Semantic commitment and lexical underspecification in the Maze

John Duff (jduff@ucsc.edu), Adrian Brasoveanu, and Amanda Rysling
UC Santa Cruz Linguistics

Discussion

The critical prediction of necessary underspecification is not met: we fail to replicate a difference in reanalysis costs between polysemy and homophony.

The presence of reanalysis costs for both ambiguities is consistent with a utility-based account: pressures of the Maze task lead the processor to commit fully, and ignore the option to delay.

Note that not all ‘ambiguity’ behaves alike: the ambiguity advantage for relative clause attachment is robust in the Maze [11]. Future use of the Maze may help draw clearer lines between effects attributable to processing strategy and the structure of the processor itself.

We could alternately interpret this as a straight-forward failure to replicate [1] in another modality. We aim to follow-up by verifying the effect’s presence in self-paced reading and eyetracking using the same materials.

Conclusions

Differences in the online resolution of polysemy and homophony don’t generalize from eyetracking to the Maze task.

We take the absence of this critical interaction to reflect the Maze task’s pressure to maximize eager meaning commitment. This leaves us with a theory of utility-based lexical underspecification rather than an account where it is necessary to delay commitment.

Reference


Acknowledgments: We thank Jakub Dolfi and Hilary Mace for their assistance.

John Duff, John Duff, and Amanda Rysling thank the anonymous reviewers for their helpful comments.


The Maze task

In [7]’s Maze task, as implemented by [8], participants advance word-by-word by making decisions between the correct continuation of a sentence and a high-surprise foil (see [9]).

The presence of reanalysis costs for both ambiguities is consistent with a utility-based account: pressures of the Maze task lead the processor to commit fully, and ignore the option to delay.

We take the absence of this critical interaction to reflect the Maze task’s pressure to maximize eager meaning commitment. This leaves us with a theory of utility-based lexical underspecification rather than an account where it is necessary to delay commitment.

The critical prediction of necessary underspecification is not met: we fail to replicate a difference in reanalysis costs between polysemy and homophony.

The presence of reanalysis costs for both ambiguities is consistent with a utility-based account: pressures of the Maze task lead the processor to commit fully, and ignore the option to delay.

Note that not all ‘ambiguity’ behaves alike: the ambiguity advantage for relative clause attachment is robust in the Maze [11]. Future use of the Maze may help draw clearer lines between effects attributable to processing strategy and the structure of the processor itself.

We could alternately interpret this as a straight-forward failure to replicate [1] in another modality. We aim to follow-up by verifying the effect’s presence in self-paced reading and eyetracking using the same materials.

Conclusions

Differences in the online resolution of polysemy and homophony don’t generalize from eyetracking to the Maze task.

We take the absence of this critical interaction to reflect the Maze task’s pressure to maximize eager meaning commitment. This leaves us with a theory of utility-based lexical underspecification rather than an account where it is necessary to delay commitment.

Reference


Acknowledgments: We thank Jakub Dolfi for his materials and documents, and Veronika Royan, Shayan Peggest, and Nick Van Handel for Maze resources.