
1

Introduction to Dynamic Semantics

Stanford University, Nov. 16 2011

(based on slides with Sam Cumming)

2

Motivating Dynamic Semantics

A sentence is not an island.

Sentences are embedded in larger
discourses.
They are anaphorically related to
other sentences in the same discourse.

3

Motivating Dynamic Semantics

For example:

(1) John owns a donkey. He feeds it at night.

Notice the anaphoric connection between the
indefinite NP ‘a donkey’ and the subsequent
pronoun ‘it’.

4

Motivating Dynamic Semantics

(2) is a good (enough) paraphrase of (1):

(2) John owns a donkey. John feeds it at night.

5

Motivating Dynamic Semantics

But neither (3) nor (4) is as good:

(3) John owns a donkey. John feeds a donkey
at night.

(4) John owns Benjamin (the donkey). John
feeds Benjamin at night.

6

Motivating Dynamic Semantics

Can’t seem to eliminate the pronoun ‘it’
(bound by the indefinite ‘a donkey’) from
(1).

7

Motivating Dynamic Semantics

This becomes a problem once we decide to
regiment (1) in the notation of First-Order Logic
(FOL):

(5)

∃x(donkey(x) ∧

owns(John, x)) feeds(John, x)

(6)

∃x(donkey(x) ∧

owns(John, x)) ∧

feeds(John, x)

8

Motivating Dynamic Semantics

What we want:

(7)

∃x(donkey(x) ∧

owns(John, x) ∧

feeds(John, x))

9

Motivating Dynamic Semantics

The problem is that, to get this meaning, we
must first compose a part of the first sentence
with the second sentence, and then combine
what we have with the remaining part of the
first sentence:

(7): [a donkey] [John owns][He feeds it]

10

Motivating Dynamic Semantics

If we restrict ourselves to completing
sentences before we compose them with
other sentences, then the best we can do
is (6).

(6): [John owns][a donkey] [He feeds it]

11

Motivating Dynamic Semantics

Who needs it? Discourse semantics is too
hard. I’m going to stick with the
semantics of sentences.

12

Motivating Dynamic Semantics

But the donkey is known for its
stubbornness…

(8) If John owns a donkey, he feeds it.
(9) Every farmer who owns a donkey

feeds it.

13

Motivating Dynamic Semantics

Incorrect first-orderizations:

(10) ∃x(donkey(x) ∧

owns(John, x))

→
feeds(John, x)

(11) ∀y(∃x(farmer(y) ∧

donkey(x) ∧

owns(y, x)))
→ feeds(John, x))

In both, the final ‘x’

is not in the scope of ‘∃x’.

14

Motivating Dynamic Semantics

Correct first-orderizations:

(12) ∀x(donkey(x) ∧

owns(John, x) →
feeds(John, x))

(13) ∀y∀x(farmer(y) ∧

donkey(x) ∧

owns(y, x)
→ feeds(John, x))

15

Motivating Dynamic Semantics

Moral: the limitations of FOL (on the
standard semantics) can be seen even
within sentences.

Nor are ‘donkey’ sentences rare animals.
They are as common as the beast of
burden itself.

16

Motivating Dynamic Semantics

A solution:
‘Dynamic semantics’
[due (independently) to Kamp (1981) and
Heim (1982)]

What is dynamic semantics?

17

Dynamic Semantics

Consider the phenomenon of context-
sensitivity.

The same sentence can be true or false,
depending on the context.

18

Dynamic Semantics

‘I am standing.’

True as uttered by Adrian.
False as uttered by Chris.

19

Dynamic Semantics

The meaning of a sentence can be
thought of as a function (cf. Kaplan
(1989)),

that takes in a context…
…and gives back a truth-value (T or F).

20

Dynamic Semantics

A parallel phenomenon.

Right now, the sentence below is false:

‘Chris said that snow is black.’

21

Dynamic Semantics

But now Chris says, ‘Snow is black.’

In the context arising immediately after
his utterance, the earlier sentence is true:

‘Chris said that snow is black.’

22

Dynamic Semantics

Call the context immediately before
Chris’s utterance ‘Snow is black’, c1 .

And call the context immediately after
Chris’s utterance, c2 .

