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The Setting

OT: a grammar decides between alternatives.
Constraints: criteria of decision.
Penalties: a constraint detects only flaws.

Better Than on a single constraint: fewer flaws on it.



When Constraints Collide

Disagreements: btw constraints, about what's worse:
a0 (CVC), vs. C-oU codas vs. deletions
0 C-0 vs. OG-V delete vs. insert

Better Than: over the entire conflicting mass of criteria ?
Need to resolve all discord

Rank them all.
o Impose a linear order on the constraint set



Optimality

Better Than over a ranked constraint set

o A is better than B on a ranking
iff A is better than B on the highest-ranked constraint
that distinguishes them.

Optimal. A is optimal over a ranked constraint set
iff A is better than every distinct alternative B
over that ranking.

The optimal alternative is the grammar’s choice.



Two Analytical Challenges

A Grammar is a linear order on a constraint set
Two analytical problems then arise:

The Selection Problem

o Given the ranking order,
which candidate is optimal?

The Ranking Problem

o Given a (desired) optimum
which rankings will produce it?



Solving the Selection Problem

A simple sequential filtration finds the optima.

Take the best, ignore the rest.
Slogan due to Gigerenzer & Goldstein 1996

Start with 15t constraint & continue down the hierarchy
Taking the best among the previous best, and so on.

Easily represented in a violation tableau (VT)
Annotated at the point of suboptimum demise



Selecting the Optimum

A violation tableau (VT). Assume ranked.

/berg/ Ident/O:Voi *ObVoi Ident:Voi
berg — berk 0 1 1
berg — berg 0 2 0
berg — perk 1 0 2
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Selecting the Optimum

= A violation tableau (VT). Assume ranked.
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The Ranking Problem

= We have a winner (in mind): the ‘desired optimum’
0 From observation & linguistic analysis

= And we have:
o T'he constraints
o T'he alternative candidates

= Which rankings choose the desired winner?
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Solving the Ranking Problem

What rankings will make A better than B ?

0 Assume no ranking known:

/berg/ Ident/O:Voi *ObVoi Ident:Voi
want: A: berg — berk 0 1 1
B: berg — perk 1 0 2
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Finding the Friends of A

If A is better than B on a ranking

Some constraint preferring A to B
ranks above all constraints preferring B to A.

In any such ranking,
the highest-ranked constraint distinguishing A and B
decides in favor of A and against B.

What do we need to know about the constraints
to sort this out?
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The Constraint’s Eye View

A constraint views the A/B competition in one of 3 ways:

W: A is better than B

0 The desired optimum wins. B is worse in violations.

L: B is better than A.
0 The desired optimum /oses! B has less violation!

e: No decision.
o A and B are violationwise identical.
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Solving the Ranking Problem

Calculate how each constraint views A vs. B
0 Assume no ranking known:

/berg/ Ident/O:Voi *ObVoi Ident:Voi
want. A: berg — berk 0 1 1
B: berg — perk TW 0L 2 W
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The Comparative Tableau

Eliminate violation data
0 Its work is done. We only care about more vs. less

/berg/

Ident/O:Voi

*ObVoi

Ident:Voi
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The Elementary Ranking Condition

= ERC: Some W must dominate all L’s.
- holds of each tableau row

/berg/ Ident/O:Voi *ObVoi Ident:Voi

A-~B W L W

ERC: Ident/O >>*0ObVoi -OR- Ident>>*ObVoi
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The Candidate Set, Revisited

Annotating the VT

/berg/ Ident/O:Voi *ObVoi Ident:Voi
want.A: berg — berk 0 1 1
C: berg — berg 0 2 W oL
B: berg — perk 1 W OL 2 W
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The Candidate Set, Revisited

= Thefull CT
/berg/ Ident/O:Voi *ObVoi Ident:Voi
A~B W L w
A-~C W L
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The Candidate Set, Revisited

= Conclusion: necessarily Ident/O:Voi >> *ObVoi >> *Ident:Voi

/berg/ Ident/O:Voi *ObVoi Ident:Voi
A~B W L W
A~C W L
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Issue: Out of many, One

T4 C, C, C,
ry w L L
r, 2 W L
T2 C, C, C,
r, W L w
r, 2 W L
T3 c, c, C,
Iy W L 2
r, e w L

These all designate the same ranking:

C,>> C,>>C,
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Issue: Out of many, Yet More

C, C, C; This also designates the same ranking:
r, w L w C,>> C,>>C,
Iy w L e
r W L L
r, e w L

e CT’s like this often arise ecologically, in the course of analysis
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Of All the CT's in the World ...

We want the most concise, most informative
representation of the ranking conditions inherent in the
data.

The learner is happy with a ranking that works.
o Sufficient conditions for success will suffice.

