configuration. 
 
Hence, in fusing vectors, one should note all the info loss configurations and 

‘reassert’ the vectors that have an e in an info loss configuration, since those vectors 
contain the information that is lost in the fusion. 

An example will make the above observations clearer. Consider the set of vectors 
given in (6) below: 

 
(6) 

 1 2 3 4 5 
a W L e e W 
b e W L W L 
c e e W L W 

a�b�c W L L L L 
 
Given the set of vectors (the matrix) in (6), we look for the info loss configurations 

and we identify one in column 1, i.e. in the column of the constrain C1. Vectors b and c 
have an e in that column so, if we are to fuse all three vectors a�b�c, we will loose 
information in those vectors; hence, they need to be reasserted. However, as far as vector 
a is concerned, the fusion only adds information. Actually, a�b�c is maximally 
informative wrt vector a and the set {a, b, c}. 

 
Since the set of all reasserted vectors is a subset of the vectors in the mother node, 

it makes sense to fuse all the vectors in the mother in order to obtain a maximally 
informative vector; if the set of all reasserted vectors (i.e. the vectors in the daughters) 
equals the set of vectors in the mother node, fusing the vectors in the mother node 
would not maximize the information in any vector, hence it would be useless. 

 
The next step is to reassert vectors b and c, as in (6’) below. 
 
(6’)  

 1 2 3 4 5 
a W L e e W 

                                                 
6 unlike in the case of conjunction (!) – consider a consistent set of vectors {x, y} (where consistent means 
that it is satisfiable by at least one model, i.e. there is at least one model/constraint ranking in which is is 
true) whose conjunction is a member of L+; a member of L+ is not satisfiable by any model, i.e. it is false in 
all models, i.e. it characterizes the empty set of constraint rankings; hence, it is not the case that {x, y} � 
x∧y. 
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b e W L W L 
c e e W L W 

a�b�c W L L L L 
 
 

 1 2 3 4 5 
b e W L W L 
c e e W L W 

b�c e W L L L 
 
Looking at b and c, we identify an info loss configuration in column 2, i.e. 

constraint C2; thus, fusing b and c will maximize the information in vector b - b�c is 
maximally informative wrt b and {a, b, c} (not only {b, c}); however, the fusion will 
loose information in vector c, which needs to be reasserted, as in (6’’) below: 

 
(6’’)  

 1 2 3 4 5 
a W L e e W 
b e W L W L 
c e e W L W 

a�b�c W L L L L 
 
 

 1 2 3 4 5 
b e W L W L 
c e e W L W 

b�c   e W L L L 
 
 

 1 2 3 4 5 
c e e W L W 
       

 
The FNF is obtained by putting together all the leaves of the tree thus obtained 

and all the fusions (if any) found at the nonterminal nodes. 
 
For the set of vectors in example (6), FNF({a, b, c}) = {a�b�c, b�c, c}. It so happens 

that all these vectors are independent, hence FNF({a, b, c}) = MFNF({a, b, c}) = {a�b�c, 
b�c, c}. 

A more complicated example can illustrate additional complications in the 
algorithm and, at the same time, highlight one of its central benefits. Consider the set of 
vectors in (7) below: 

 
(7)  

 1 2 3 4 5 6 7 
a W L W e e e W 
b W L W L e e e 
c e W L L L e W 
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d W L L e e L e 
         

 
We identify 2 info loss configurations (C1 and C7), so we construct 2 branches in 

the tree, one for each info loss configuration. 
However, before doing that, note the logical relations between the vectors in (7): 

b�a, b�d�b(�a) and b�d�d (note that b and d are W compliant). The fusion b�d is 
capable of sweeping through the tableau/matrix in (7) and eliminate a considerable 
amount of redundancies – this being one of the great advantages of fusion as 
characterized in Prince 2002. The general problem is to identify such fusions, given an 
arbitrary set of vectors – and the algorithm for obtaining FNF seems capable of solving 
this problem. 

 
After identifying the info loss configurations, the next step in obtaining FNF(S) 

consists in constructing a branch for each info loss configuration and reassert the 
vectors that loose information in each such configuration. 