23

Dynamic Semantics

Clearly, the sentence ‘Chris said snow
is black’ is context-sensitive, since it is
true in c2 but not in c1 .

24

Dynamic Semantics

Equally clearly, Chris’s utterance of
‘Snow is black’ changed the context from
c1 to c2 .

(c1 must differ from c2 since it delivers a
different truth-value to the sentence
above).

25

Dynamic Semantics

Dynamic semantics takes the semantics
of context-sensitivity one step further, to
a semantics of context change.

26

Dynamic Semantics

According to dynamic semantics, the
meaning of a sentence is an ‘update’,

that takes in a context,
and gives back a …

CONTEXT.

27

Dynamic Semantics

But hang on, what does this new view of
meaning have to do with the problems with
which we began?

(1) John owns a donkey. He feeds it at night.
(8) If John owns a donkey, he feeds it.
(9) Every farmer who owns a donkey feeds it.

28

Dynamic Semantics

Take the first case:

(1) John owns a donkey. He feeds it at night.

We want it to translate into the FOL:

(7)

∃x(donkey(x) ∧

owns(John, x) ∧

feeds(John, x))

29

Dynamic Semantics

But the best we can do (compositionally)
is:

(6)

∃x(donkey(x) ∧

owns(John, x)) ∧

feeds(John, x)

30

Dynamic Semantics

What if I told you that, on a dynamic
semantics for FOL, the following
equivalence holds:

∃x(φ) ∧ ψ

⇔DS

∃x(φ ∧ ψ)

31

Dynamic Semantics

Since (6) and (7) fit the schema on the left and
right hand sides, respectively, they are
equivalent on dynamic semantics:

∃x(donkey(x) ∧

owns(John, x)) ∧

feeds(John, x)
⇔DS

∃x(donkey(x) ∧

owns(John, x) ∧

feeds(John, x))

32

Dynamic Semantics

The equivalence means that indefinites can bind
indefinitely rightwards across ∧’s:

∃x(φ) ∧ ψ ∧ ξ ∧ χ
⇔DS

∃x(φ ∧ ψ) ∧ ξ ∧ χ
⇔DS

∃x(φ ∧ ψ ∧ ξ) ∧ χ
⇔DS

∃x(φ ∧ ψ ∧ ξ ∧ χ)

33

Dynamic Semantics

And what about the other cases?

(8) If John owns a donkey, he feeds it.
(9) Every farmer who owns a donkey

feeds it.

34

Dynamic Semantics

For these the equivalence below will
suffice:

∃x(φ) → ψ

⇔DS

∀x(φ → ψ)

(Only w/o the usual restriction to cases
where ‘ψ’

doesn’t contain ‘x’

free.)

35

Dynamic Semantics

The 2nd equivalence allows us to turn
existentials in the antecedent of a conditional
into universals taking scope over the whole
conditional (but no further).

∃x(donkey(x) ∧

owns(John, x)) → feeds(John, x)
⇔DS

∀x(donkey(x) ∧

owns(John, x) → feeds(John, x))

36

Dynamic Semantics

∀y(∃x(farmer(y) ∧

donkey(x) ∧

owns(y, x))
→ feeds(y, x))

⇔DS

∀y∀x(farmer(y) ∧

donkey(x) ∧

owns(y, x)
→ feeds(y,

x))

37

Dynamic Semantics

We will now construct a dynamic
semantics for FOL on which these hold:

∃x(φ) ∧ ψ⇔DS

∃x(φ ∧ ψ)

∃x(φ) → ψ⇔DS

∀x(φ → ψ)

38

Dynamic Predicate Logic (DPL)

The particular version of dynamic
semantics we will look at is Dynamic
Predicate Logic (DPL – Groenendijk &
Stokhof 1991).

39

DPL: The Plan.

semantic values in DPL vs. FOL

- definition of DPL semantics
- relations between DPL connectives
- formula equivalence in DPL:

∃x(φ) ∧ ψ⇔ ∃x(φ ∧ ψ)
∃x(φ) →ψ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs)
in DPL

40

Dynamic Predicate Logic (DPL)

DPL semantics is minimally different from
the standard Tarskian semantics for
first-order logic.

instead of interpreting a formula as a set of
variable assignments (i.e. the set of variable
assignments that satisfy the formula in the
given model), we interpret it as a binary
relation between assignments.