The analyst must know more: both nec. & suff.
o The structure of grammars lies in the exact conditions
0 E.g. when the necessary conditions for one optimum
entails the sufficient conditions for another.
the presence of the 1st entails the presence of the 2.
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The Basis

For any set 2 of ERCs
a Basis B for 2 is a minimum cardinality set of ERCs
such that B defines the same rankings as 2.

Any Basis for C, >> G, >> G5 has two ERCS

Several such exist.
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All the Bases

T1 C, C, C,
ry w L L
r, 2 W L
T2 C, C, C,
r, W L w
r, 2 W L
T3 c, c, C,
Iy w L e
r, e w L

Bases for C,>> G, >>C,
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Not a Basis

C, C, C, Flabbily designates the same ranking:
: W L W C,>> GC,>>C,
Iy w L e
ry w L L
r - w L

e Heavily redundant: only one of top 3 rows r,, r5, r, is needed
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All Bases are not created equal

T1 C, C, C, Basis for C,>> G, >> (G,
r W L L
r, = w L

Most Informative Basis (MIB)
e Gives total domination info for each row’s W-set

e Most L’s, minimal # of W’s
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All Bases are not created equal

T2 C, C, C, Basis for C, >> C,>>C,

Least Informative Basis
e As many spurious local disjunctions (W’s) as can be tolerated
e The most W’s

e \Who needs it?
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All Bases are not created equal

T2 C, C, C, Basis for C, >> C,>>C,
) W L e
r, e w L

Skeletal Basis
e Eliminates all info derived from transitivity of ranking order
e The most €'s, minimal W’s

e Nice: but best approached through the MIB
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Admirable Qualities of the MIB

The MIB is minimal in size, lacks all redundancy.
Each MIB row contains a unique W-set
The total ranking info for that W-set is displayed

Every disjunctive W in a row represents a ranking option
that is realized in some licit linearization

The MIB ties ranking conditions to the motivating data.
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Obtaining the MIB

How does this desirable object emerge from data?

Related work from different perspectives includes

o Hayes, B. 2003, Four Rules of Inference
o On this, see Prince 2006, ROA-882

o Riggle, J. 2004. Generation, Recognition, and Learning in
Finite State Optimality Theory
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FRed Obtains the MIB



Fusion

Fusion (Prince 2002a, b):

Fusion w e L
W W W L
e W e L
L L L L

Fusion: select the minimal element relative to
the order L<W<e.
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Fusion

Fusion: select the minimal element relative to the
order L<W<e, that is ...

L is dominant: for any X in {W, e, L}, f(L, X)=L

e is identity: for any X in {W, e, L}, f(e, X)=X

f(W, W)=W

fusion of two rows r, and r, is obtained by
constraintwise fusion and is abbreviated as:

f(r, r,), for example ...
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Fusion

Tableau 2 C, C, C,

s |/ | [0\ | /W

r,: a~C w W w
/

NG N G NG

o=l T 70 [0
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Fusion

Tableau 3 C, C, C,

aa | /| [0\ | /o)

r,: a~C w W w
/

NG NG NG

=l T 10 10D
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Fusion

Tableau2 | C, C, C, Tableau3 | C, C, C,
r,:a~b W L W ry: d~d' W L e
ry: a~c e W L r,: a~C e W L

f(r,r)=r, | W L L f(ry, r)=r, | W L L

The fusion f(r,, r,)=f(rs, r,) retains all the ranking
information in r, / r; and strengthens it,

l.e. it locally maximizes information in rows r, and
r, based on the rest of the tableau:

we require not only that C,>>C, (as r; does), but
also that C,>>C..
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Fusion

Tableau2 | C, C, C, Tableau 3 C, C, C,
r;: a~b W L W ry: d~d' W L e
r,: a~c e W L r,: a~C e W L

f(r,, r,)=r, w L L f(r;, 1y)=r, w L L

Thus, we will use fusion to obtain the Most
Informative Basis (MIB) of Tableau 2 / Tableau 3.

But:
fusion is not enough!
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Fusion

Tableau2 | C, C, C, Tableau 3 C, C, C,
r;: a~b W L W ry: d~d' W L e
r,: a~c e W L r,: a~C e W L

f(r,, r,)=r, w L L f(r;, 1y)=r, w L L

Fusion is not enough because we want the MIB to be
equivalent to the initial tableau, but ...

