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Motivating Dynamic Semantics

A sentence is not an island.

Sentences are embedded in larger 
discourses. 
They are anaphorically related to 
other sentences in the same discourse.
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Motivating Dynamic Semantics

For example:

(1) John owns a donkey. He feeds it at night.

Notice the anaphoric connection between the 
indefinite NP ‘a donkey’ and the subsequent 
pronoun ‘it’.
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Motivating Dynamic Semantics

(2) is a good (enough) paraphrase of (1):

(2) John owns a donkey. John feeds it at night.
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Motivating Dynamic Semantics

But neither (3) nor (4) is as good:

(3) John owns a donkey. John feeds a donkey
at night.

(4) John owns Benjamin (the donkey). John
feeds Benjamin at night.
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Motivating Dynamic Semantics

Can’t seem to eliminate the pronoun ‘it’
(bound by the indefinite ‘a donkey’) from 
(1).
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Motivating Dynamic Semantics

This becomes a problem once we decide to 
regiment (1) in the notation of First-Order Logic 
(FOL):

(5)
 

∃x(donkey(x) ∧
 

owns(John, x))      feeds(John, x)

(6)
 

∃x(donkey(x) ∧
 

owns(John, x)) ∧
 

feeds(John, x)
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Motivating Dynamic Semantics

What we want:

(7)
 

∃x(donkey(x) ∧
 

owns(John, x) ∧
 

feeds(John, x))



9

Motivating Dynamic Semantics

The problem is that, to get this meaning, we 
must first compose a part of the first sentence 
with the second sentence, and then combine 
what we have with the remaining part of the 
first sentence:

(7): [a donkey] [John owns][He feeds it]
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Motivating Dynamic Semantics

If we restrict ourselves to completing 
sentences before we compose them with 
other sentences, then the best we can do 
is (6).

(6): [John owns][a donkey] [He feeds it]
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Motivating Dynamic Semantics

Who needs it? Discourse semantics is too 
hard. I’m going to stick with the 
semantics of sentences.



12

Motivating Dynamic Semantics

But the donkey is known for its 
stubbornness…

(8) If John owns a donkey, he feeds it.
(9) Every farmer who owns a donkey   

feeds it.
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Motivating Dynamic Semantics

Incorrect first-orderizations:

(10) ∃x(donkey(x) ∧
 

owns(John, x))
 

→
feeds(John, x)

(11) ∀y(∃x(farmer(y) ∧
 

donkey(x) ∧
 

owns(y, x)))
→ feeds(John, x))

In both, the final ‘x’
 

is not in the scope of ‘∃x’.
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Motivating Dynamic Semantics

Correct first-orderizations:

(12) ∀x(donkey(x) ∧
 

owns(John, x) →
feeds(John, x))

(13) ∀y∀x(farmer(y) ∧
 

donkey(x) ∧
 

owns(y, x) 
→ feeds(John, x))
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Motivating Dynamic Semantics

Moral: the limitations of FOL (on the 
standard semantics) can be seen even 
within sentences.

Nor are ‘donkey’ sentences rare animals.
They are as common as the beast of 
burden itself.
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Motivating Dynamic Semantics

A solution:
‘Dynamic semantics’
[due (independently) to Kamp (1981) and
Heim (1982)]

What is dynamic semantics?
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Dynamic Semantics

Consider the phenomenon of context-
sensitivity.

The same sentence can be true or false, 
depending on the context.
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Dynamic Semantics

‘I am standing.’

True as uttered by Adrian.
False as uttered by Chris.
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Dynamic Semantics

The meaning of a sentence can be 
thought of as a function (cf. Kaplan 
(1989)),

that takes in a context…
…and gives back a truth-value (T or F).
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Dynamic Semantics

A parallel phenomenon.

Right now, the sentence below is false:

‘Chris said that snow is black.’
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Dynamic Semantics

But now Chris says, ‘Snow is black.’

In the context arising immediately after
his utterance, the earlier sentence is true:

‘Chris said that snow is black.’
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Dynamic Semantics

Call the context immediately before 
Chris’s utterance ‘Snow is black’, c1 .