41

DPL: Semantics.

Why binary relations between assignments?

For our narrow purposes (i.e. cross-sentential
and ‘donkey’ anaphora), a variable
assignment is an effective model of a context.

All we ask from a context here is that it keep
track of anaphoric relations – hence
assignments.

42

DPL: Semantics.

Why a binary relation between assignments?

Dynamic semantics associates a sentence with
the manner in which it updates any context
(i.e. its context change potential).

The update is modeled as a relation (not a
function) because it is non-deterministic:

updating from a context c1 has different
possible outcomes.

43

DPL: Semantics.

c2 [Benjamin]
C1 c3 [Lucius]

c4 [Patience]

‘John owns a donkey’,

where John actually owns three donkeys:
Benjamin, Lucius and Patience.

44

DPL: The Plan.

√

semantic values in DPL vs. FOL

definition of DPL semantics

- relations between DPL connectives
- formula equivalence in DPL:

∃x(φ) ∧ ψ⇔ ∃x(φ ∧ ψ)
∃x(φ) →ψ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs) in DPL

45

DPL: Semantics.

The definition of the DPL interpretation
function ║φ║DPL

M relative to a standard
first-order model M=<DM, IM>, where:

D is the domain of entities
I is the interpretation function which
assigns to each n-place relation R

a subset

of Dn:

46

DPL: Semantics.

1. For any pair of M-variable assignments <g, h>:
a. Atomic formulas (lexical relations and

identity):

║R(x1

, …, xn

)║<g, h>

= T iff

g=h

and <g(x1

), …, g(xn

)>∈I(R)
║x1

=x2

║<g, h>

= T iff

g=h

and g(x1

)=g(x2

)

47

DPL: Semantics.

b. Connectives:

Dynamic Conjunction

║φ ∧ ψ║<g, h>

= T iff

there is a k

s.t.║φ║<g, k>

= T and ║ψ║<k, h>

= T

48

DPL: Semantics.

Dynamic Negation

║~φ║<g, h>

= T iff

g=h

and there is no k

s.t. ║φ║<g, k>

= T

i.e. ║~φ║<g, h>

= T iff g=h

and g∉Dom(║φ║),

where:
Dom(║φ║) := {g: there is an h

s.t. ║φ║<g, h>

= T}

49

DPL: Semantics.

c. Existential Quantifier:

║∃x(φ)║<g, h>

= T iff

there is a k

s.t. g[x]k and ║φ║<k, h>

= T

where g[x]k means that k

differs from g

at most with
respect to the value it assigns to x,

i.e. for any variable υ, if υ≠x

then g(υ)=k(υ).

50

DPL: Semantics.

d. Truth:
A formula φ

is true with respect to an input

assignment g

iff
there is an output assignment h

s.t. ║φ║<g, h>

= T

i.e. φ

is true with respect to g

iff g∈Dom(║φ║).

NB: Dynamic meanings are more fine-grained

than
truth-conditions.

51

DPL: Semantics.

Dynamic Conjunction:

-

not commutative:
║~Fx

∧ ∃x(Fx)║

≠

║∃x(Fx)

∧

~Fx║

Exercise: Prove this.

52

DPL: Semantics.

Dynamic Conjunction:

-

not idempotent:
║~Fx

∧ ∃x(Fx)║

≠

║~Fx

∧ ∃x(Fx)

∧

~Fx

∧ ∃x(Fx)║

Exercise: Prove this.

53

DPL: The Plan.

√

semantic values in DPL vs. FOL
√

definition of DPL semantics

relations between DPL connectives

- formula equivalence in DPL:
∃x(φ) ∧ ψ⇔ ∃x(φ ∧ ψ)
∃x(φ) →ψ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs) in DPL

54

DPL: Abbreviations.

2.a. Abbreviations – connectives:

Anaphoric closure: !φ

:= ~~φ

i.e. ║!φ║={<g, h>: g=h

and g∈Dom(║φ║)}

Exercise: Prove this.

55

DPL: Abbreviations.