 
(7’) 

 1 2 3 4 5 6 7 
a W L W e e e W 
b W L W L e e e 
c e W L L L e W 
d W L L e e L e 

a�b�c�d  W L L L L L W 
 

 
 

 
On the second branch of the tree, i.e. on the branch which reasserts b and d, we look 

again for an info loss configuration (C1); this info loss configuration does not contain any 
e, so no vectors need to be reasserted; since the set of reasserted vectors (i.e. the empty 
set) is a subset of the vectors in the mother (i.e. the set {b, d}), we fuse the two vectors 
and the fusion b�d is maximally informative with respect to both b and d; this is how the 
present algorithm captures W compliance. 

On the first branch we are left with only one vector (c), hence we stop. 
FNF({a, b, c, d}) = {a�b�c�d, c, b�d} 
As anticipated, the FNF algorithm identifies the ‘powerful’ fusion b�d. However, 

we lost part of its ‘power’, namely the entailment b�d�a. Thus, the minimal set 
equivalent to the initial set is actually MFNF(S)={c, b�d} and FNF(S) contains the 
redundant fusion a�b�c�d.  

Example (7) establishes the point that FNF is not yet a solution to the problem in 
(1), since the vectors in FNF are not independent. Hence, an independent mechanism is 

 1 2 3 4 5 6 7 
b W L W L e e e 
d W L L e e L e 

b�d  W L L L e L e 

 1 2 3 4 5 6 7 
c e W L L L e W 
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needed to ‘prune’ such redundant vectors in FNF; as we will see later on, all such 
redundancies can be linked more or less directly to entailment by W extension 7.  

(The key to eliminate the redundant fusion a�b�c�d will be the requirement that, at 
each step of constructing daughters/branches for a mother node which contains a fusion 
(remember that a mother node contains a fusion iff the set of vectors in the daughters is a 
proper subset of the set of vectors in the mother), one should fuse all the vectors in 
daughters and check if this ‘total daughter fusion’ is the same as or entails by W 
extension the fusion in the mother. In the present example, note that the ‘total daughter 
fusion’ c�b�d is the same as the mother fusion a�b�c�d.) 

 
Example (7) makes the additional point that, given a vector v and a set S (v∈S), 

there might be more than one vector which is maximally informative wrt v, S (according 
to the definition in (2)). Thus, the vector a�b�c�d is maximaly informative wrt a, {a, b, c, 
d} and the vector b�d is also maximally informative wrt a, {a, b, c, d}. In particular, note 
that b�d does not entail a�b�c�d and a�b�c�d does not entail b�d. 

As far as I know, there is no principled way to identify that in FNF({a, b, c, d}) = 
{a�b�c�d, c, b�d} there are two vectors maximally informative wrt the same vector a. 

 
I will examine two more things before giving the final form of the FNF(S) 

algorithm; first, I will look at certain sets of info loss configurations and improve the ‘tree 
construction’ procedure suggested above; second, I will look at how the algorithm fares 
wrt initial sets of vectors that contain entailments by W extension and L retraction. 

 
Info loss configurations, ‘branch elimination’ and maximum number of 

branches/daughters per node. 
Consider the vectors in (8) below: 
 
(8) 

 1 2 3 4 5 
a W L e W W 
b e W L e e 
c e e L W e 
      

 
There are 3 info loss configurations in (8), namely C1, C4 and C5. The algorithm as 

previously stated would have to construct a branch/daughter for all three of them; 
however, the third daughter corresponding to C5 would just repeat the first daughter, 
hence it would be redundant as far as FNF goes. Moreover, the second daughter would 
contain only {b} which is a subset of the set in the first daughter {b, c} – hence, 
constructing a branch for C2 would be again redundant, since that branch will certainly be 
a sub-branch of the daughter corresponding to C1. 

 

                                                 
7 the algorithm as developed up until now is incapable of ‘detecting’ entailment by W extension, although it 
can ‘detect’ and eliminate all entailments/redundancies based on L retraction – this is due to the nature of 
fusion and to our definition of info loss configuration; more about this later. 
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Thus, at any point in the construction of the tree, there should be a ‘branch 
elimination’ step, requiring that, for all info loss configurations that would license 
daughter nodes that contain set of vectors in the subset-superset relation, construct a 
branch only for the info loss configuration that licenses the superset. 