And call the context immediately after 
Chris’s utterance, c2 .
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Dynamic Semantics

Clearly, the sentence ‘Chris said snow 
is black’ is context-sensitive, since it is 
true in c2 but not in c1 .
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Dynamic Semantics

Equally clearly, Chris’s utterance of 
‘Snow is black’ changed the context from 
c1 to c2 .

(c1 must differ from c2 since it delivers a 
different truth-value to the sentence 
above).
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Dynamic Semantics

Dynamic semantics takes the semantics 
of context-sensitivity one step further, to 
a semantics of context change.
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Dynamic Semantics

According to dynamic semantics, the 
meaning of a sentence is an ‘update’,

that takes in a context,
and gives back a …

CONTEXT.
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Dynamic Semantics

But hang on, what does this new view of 
meaning have to do with the problems with 
which we began?

(1) John owns a donkey. He feeds it at night.
(8) If John owns a donkey, he feeds it.
(9) Every farmer who owns a donkey feeds it.
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Dynamic Semantics

Take the first case:

(1) John owns a donkey. He feeds it at night.

We want it to translate into the FOL:

(7)
 

∃x(donkey(x) ∧
 

owns(John, x) ∧
 

feeds(John, x))
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Dynamic Semantics

But the best we can do (compositionally) 
is:

(6)
 

∃x(donkey(x) ∧
 

owns(John, x)) ∧
 

feeds(John, x)
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Dynamic Semantics

What if I told you that, on a dynamic 
semantics for FOL, the following 
equivalence holds:

∃x(φ) ∧ ψ
 

⇔DS

 

∃x(φ ∧ ψ)
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Dynamic Semantics

Since (6) and (7) fit the schema on the left and 
right hand sides, respectively, they are 
equivalent on dynamic semantics:

∃x(donkey(x) ∧
 

owns(John, x)) ∧
 

feeds(John, x)
⇔DS

∃x(donkey(x) ∧
 

owns(John, x) ∧
 

feeds(John, x))
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Dynamic Semantics

The equivalence means that indefinites can bind 
indefinitely rightwards across ∧’s:

∃x(φ) ∧ ψ ∧ ξ ∧ χ
⇔DS

 

∃x(φ ∧ ψ) ∧ ξ ∧ χ
⇔DS

 

∃x(φ ∧ ψ ∧ ξ) ∧ χ
⇔DS

 

∃x(φ ∧ ψ ∧ ξ ∧ χ)
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Dynamic Semantics

And what about the other cases?

(8) If John owns a donkey, he feeds it.
(9) Every farmer who owns a donkey   

feeds it.
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Dynamic Semantics

For these the equivalence below will 
suffice:

∃x(φ) → ψ
 

⇔DS

 

∀x(φ → ψ)

(Only w/o the usual restriction to cases 
where ‘ψ’

 
doesn’t contain ‘x’

 
free.)
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Dynamic Semantics

The 2nd equivalence allows us to turn 
existentials in the antecedent of a conditional 
into universals taking scope over the whole 
conditional (but no further).

∃x(donkey(x) ∧
 

owns(John, x)) → feeds(John, x)
⇔DS

∀x(donkey(x) ∧
 

owns(John, x) → feeds(John, x))
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Dynamic Semantics

∀y(∃x(farmer(y) ∧
 

donkey(x) ∧
 

owns(y, x)) 
→ feeds(y, x))

⇔DS

∀y∀x(farmer(y) ∧
 

donkey(x) ∧
 

owns(y, x)
→ feeds(y,

 
x))
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Dynamic Semantics

We will now construct a dynamic 
semantics for FOL on which these hold:

∃x(φ) ∧ ψ⇔DS

 

∃x(φ ∧ ψ)

∃x(φ) → ψ⇔DS

 

∀x(φ → ψ)
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Dynamic Predicate Logic (DPL)

The particular version of dynamic 
semantics we will look at is Dynamic 
Predicate Logic (DPL – Groenendijk & 
Stokhof 1991).
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DPL: The Plan.

semantic values in DPL vs. FOL

- definition of DPL semantics
- relations between DPL connectives
- formula equivalence in DPL:

∃x(φ) ∧ ψ⇔ ∃x(φ ∧ ψ)
∃x(φ) →ψ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs) 
in DPL
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Dynamic Predicate Logic (DPL)

DPL semantics is minimally different from 
the standard Tarskian semantics for 
first-order logic.

instead of interpreting a formula as a set of 
variable assignments (i.e. the set of variable 
assignments that satisfy the formula in the 
given model), we interpret it as a binary 
relation between assignments.
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DPL: Semantics.