2.a. Abbreviations – connectives:

Disjunction: φ ∨ ψ := ~(~φ ∧ ~ψ)

i.e.║φ ∨ ψ║={<g, h>: g=h

and
g ∈

Dom(║φ║)∪Dom(║ψ║)}

Exercise: Prove this.

56

DPL: Abbreviations.

Implication: φ → ψ := ~(φ ∧ ~ψ)

i.e. ║φ → ψ║={<g, h>: g=h

and
for any k

s.t.║φ║<g, k>

= T,

there is an l

s.t.║ψ║<k, l>

= T}

Exercise: Prove this.

57

DPL: Abbreviations.
Implication as inclusion:
║φ → ψ║={<g, h>: g=h

and g║φ║

⊆

Dom(║ψ║)}

where

g║φ║

:= {h: ║φ║<g, h>

= T} = {h: <g, h>∈║φ║}

Exercise: Prove this.

NB: we freely switch between 3 different notations

║φ║<g, h>

= T iff

<g, h>∈║φ║

iff

g║φ║h

58

DPL: Abbreviations.

b. Abbreviation – universal quantifier:

∀x(φ) := ~∃x(~φ)

i.e. ║∀x(φ)║={<g, h>: g=h

and
for any k

s.t. g[x]k,

there is an l

s.t.║φ║<k, l>

= T}

Exercise: Prove this.

59

DPL: Abbreviations.

Exercise:
Show that ║∀x(φ)║

= ║[x] → φ ║, where:

║[x]║

= {<g, h>: for any variable υ,
if υ≠x

then g(υ)=h(υ)}

60

DPL: The Plan.

√

semantic values in DPL vs. FOL
√

definition of DPL semantics

√

relations between DPL connectives

formula equivalence in DPL:
∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)
∃x(φ) → ψ ⇔ ∀x(φ → ψ)

- Discourse Representation Structures (DRSs) in DPL

61

DPL: Equivalence.

Let’s return to the general equivalences we wanted
to prove.

Equivalence:
Two formulas are DPL-equivalent, symbolized as

'⇔DPL

', iff they denote the same set of pairs of
variable assignments,

i.e. iff they denote the same binary relation over
assignments.

62

DPL: Equivalence.

That is:
φ ⇔DPL

ψ

iff

║φ║DPL

= ║ψ║DPL

i.e., for any pair of assignments <g, h>,
 g║φ║h

iff

g║ψ║h

i.e. ║φ║<g, h> =║ψ║<g, h> = T or
║φ║<g, h> =║ψ║<g, h> = F

63

DPL: Equivalence.

Since DPL denotations determine truth-conditions,
two DPL-equivalent formulas will have the same
truth-conditions.

Recall that:
φ

is true

with respect to g

iff g∈Dom(║φ║).

Thus:
Suppose φ ⇔ ψ. Then ║φ║

= ║ψ║.

Then Dom(║φ║) = Dom(║ψ║).

64

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).
∃x(φ) ∧ ψ⇔DPL

∃x(φ ∧ ψ)

l.h.s. denotes:

{<g, h> : there is an l

s.t.║∃x(φ)║<g, l>

= T and

║ψ║<l,

h>

= T} =

{<g, h> : there is a k

and an l

s.t. g[x]k

and
║φ║<k,

l>

= T and

║ψ║<l,

h>

= T}

65

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h
[x]

║

φ

║

║ψ║

66

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).
∃x(φ) ∧ ψ⇔DPL

∃x(φ ∧ ψ)

r.h.s. denotes:

{<g, h> : there is a k

s.t. g[x]k

and
║φ ∧ ψ║<k,

h>

= T} =

{<g, h> : there is a k

and an l

s.t. g[x]k

and
║φ║<k,

l>

= T and

║ψ║<l,

h>

= T}

l.h.s. = r.h.s.

67

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

g k l h
[x]

║

φ

║

║ψ║

68

DPL: ∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ).

Now let’s ensure that DPL gives the intuitively
correct truth conditions for ‘∃x(φ ∧ ψ)’.

We will instantiate the schema with our favorite
example:

(7)

∃x(donkey(x) ∧

owns(John, x) ∧

feeds(John, x))

69

DPL: ∃x(donkey(x) ∧

owns(John, x) ∧
 feeds(John, x)).

