
Adrian Brasoveanu (UC Santa Cruz) & Alan Prince (Rutgers)   Fusional Reduction 

Page 1 of 2 

Fusional Reduction and the Logic of Ranking Arguments in OT  

The problem. In Optimality Theory, the language specific part of grammatical knowledge 

comprises a particular constraint ranking, i.e. a strict total ordering of the universal set of 

constraints. The evidence for such a constraint ranking, henceforth called 'the primary set of 

data', is provided by a tableau like (1) below, which consists of: (a) the violation profile of a set 

of candidates (where a candidate is an Input/Output pair); (b) the designation of a particular 

candidate as the desired optimum. Tableau 1 encodes the violation profile of three candidates 

(a, b, c) with respect to three constraints (C1, C2, C3). The number in a cell is the number of 

'offending' structures of a particular candidate with respect to a particular constraint. To extract 

(partial) knowledge about the particular constraint ranking, the learner/linguist has to answer the 

question in (1) below: 

(1) what are the necessary and sufficient ranking conditions enforced by the 

primary set of data, i.e. what are the constraint rankings that satisfy it? 

 The present paper: (a) shows that it is possible to answer question (1) for any given 

primary set of data (tableau) by providing its Maximally Informative Basis (MIB), which 

perspicuously displays the necessary and sufficient ranking conditions; and (b) gives an 

algorithm called Fusional Reduction (FRed) to obtain the MIB of an arbitrary initial tableau. The 

usefulness of the MIB and FRed becomes obvious as soon as one considers real-life analyses, 

which involve more than a couple of constraints and candidates.     

The proposal. Previous research provided partial answers to question (1): the Recursive 

Constraint Demotion (RCD) algorithm in [5], [6] and [7] provides a sufficient, but generally not 

necessary, set of ranking conditions for an arbitrary initial tableau; the comparative tableau 

format and the operation of fusion introduced in [3] and [4] provide a procedure for extracting 

non-obvious necessary, but generally not sufficient, ranking conditions for arbitrary input 

tableaux. The present proposal builds on [3] and [4].  

First, the comparative tableau format is used, so Tableau 1 is converted into the 

comparative Tableau 2 below (W: the constraint prefers the desired optimum; L: the constraint 

prefers the suboptimum; e: the constraint does not distinguish between the compared candidates). 

A constraint ranking is said to satisfy a comparative tableau iff for each tableau row and 

constraint that assesses an L, there is some constraint that: (a) assesses a W in that same row; and 

(b) dominates the L-assessing constraint. For example, Tableau 2 is satisfied only by 

C1>>C2>>C3. However, Tableau 2 does not provide a perspicuous way to answer question (1): it 

explicitly displays the ranking of constraints C2 and C3 (row r2 enforces C2>>C3), but it does not 

explicitly display the ranking of constraints C1 and C2 (i.e. C1>>C2) or C1 and C3 (i.e. C1>>C3). 

Second, we observe that Tableau 2 is equivalent to Tableau 3 and Tableau 4 below, since 

they are satisfied by the same constraint ranking. However, Tableau 3 goes halfway towards 

answering question (1), since row r3 explicitly displays the ranking of  C1 and C2 (i.e. C1>>C2); 

and Tableau 4 gives a complete answer to question (1), as row r4 explicitly shows the ranking of 

C1 and C3 (i.e. C1>>C3) in addition to displaying C1>>C2.

 Tableau 4 is called the MIB of Tableau 2 (or, equivalently, of Tableau 1); the MIB 

answers question (1) because: (a) it is equivalent to the initial tableau; (b) it contains a minimal 

number of independent rows; and (c) it displays in a perspicuous / maximally informative

way all the necessary and sufficient ranking conditions. The paper shows that the MIB exists and 

is unique for an arbitrary (consistent) initial tableau and that there is a Fusional Reduction 

(FRed) algorithm that can compute the MIB of any tableau.  
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TABLEAUX

Tableau 1 C1 C2 C3

a: <I, Oa> 1 1 1 

b: <I, Ob> 2 0 2 

c: <I, Oc> 1 2 0 

  Desired optimum:    a: <I, Oa>

Tableau 2 C1 C2 C3

r1: a~b W L W 

r2: a~c e W L 
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Tableau 3 C1 C2 C3

r3 W L e 

r2: a~c e W L 

Tableau 4 C1 C2 C3

r4 W L L 

r2: a~c e W L 