Why binary relations between assignments?

For our narrow purposes (i.e. cross-sentential 
and ‘donkey’ anaphora), a variable 
assignment is an effective model of a context.

All we ask from a context here is that it keep 
track of anaphoric relations – hence 
assignments.



42

DPL: Semantics.

Why a binary relation between assignments? 

Dynamic semantics associates a sentence with 
the manner in which it updates any context 
(i.e. its context change potential).

The update is modeled as a relation (not a 
function) because it is non-deterministic:

updating from a context c1 has different 
possible outcomes.
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DPL: Semantics.

c2 [Benjamin]
C1 c3 [Lucius]

c4 [Patience]

‘John owns a donkey’,

where John actually owns three donkeys:
Benjamin, Lucius and Patience.
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DPL: The Plan.

√
 

semantic values in DPL vs. FOL

definition of DPL semantics

- relations between DPL connectives
- formula equivalence in DPL:

∃x(φ) ∧ ψ⇔ ∃x(φ ∧ ψ)
∃x(φ) →ψ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs) in DPL
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DPL: Semantics.

The definition of the DPL interpretation 
function ║φ║DPL

M relative to a standard 
first-order model M=<DM, IM>, where:

D is the domain of entities
I is the interpretation function which 
assigns to each n-place relation R

 
a subset 

of Dn:
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DPL: Semantics.

1. For any pair of M-variable assignments <g, h>:
a. Atomic formulas (lexical relations and 

identity):

║R(x1

 

, …, xn

 

)║<g, h>

 
= T iff

g=h
 

and <g(x1

 

), …, g(xn

 

)>∈I(R)
║x1

 

=x2

 

║<g, h>

 
= T iff

g=h
 

and g(x1

 

)=g(x2

 

)
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DPL: Semantics.

b. Connectives:

Dynamic Conjunction

║φ ∧ ψ║<g, h>

 
= T iff  

there is a k
 

s.t.║φ║<g, k>

 
= T and ║ψ║<k, h>

 
= T
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DPL: Semantics.

Dynamic Negation

║~φ║<g, h>

 
= T iff 

g=h
 

and there is no k
 

s.t. ║φ║<g, k>

 
= T

i.e. ║~φ║<g, h>

 
= T iff g=h

 
and g∉Dom(║φ║), 

where:
Dom(║φ║) := {g: there is an h

 
s.t. ║φ║<g, h>

 
= T}
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DPL: Semantics.

c. Existential Quantifier:

║∃x(φ)║<g, h>

 
= T iff

there is a k
 

s.t. g[x]k and ║φ║<k, h>

 
= T

where g[x]k means that k
 

differs from g
 

at most with 
respect to the value it assigns to x, 

i.e. for any variable υ, if υ≠x
 

then g(υ)=k(υ).
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DPL: Semantics.

d. Truth:
A formula φ

 
is true with respect to an input 

assignment g
 

iff 
there is an output assignment h

 
s.t. ║φ║<g, h>

 
= T

i.e. φ
 

is true with respect to g
 

iff   g∈Dom(║φ║).

NB: Dynamic meanings are more fine-grained
 

than 
truth-conditions.
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DPL: Semantics.

Dynamic Conjunction:

-
 

not commutative: 
║~Fx

 
∧ ∃x(Fx)║

 
≠

 
║∃x(Fx)

 
∧

 
~Fx║

Exercise: Prove this.
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DPL: Semantics.

Dynamic Conjunction:

-
 

not idempotent:
║~Fx

 
∧ ∃x(Fx)║

 
≠

 
║~Fx

 
∧ ∃x(Fx)

 
∧

 
~Fx

 
∧ ∃x(Fx)║

Exercise: Prove this.
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DPL: The Plan.

√
 

semantic values in DPL vs. FOL
√

 
definition of DPL semantics

relations between DPL connectives

- formula equivalence in DPL:
∃x(φ) ∧ ψ⇔ ∃x(φ ∧ ψ)
∃x(φ) →ψ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs) in DPL
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DPL: Abbreviations.