 
Thus, the next step in the algorithm is to construct only one branch/daughter 

containing the set {b, c}. Moreover, since the set of vectors in the daughters is a proper 
subset of the vectors in the mother node, we fuse the vectors in the mother node, as in 
(8’) below: 

 
(8’) 

 1 2 3 4 5 
a W L e W W 
b e W L e e 
c e e L W e 

a�b�c W L L W W 
 
 

 1 2 3 4 5 
b e W L e e 
c e e L W e 
      

 
At this point, we identify two info loss configurations in the daughter, namely C2 

and C4. For each of them, we construct a branch, each containing a single vector (b and c 
respectively); since all the daughters in all the branches are singleton sets, the 
computation stops and FNF({a, b, c}) ={a�b�c, b, c}. 

 
However, there is one thing in (8’) suggesting that the computation should stop and 

that all the vectors in the set {b, c} are in the final FNF: given the info loss configurations 
in the set {b, c} we should construct a number of branches/daughters equal to the number 
of vectors in the mother node even after branch elimination. 

There seems to be a generalization at work: if, after the application of ‘branch 
elimination’ (see the discussion above), the number of daughters to be constructed for a 
mother node is equal to or greater than the number of vectors in the mother node, then 
the mother node is a subset of the final FNF, i.e. all the vectors in the mother node should 
be added to the FNF. 

The generalization seems confirmed by the sets of vectors in (9) and (10) below. 
 
(9)  

 1 2 3 4 5 
a W e L e e 
b e W L e e 
c e e W L W 
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The FNF of the set in (9) is identical to the initial set of vectors. A similar 

computation yields a FNF identical to the initial set in (10) below – where the number of 
branches is greater than the number of vectors of the mother node 8. 

 
 
 
(10) 

 1 2 3 4 5 6 
a W W e W e L 
b W e W e W L 
c e W W e e L 
d e e e W W L 
       

 
However, the set of vectors in (11) below provides a counterexample to the 

proposed generalization: 
 
(11) 

 1 2 3 4 5 6 7 8 
a e e e W e L W e 
b e e W e e L L W 
c e W e e W L e W 
d W e e e W L e e 
e W W W W e L W L 
         

 
We have to construct 5 branches. 
The 1st branch is C1: 
 

C1 1 2 3 4 5 6 7 8 
a e e e W e L W e 
b e e W e e L L W 
c e W e e W L e W 
         

 

                                                 
8 I am indebted to Alan Prince for pointing out a major error in my previous observations about these 
matters. 

 1 2 3 4 5 
b e W L e e 
c e e W L W 
      

 1 2 3 4 5 
a W e L e e 
c e e W L W 
      

 1 2 3 4 5 
a W e L e e 
b e W L e e 
      

 1 2 3 4 5 
c e e W L W 
      

 1 2 3 4 5 
a W e L e e 
      

 1 2 3 4 5 
b e W L e e 
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Looking at the info loss configurations in C2, C3 and C4, we see that this case is 
similar to the one in (9), hence it will ‘break up’ in the set {a, b, c}. 

The 2nd branch is C2: 
 

C2 1 2 3 4 5 6 7 8 
a e e e W e L W e 
b e e W e e L L W 
d W e e e W L e e 
         

 
Again, the info loss configurations in C1, C3 and C4 reduce this branch to (9), i.e. to 

the set {a, b, d}. 
The 3rd branch is C3: 
 

C3 1 2 3 4 5 6 7 8 
a e e e W e L W e 
c e W e e W L e W 
d W e e e W L e e 
         

 
The info loss configurations in C1, C2 and C4 reduce this branch to (9), i.e. to the set 

{a, c, d}. 
The 4th branch is C4: 
 

C4 1 2 3 4 5 6 7 8 
b e e W e e L L W 
c e W e e W L e W 
d W e e e W L e e 
         

 
The info loss configurations in C1, C2 and C3 reduce this branch to (9), i.e. to the set 

{b, c, d}. 
The 5th branch is C5: 
 

C5 1 2 3 4 5 6 7 8 
a e e e W e L W e 
b e e W e e L L W 
e W W W W e L W L 

a�b�e W W W W e L L L 
 
 
 