(7): {<g, h> : there is a k

and an l

s.t.
g[x]k

and

║donkey(x) ∧

owns(John, x)║<k,

l>

= T and

║feeds(John, x)║<l,

h>

= T}

{<g, h> : there are k, l and

m

s.t.
g[x]k

and

║donkey(x)║<k,

m> = T and
║owns(John, x)║<m,

l>

= T and

║feeds(John, x)║<l,

h>

= T}

70

DPL: ∃x(donkey(x) ∧

owns(John, x) ∧
 feeds(John, x)).

Now we apply the definition of truth (1d).

(7) is true with respect to an input assignment g

iff

there is an output assignment h

and intermediate
assignments k, l and

m

s.t.

g[x]k

and
║donkey(x)║<k,

m> = T and
║owns(John, x)║<m,

l>

= T and

║feeds(John, x)║<l,

h>

= T

71

DPL: ∃x(donkey(x) ∧

owns(John, x) ∧
 feeds(John, x)).

iff there is an h

s.t.
g[x]h

and

h(x) ∈

I(donkey) and
<John, h(x)> ∈

I(owns) and

<John, h(x)> ∈

I(feeds)

iff there is an individual a

s.t.
a∈I(donkey) and
<John, a> ∈

I(owns) and

<John, a> ∈

I(feeds)

72

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).
And now for the second equivalence:
∃x(φ) →ψ

⇔DPL

∀x(φ → ψ)

l.h.s. denotes:
{<g, h>: g=h

and

for any k

s.t. ║∃x(φ)║<g, k>

= T,

there is an l

s.t.║ψ║<k, l>

= T} =

{<g, h>: g=h

and
for any k

and

m

s.t. g[x]m

and║φ║<m, k>

= T,

there is an l

s.t.║ψ║<k, l>

= T}

73

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1

k1

l1

g m2

k2

l2

m3

k3

l3

[x]

║φ║

║ψ║

74

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).
r.h.s denotes:
{<g, h>: g=h

and

for any m

s.t. g[x]m,
there is an n

s.t.║φ → ψ║<m,

n>

= T} =

{<g, h>: g=h

and
for any m and

k

s.t. g[x]m

and║φ║<m, k>

= T,

there is an l

s.t.║ψ║<k, l>

= T}

l.h.s. = r.h.s.

75

DPL: ∃x(φ) → ψ ⇔ ∀x(φ → ψ).

m1

k1

l1

g m2

k2

l2

m3

k3

l3

[x]

║φ║

║ψ║

76

DPL: The Plan.

√

semantic values in DPL vs. FOL
√

definition of DPL semantics

√

relations between DPL connectives
√

formula equivalence in DPL:

∃x(φ) ∧ ψ ⇔ ∃x(φ ∧ ψ)
∃x(φ) → ψ ⇔ ∀x(φ → ψ)

Discourse Representation Structures (DRSs)
in DPL

77

DPL: Representing DRSs.

To represent Discourse Representation Structures
(DRSs), i.e. 'boxes', in DPL, we first need to
define:

-

the semantic notion of test

-

the syntactic notion of condition.

78

DPL: Representing DRSs.

Tests: A wff φ

is a test

iff ║φ║

⊆

{<g, g>: g∈G},
where G is the set of all M-variable assignments,

Conditions: The set of conditions

is the smallest set
of wffs:

-

containing atomic formulas and negative
formulas (i.e. negation '~' is the main
connective)

-

and closed under dynamic conjunction.

79

DPL: Representing DRSs.

Negative formulas include:

-

~φ

-

anaphoric closure, since !φ

:= ~~φ

-

disjunctions, since φ ∨ ψ := ~(~φ ∧ ~ψ)

-

implications, since φ → ψ := ~(φ ∧ ~ψ)

-

universal quantifications, since ∀x(φ) := ~∃x(~φ)

80

DPL: Representing DRSs.

The relation between tests (semantic notion) and
conditions (syntactic notion):

Among non-contradictory formulas,

φ

is a condition iff φ

is a test.

where: φ

is contradictory

iff ║φ║= Ø

81

DPL: Representing DRSs.

Tests / Conditions are externally static –

they do not
pass on bindings to conjuncts yet to come:

(14) Every donkey is in the corral.
#It is happy.