2.a. Abbreviations – connectives:

Anaphoric closure: !φ
 

:= ~~φ

i.e. ║!φ║={<g, h>: g=h
 

and g∈Dom(║φ║)} 

Exercise: Prove this.
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DPL: Abbreviations.

2.a. Abbreviations – connectives:

Disjunction: φ ∨ ψ := ~(~φ ∧ ~ψ)

i.e.║φ ∨ ψ║={<g, h>: g=h
 

and 
g ∈

 
Dom(║φ║)∪Dom(║ψ║)}

Exercise: Prove this.



56

DPL: Abbreviations.

Implication: φ → ψ := ~(φ ∧ ~ψ)

i.e. ║φ → ψ║={<g, h>: g=h
 

and 
for any k

 
s.t.║φ║<g, k>

 
= T, 

there is an l
 

s.t.║ψ║<k, l>

 
= T}

Exercise: Prove this.
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DPL: Abbreviations.
Implication as inclusion:
║φ → ψ║={<g, h>: g=h

 
and g║φ║

 
⊆

 
Dom(║ψ║)} 

where
 

g║φ║
 

:= {h: ║φ║<g, h>

 
= T} = {h: <g, h>∈║φ║}

Exercise: Prove this.

NB: we freely switch between 3 different notations

║φ║<g, h>

 
= T    iff

 
<g, h>∈║φ║

 
iff

 
g║φ║h
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DPL: Abbreviations.

b. Abbreviation – universal quantifier:

∀x(φ) := ~∃x(~φ)

i.e. ║∀x(φ)║={<g, h>: g=h
 

and 
for any k

 
s.t. g[x]k, 

there is an l
 

s.t.║φ║<k, l>

 
= T}

Exercise: Prove this.
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DPL: Abbreviations.

Exercise: 
Show that ║∀x(φ)║

 
= ║[x] → φ ║, where:

║[x]║
 

= {<g, h>: for any variable υ, 
if υ≠x

 
then g(υ)=h(υ)}
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DPL: The Plan.

√
 

semantic values in DPL vs. FOL
√

 
definition of DPL semantics

√
 

relations between DPL connectives

formula equivalence in DPL:
∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)
∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs) in DPL
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DPL: Equivalence.

Let’s return to the general equivalences we wanted 
to prove.

Equivalence:
Two formulas are DPL-equivalent, symbolized as 

'⇔DPL

 

', iff they denote the same set of pairs of 
variable assignments,

i.e. iff they denote the same binary relation over 
assignments.
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DPL: Equivalence.

That is:
φ ⇔DPL

 

ψ
 

iff

║φ║DPL

 

= ║ψ║DPL

i.e., for any pair of assignments <g, h>,
 g║φ║h

 
iff

 
g║ψ║h

i.e. ║φ║<g, h> =║ψ║<g, h> = T or 
║φ║<g, h> =║ψ║<g, h> = F
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DPL: Equivalence.

Since DPL denotations determine truth-conditions, 
two DPL-equivalent formulas will have the same 
truth-conditions.

Recall that:
φ

 
is true

 
with respect to g

 
iff     g∈Dom(║φ║).

Thus: 
Suppose φ ⇔ ψ. Then ║φ║

 
= ║ψ║. 

Then Dom(║φ║) = Dom(║ψ║).
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).
∃x(φ) ∧ ψ⇔DPL

 

∃x(φ ∧ ψ)

l.h.s. denotes:

{<g, h> : there is an l
 

s.t.║∃x(φ)║<g, l>

 
= T and 

║ψ║<l,

 

h>

 
= T}  =

{<g, h> : there is a k
 

and an l
 

s.t. g[x]k
 

and
║φ║<k,

 

l>

 
= T and

║ψ║<l,

 

h>

 
= T}
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h
[x]

 
║

 
φ

 
║

 
║ψ║
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).
∃x(φ) ∧ ψ⇔DPL

 

∃x(φ ∧ ψ)

r.h.s. denotes:

{<g, h> : there is a k
 

s.t. g[x]k
 

and
║φ ∧ ψ║<k,

 

h>

 
= T}  =

{<g, h> : there is a k
 

and an l
 

s.t. g[x]k
 

and
║φ║<k,

 

l>

 
= T and

║ψ║<l,

 

h>

 
= T}

l.h.s. = r.h.s.
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h
[x]

 
║

 
φ

 
║

 
║ψ║
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DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

Now let’s ensure that DPL gives the intuitively 
correct truth conditions for ‘∃x(φ ∧ ψ)’.