 
  
 
 
 
 

 1 2 3 4 5 6 7 8 
a e e e W e L W e 
b e e W e e L L W 
         

 1 2 3 4 5 6 7 8 
a e e e W e L W e 
         

 1 2 3 4 5 6 7 8 
b e e W e e L L W 
         



 11

 
 
Thus, the final FNF({a, b, c, d, e}) = {a, b, c, d, a�b�e}, despite constructing 5 

branches for the top node of the tree. 
I do not know whether the generalization suggested above (linking the number of 

vectors in a node and the maximum possible number of daughters for that node after 
‘branch elimination’) captures a real regularity; if something like the above 
generalization is true, the complexity of the FNF algorithm will be more tightly limited 
by the number of initial vectors. As it stands, the algorithm predicts that the maximum 
number of branches for a node with n vectors (after ‘branch elimination’) is: (a) n choose 
n/2 for n an even natural number and (b) n choose (n-1)/2 (equal to n choose (n+1)/2) for 
n an odd natural number. 

In any case, note that the number of branches for a given node does not depend on 
the number of constraints, but only on the number of vectors. 

 
I will now turn to the examination of initial sets of vectors that contain entailments 

by L retraction or/and W extension. 
Consider the set of vectors in (12) below, in which a entails b by L retraction: 
 
(12) 

 1 2 3 
a W L L 
b W L e 

a�b   W L L 
 
As expected, if there are vectors entailed by L retraction only, they are W compliant 

and the FNF algorithm successfully identifies and ‘reduces’ them to the more informative 
vector. 

However, due to the definition and role of fusion and info loss configuration, the 
FNF algorithm cannot identify and eliminate vectors that are entailed by W extension, as 
shown by (13) below: 

 
(13) 

 1 2 3 
a e W L 
b W W L 

a�b   W W L 
 
 

 1 2 3 
a e W L 
     

 
By the definition of fusion, the fusion of two vectors a and b such that a�b by L 

retraction is identical with the more informative vector, i.e. a�b=a; however, the fusion of 
two vectors a and b such that a�b by W extension is identical with the less informative 
vector, i.e. a�b=b. In this case, the FNF algorithm correctly identifies the info loss 
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configuration and reasserts the more informative vector; however, it includes in the final 
FNF a vector which is NOT maximally informative; in example (13), the maximally 
informative vector wrt b, {a, b} is a and NOT a�b=b. 

Hence, an extra step has to be added in the FNF algorithm: 
 
Once the entire tree is constructed, collect all fusions and leaves in the tree; call 

this set pre-FNF. Then, test in a bottom-up manner each path of the tree for W 
extension entailment; that is, look only at nodes that are either leaves or have a fusion 
and, if the vector of a node A is entailed by the vector of a node B, where A dominates 
B, remove the vector of the node A from the set pre-FNF. FNF is the set obtained after 
all paths in the tree are tested in this way and all the entailed vectors are removed from 
pre-FNF 9. 

 
Note that it makes sense to test a path only if its leaf vector contains at least one e. 
The same point is established by the following set of vectors: 
 
(14) 

 1 2 3 4 
a W L W W 
b W L e e 
c L e W e 

a�b�c L L W W 
 
 
 
 
 
 
 
 
 
 
 
The fusion b�c entails the fusion a�b�c. The FNF is {b, b�c}. Thus, the algorithm 

correctly identifies that b�a by W extension and, moreover, that b�c is maximally 
informative wrt both c, {a, b, c} and a, {a, b, c}. 

I will now look at some examples that involve entailment by both L retraction and 
W extension and show that the FNF algorithm with the extra step of bottom-up path 
inspection correctly identifies and eliminates the entailed vectors. 

Consider the set of vectors in (15) below, which combine entailment by L retraction 
and W extension: 

 
(15) 

                                                 
9 a proof has to be provided that the test for W extension should be limited only to bottom up path 
inspection, i.e. that it is impossible to have two nodes A and B such that A�B by W extension and A is not 
dominated by B or identical to some node C that is dominated by B. 