(15) It is not true that John owns a donkey.
#He feeds it at night.

82

DPL: Representing DRSs.

Conjunctions and existential quantifiers are
externally dynamic –

they pass on bindings to

conjuncts yet to come:

(16) A farmer owns a donkey.
He feeds it at night.

83

DPL: Representing DRSs.

But test / conditions can be internally dynamic, i.e.
they can pass bindings between sub-formulas:

(17) Every farmer who owns a donkey
feeds it at night.

84

DPL: Representing DRSs.
We indicate that a formula is a condition by placing

square brackets around it:
[φ] is a wff iff φ

is a condition

Moreover:
║[φ]║

= ║φ║

That is:
square brackets are just a way of indicating that
a formula is a condition;
they make no semantic contribution.

85

DPL: Representing DRSs.

Abbreviation: [φ1

, …, φm

] := [φ1

] ∧

… ∧

[φm

]

Exercise: Prove that conjunction is
commutative over conditions,

i.e. ║[φ1

] ∧

[φ2

]║

= ║[φ2

] ∧

[φ1

]║.
Exercise: Prove that conjunction is

idempotent over conditions,
i.e. ║[φ]║

= ║[φ] ∧

[φ]║.

86

DPL: Representing DRSs.
Abbreviation: [x1

, …, xn

] := [x1

] ∧

… ∧

[xn

],

where:
║[x]║

= {<g, h>: for any variable υ,

if υ≠x

then g(υ)=h(υ)}
[x] is called a random assignment of value to x.

Exercise: Prove that conjunction is commutative and
idempotent over random assignments, i.e.:

║[x1

] ∧

[x2

]║

= ║[x2

] ∧

[x1

]║

and ║[x]║

= ║[x] ∧

[x]║.

(NB: [x] is an equivalence relation over assignments)

87

DPL: Representing DRSs.
DRSs, a.k.a. boxes:

[x1

, …, xn

| φ1

, …, φm

] := [x1

, …, xn

] ∧

[φ1

, …, φm

]

║[x1

, …, xn

| φ1

, …, φm

]║

:=
{<g, h>: g[x1

, …, xn

]h

and
║φ1

║<h, h>

= T and

… and
║φm

║<h, h>

= T}

Exercise: Prove [x1

, …, xn

| φ1

, …, φm

] ⇔ ∃x1

…∃xn

(φ1

, …, φm

).

88

DPL: The Duality of ∃

and ∀.

The existential and universal quantifiers are partly
duals:

~∃x(φ) ⇔∀x(~φ)

(Exercise: Prove this.)

Clearly, ∃x(~φ) ⇔ ~∀x(φ) doesn't hold:
~∀x(φ) is a test, while ∃x(~φ) isn't.

	Introduction to Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Motivating Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Semantics
	Dynamic Predicate Logic (DPL)
	DPL: The Plan.
	Dynamic Predicate Logic (DPL)
	DPL: Semantics.
	DPL: Semantics.
	DPL: Semantics.
	DPL: The Plan.
	DPL: Semantics.
	DPL: Semantics.
	DPL: Semantics.
	DPL: Semantics.
	DPL: Semantics.
	DPL: Semantics.
	DPL: Semantics.
	DPL: Semantics.
	DPL: The Plan.
	DPL: Abbreviations.
	DPL: Abbreviations.
	DPL: Abbreviations.
	DPL: Abbreviations.
	DPL: Abbreviations.
	DPL: Abbreviations.
	DPL: The Plan.
	DPL: Equivalence.
	DPL: Equivalence.
	DPL: Equivalence.
	DPL: x()    x(  ).
	DPL: x()    x(  ).
	DPL: x()    x(  ).
	DPL: x()    x(  ).
	DPL: x()    x(  ).
	DPL: x(donkey(x)  owns(John, x) �	 feeds(John, x)).
	DPL: x(donkey(x)  owns(John, x) �	 feeds(John, x)).
	DPL: x(donkey(x)  owns(John, x) �	 feeds(John, x)).
	DPL: x()    x(  ).
	DPL: x()    x(  ).
	DPL: x()    x(  ).
	DPL: x()    x(  ).
	DPL: The Plan.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: Representing DRSs.
	DPL: The Duality of  and .