We will instantiate the schema with our favorite 
example:

(7)
 

∃x(donkey(x) ∧
 

owns(John, x) ∧
 

feeds(John, x))
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DPL: ∃x(donkey(x) ∧
 

owns(John, x) ∧
 feeds(John, x)).

(7): {<g, h> : there is a k
 

and an l
 

s.t.
g[x]k

 
and

║donkey(x) ∧
 

owns(John, x)║<k,

 

l>

 
= T and

║feeds(John, x)║<l,

 

h>

 
= T}

{<g, h> : there are k, l and
 

m
 

s.t.
g[x]k

 
and

║donkey(x)║<k,

 

m> = T and
║owns(John, x)║<m,

 

l>

 
= T and

║feeds(John, x)║<l,

 

h>

 
= T}
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DPL: ∃x(donkey(x) ∧
 

owns(John, x) ∧
 feeds(John, x)).

Now we apply the definition of truth (1d).

(7) is true with respect to an input assignment g

iff
 

there is an output assignment h
 

and intermediate 
assignments k, l and

 
m

 
s.t.

g[x]k
 

and
║donkey(x)║<k,

 

m> = T and
║owns(John, x)║<m,

 

l>

 
= T and

║feeds(John, x)║<l,

 

h>

 
= T
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DPL: ∃x(donkey(x) ∧
 

owns(John, x) ∧
 feeds(John, x)).

iff there is an h
 

s.t. 
g[x]h

 
and

h(x) ∈
 

I(donkey) and
<John, h(x)> ∈

 
I(owns) and

<John, h(x)> ∈
 

I(feeds)

iff there is an individual a
 

s.t. 
a∈I(donkey) and
<John, a> ∈

 
I(owns) and

<John, a> ∈
 

I(feeds)



72

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).
And now for the second equivalence:
∃x(φ) →ψ

 
⇔DPL

 

∀x(φ → ψ)

l.h.s. denotes:
{<g, h>: g=h

 
and 

for any k
 

s.t. ║∃x(φ)║<g, k>

 
= T,

there is an l
 

s.t.║ψ║<k, l>

 
= T}  =

{<g, h>: g=h
 

and
for any k

 
and

 
m

 
s.t. g[x]m

 
and║φ║<m, k>

 
= T, 

there is an l
 

s.t.║ψ║<k, l>

 
= T}
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DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1

 

k1

 

l1

g m2

 

k2

 

l2

m3

 

k3

 

l3

[x]
 

║φ║
 

║ψ║
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DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).
r.h.s denotes:
{<g, h>: g=h

 
and

for any m
 

s.t. g[x]m,
there is an n

 
s.t.║φ → ψ║<m,

 

n>

 
= T}  =

{<g, h>: g=h
 

and
for any m and

 
k

 
s.t. g[x]m

 
and║φ║<m, k>

 
= T,

there is an l
 

s.t.║ψ║<k, l>

 
= T}

l.h.s. = r.h.s.
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DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1

 

k1

 

l1

g m2

 

k2

 

l2

m3

 

k3

 

l3

[x]
 

║φ║
 

║ψ║
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DPL: The Plan.

√
 

semantic values in DPL vs. FOL
√

 
definition of DPL semantics

√
 

relations between DPL connectives
√

 
formula equivalence in DPL: 

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)
∃x(φ) → ψ ⇔ ∀x(φ → ψ)

Discourse Representation Structures (DRSs) 
in DPL
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DPL: Representing DRSs.

To represent Discourse Representation Structures 
(DRSs), i.e. 'boxes', in DPL, we first need to 
define:

-
 
the semantic notion of test

-
 
the syntactic notion of condition.
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DPL: Representing DRSs.