... the ranking information provided by r, (i.e. C,>>C,)
IS lost in the fusion (ry, r5)=f(rs, 15),

which requires only that C,>>C, and C,>>C.,.
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Fusion

Tableau2 | C, C, C, Tableau 3 C, C, C,
r;:a~b W L W ry: d~d' W L e
r,: a~c e W L r,: a~C e W L

f(r,, rp)=r, W L L f(rs, 1,)=r, W L L

SO:

we keep row r, together with the fusion
r,=f(ry, ry)=f(r;, 1),

which yields Tableau 4!
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Fusion

Tableau 4 C, C, C,
f(ry, ry)=r, W L L
r,: a~C e W L
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Fusion

Tableau 2 C, C, C,
r,: a~b W L W
r,: a~C e W L

O
O
N
O
w
O
O
N
O
w

f(r,r)=r,| W L L r,: a~C e W L

We keep row r, together with the fusion r,=f(r,, r,) ...
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Fusion

Tableau 2 C, C, C,
r;:a~b W L W
r,: a~c e W L
/\

[ ¢ [ ¢ | c [ ¢ [ e | c
f(ror)=r, | W | L | L ac | e | W | L
Tableau 4 C, C, C,

f(r,, ry)=r, W L L
r,: a~C e W L

... which yields Tableau 4.
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The Fusional Reduction Algorithm

The Fusional Reduction (FRed) algorithm
generalizes this two-step strategy, namely:

use fusion to obtain maximally informative rows

retain all the rows that contain information lost
in the fusion
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The Fusional Reduction Algorithm

The question is:

How do we identify the rows that lose information
in the fusion?

Answer:

By identifying info loss configurations ...
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The Fusional Reduction Algorithm

And an info loss configuration is ...

a constraint (i.e. a column in a tableau) that fuses
to W and contains some e’s.

That is,

an info loss configuration is any column in a
tableau that contains only e's and W's — and at
least one e and one W.
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The Fusional Reduction Algorithm

Info loss configuration: a constraint that fuses to W
and contains some e’s.

For example:
Tableau 2 C, C, C, Tableau 3 C, C, C,
r;:a~b W L W ry: d~d' W L e
r,: a~c e W L r,: a~C e W L
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The Fusional Reduction Algorithm

And the information that is lost in the fusion is
contributed by the rows with an e.

The e rows in an info loss configuration form the
info residue of that info loss configuration.

For example:
Tableau 2 C, C, C, Tableau 3 ﬂ C, C,
r,: a~b W L W rded | [ W] L e

r,: a~C e W L r,: a~C e W
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The Fusional Reduction Algorithm

The basic Fusional Reduction (FRed) algorithm.
To obtain the Most Informative Basis (MIB):

whole fusion: fuse all tableau rows and construct a
branch for the fusion

info loss: identify all the info loss configurations; for
each info loss configuration, construct a branch with
the info residue
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The Fusional Reduction Algorithm

And this is exactly what we did before with Tableau 2.

whole fusion Tableau2 | /C\ | _e—T ¢ info loss config
1 2 3
rrab ([ w L[ w o)
f2: 8~C °) W 3 info residue
| ¢ | & | ¢ | e | e | ¢
f(ror)=r, | W | L | L ac | e | W | L
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The Fusional Reduction Algorithm

There are two further issues:
cases in which the whole fusion is useless

cases in which the info residue consists of more
than one row

Let's examine them in turn ...
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The Fusional Reduction Algorithm

First issue: the whole fusion is useless.
For example,

when the info residues repeat the entire initial
tableau.

In this case, we discard the whole fusion.
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The Fusional Reduction Algorithm

Tableau 5 C, C, C,
Irs / W\ / e\ L
VIR
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The Fusional Reduction Algorithm

Second issue: the info residue consists of
more than one row.

For example ...
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The Fusional Reduction Algorithm

Tableau 6 C, C, C, C,

Ie W L e e

r, | € | W L W

Ig \y e W L
C, | C, | C;| C, C, C, | C, | C
f(rg, 17, 1) W L L L r, e W L W
e e W L

In this case, we recurse on the info residue.
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The Fusional Reduction Algorlthm

Tableau 6 @ C, C, C,

s m L e e

r, e W L W

I e e W L

/\

e, | c|c]e, c, |/c,\| c, | c,
frrte) | W | L | L | L r, wil L |w
Ig e e/| W | L

f(r,, rg) e W
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The Fusional Reduction Algorithm

The Fusional Reduction (FRed) algorithm.
To obtain the Most Informative Basis (MIB):

whole fusion: fuse all tableau rows and construct a branch
for the fusion

info loss: identify all the info loss configurations; for each
Info loss configuration, construct a branch with the info
residue

check if the whole fusion has more L's than the fusion of
all the info residues: keep it if it does, discard it if it doesn't

recurse on each of the info residues, i.e., for each of them,
go through the above steps (whole fusion, info loss, check)

60



FRed Reduces

Till now, FRed has only fused the world

But FRed can also drastically reduce it

Demo time!
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