 1 2 3 4 
b W L e e 
c L e W e 

b�c L L W e 

 1 2 3 4 
b W L e e 
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 1 2 3 4 
a L W e W 
b L W L e 

a�b L W L W 
 
 
 
 
 
 
As desired, FNF({a, b})={b} 
The same welcome result is given for the set of vectors in (16) below, where L 

retraction and W extension apply in a slightly more complicated fashion: 
 
(16)  

 1 2 3 4 
a W L L e 
b W L W W 

a�b W L L W 
 
 
 
 
 
 
Summarizing, the algorithm for obtaining FNF(S) is the following: 
 
(17) The FNF(S) algorithm: 
a. Info loss configurations: for a given set S of n vectors that form a matrix with m 

columns and n rows, identify all the info loss configurations; 
b. Branch construction and elimination: construct a branch/daughter for each info 

loss configuration; each daughter contains all the vectors that have an e in that particular 
info loss configuration; for any two daughters that are in a subset-superset relation, 
eliminate the subset daughter; 

c. Fusion of the mother node: if the union of the sets of vectors in all the daughters 
is a proper subset of the set of vectors in the mother, then fuse all the vectors in the 
mother node; 

d. Recursion: for each daughter that has a non-singleton set of vectors, reapply the 
steps (a)-(c); 

e. Pre-FNF(S) formation: if all the daughters are singleton sets (or empty sets), 
form the pre-FNF set, i.e. the set containing all the fusions in the tree and all the vectors 
in singleton daughters; 

f. W extension, path inspection and FNF(S): test in a bottom-up manner each path 
of the tree for W extension entailment, i.e. look only at the nodes that are either singleton 
leaves or have a fusion and, if the vector of a node A is entailed by the vector of a node 
B, where A dominates B, remove the vector of the node A from pre-FNF. FNF is the set 
obtained after all paths in the tree are tested and all the entailed vectors are removed. 

 1 2 3 4 
b L W L e 
     

 1 2 3 4 
a W L L e 
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II.2. OBTAINING MFNF(S). 
 
As noted in the previous section, the FNF(S) is not guaranteed to contain only 

independent vectors. The set of vectors in (7/7’), repeated below, provides a relevant 
example:  

 
(7/7’) 

 1 2 3 4 5 6 7 
a W L W e e e W 
b W L W L e e e 
c e W L L L e W 
d W L L e e L e 

a�b�c�d  W L L L L L W 
 

 
 

 
FNF({a, b, c, d}) = {a�b�c�d, c, b�d}. However, a�b�c�d=c�b�d, but the step in (17f) 

above (entailment by W extension) – even if not restricted to paths (!) – is not capable of 
detecting this entailment; we see here an interesting consequence of the FNF algorithm 
(more exactly of the interaction between branch construction based on info loss 
configurations and the condition on mother node fusion): if vector c would have had an e 
instead of an L in column C5, step (17f) (W extension) would have been enough to detect 
the entailment. Also, it is precisely this configuration that generates two different vectors 
(i.e. both b�d and c�b�d= a�b�c�d) as maximally informative wrt a, {a, b, c, d}. 

This example shows that FNF is not yet a solution to the problem in (1), since the 
vectors in FNF are not independent. 

In order to eliminate the redundant fusion a�b�c�d from the FNF and obtain the 
MFNF, a final step will be added to the algorithm in (17): 

 
(18) MFNF(S): for all nodes that contain a fusion, fuse all the vectors in all its 

daughters and check if this ‘total daughter fusion’ is the same as or entails by  W 
extension the mother fusion.  If this is the case, remove the mother fusion from the set 
FNF(S). 

 
 
References: 

• Prince, Alan 2002. Entailed Ranking Arguments, ROA 500. 
 
RCD references: 

• Tesar, Bruce 1995. Computational Optimality Theory, PhD Dissertation, University of 
Colorado, ROA-90. 

• Tesar, Bruce and Paul Smolensky 1998. Learnability in Optimality Theory, Linguistic 
Inquiry 29.2, 229-268. 

• Tesar, Bruce and Paul Smolensky 2000. Learnability in Optimality Theory, MIT Press. 

 1 2 3 4 5 6 7 
b W L W L e e e 
d W L L e e L e 

b�d  W L L L e L e 

 1 2 3 4 5 6 7 
c e W L L L e W 
         