Tests: A wff φ
 

is a test
 

iff ║φ║
 

⊆
 

{<g, g>: g∈G}, 
where G is the set of all M-variable assignments, 

Conditions: The set of conditions
 

is the smallest set 
of wffs:

-
 
containing atomic formulas and negative 
formulas (i.e. negation '~' is the main 
connective) 

-
 
and closed under dynamic conjunction.
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DPL: Representing DRSs.

Negative formulas include:

-
 
~φ

-
 
anaphoric closure, since !φ

 
:= ~~φ

-
 
disjunctions, since φ ∨ ψ := ~(~φ ∧ ~ψ)

-
 
implications, since φ → ψ := ~(φ ∧ ~ψ)

-
 
universal quantifications, since ∀x(φ) := ~∃x(~φ) 



80

DPL: Representing DRSs.

The relation between tests (semantic notion) and 
conditions (syntactic notion):

Among non-contradictory formulas,

φ
 

is a condition iff φ
 

is a test.

where: φ
 

is contradictory
 

iff ║φ║= Ø
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DPL: Representing DRSs.

Tests / Conditions are externally static –
 

they do not 
pass on bindings to conjuncts yet to come:

(14) Every donkey is in the corral.
#It is happy.

(15) It is not true that John owns a donkey.
#He feeds it at night.
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DPL: Representing DRSs.

Conjunctions and existential quantifiers are 
externally dynamic –

 
they pass on bindings to 

conjuncts yet to come:

(16) A farmer owns a donkey.
He feeds it at night.
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DPL: Representing DRSs.

But test / conditions can be internally dynamic, i.e. 
they can pass bindings between sub-formulas:

(17) Every farmer who owns a donkey
feeds it at night.
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DPL: Representing DRSs.
We indicate that a formula is a condition by placing 

square brackets around it:
[φ] is a wff iff φ

 
is a condition 

Moreover:
║[φ]║

 
= ║φ║

That is: 
square brackets are just a way of indicating that 
a formula is a condition;
they make no semantic contribution.
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DPL: Representing DRSs.

Abbreviation: [φ1

 

, …, φm

 

] := [φ1

 

] ∧
 

… ∧
 

[φm

 

]

Exercise: Prove that conjunction is 
commutative over conditions, 

i.e. ║[φ1

 

] ∧
 

[φ2

 

]║
 

= ║[φ2

 

] ∧
 

[φ1

 

]║.
Exercise: Prove that conjunction is 

idempotent over conditions, 
i.e. ║[φ]║

 
= ║[φ] ∧

 
[φ]║.
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DPL: Representing DRSs.
Abbreviation: [x1

 

, …, xn

 

] := [x1

 

] ∧
 

… ∧
 

[xn

 

],

where:
║[x]║

 
= {<g, h>: for any variable υ, 

if υ≠x
 

then g(υ)=h(υ)}
[x] is called a random assignment of value to x.

Exercise: Prove that conjunction is commutative and 
idempotent over random assignments, i.e.:

║[x1

 

] ∧
 

[x2

 

]║
 

= ║[x2

 

] ∧
 

[x1

 

]║
 

and  ║[x]║
 

= ║[x] ∧
 

[x]║.

(NB: [x] is an equivalence relation over assignments)
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DPL: Representing DRSs.
DRSs, a.k.a. boxes:

[x1

 

, …, xn

 

| φ1

 

, …, φm

 

] := [x1

 

, …, xn

 

] ∧
 

[φ1

 

, …, φm

 

]

║[x1

 

, …, xn

 

| φ1

 

, …, φm

 

]║
 

:= 
{<g, h>: g[x1

 

, …, xn

 

]h
 

and 
║φ1

 

║<h, h>

 
= T and 

… and
║φm

 

║<h, h>

 
= T}

Exercise: Prove [x1

 

, …, xn

 

| φ1

 

, …, φm

 

] ⇔ ∃x1

 

…∃xn

 

(φ1

 

, …, φm

 

).
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DPL: The Duality of ∃
 

and ∀.

The existential and universal quantifiers are partly 
duals:

~∃x(φ) ⇔∀x(~φ)  

(Exercise: Prove this.)

Clearly, ∃x(~φ) ⇔ ~∀x(φ) doesn't hold: 
~∀x(φ) is a test, while ∃x(~φ) isn't.
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