
Handout 4: Introduction to DPL+GQ 

Seminar in Semantics: Decomposing Quantification (Fall 2008) 
 

 

1. Dynamic Predicate Logic (DPL) 

1. Ax house-elf fell in love with ax' witch. 
2. Hex bought herx' anx'' alligator purse. 
 
3. Every farmer who owns ax donkey beats itx. 
4. Every house-elf who falls in love with ax witch buys herx anx' alligator purse. 
5. If ax farmer owns ax' donkey, hex beats itx'. 
6. If ax house-elf falls in love with ax' witch, hex buys herx' anx'' alligator purse. 

The particular version of dynamic semantics we look at is (based on) DPL (Groenendijk & 
Stokhof 1991) – and for three reasons:  

� the syntax of the system is a fairly close variant of the familiar syntax of classical first-order 
logic; this enables us to focus on what is really new, namely the semantics;  

� the semantics of DPL is minimally different from the standard Tarskian semantics for first-
order logic: instead of interpreting a formula as a set of variable assignments (i.e., the set of 
variable assignments that satisfy the formula in the given model), we interpret it as a binary 
relation between assignments1; moreover, this minimal semantic modification encodes in a 
transparent way the core dynamic idea that meaning is not merely truth-conditional 
content, but context change potential; 

� third, just as classical predicate logic can be straightforwardly generalized to static type 
logic, DPL can be easily generalized to a dynamic version of type logic, which is what 
Muskens' Compositional DRT is; and CDRT enables us to introduce compositionality at 
the sub-sentential/sub-clausal level in the tradition of Montague semantics. 

                                                 

1 Alternatively, and in certain respects equivalently, we can think of the interpretation of a formula as a function 
taking as argument a set of assignments and returning another set of assignments – this is the view underlying FCS, 
for example. However, in both cases the update is defined pointwise – and a relational view of update reflects this 
more directly. There are other differences between FCS and DPL (e.g., using partial and total assignments 
respectively and disallowing vs. allowing reassignment) – see the dynamic cube in Krahmer (1998): 59 for an 
overview. In particular, the fact that DPL (and CDRT) allows reassignment will be an essential ingredient in 
accounting for the interaction between anaphora and generalized conjunction (see section 5 of Chapter 1 below). 
The "destructive reassignment" or "downdate problem" associated with reassignment can be solved using stacks / 
'referent systems': see Nouwen (2003) for a recent discussion and Bittner (2006) for a set of 'stack' axioms for 
dynamic type logic. 

Also, DPL is able to translate the donkey sentences in (3) through (6) above compositionally, 
with sentences / clauses as the building blocks (i.e., basically, as compositional as one can get in 
first-order logic).  

Sentences (3) and (5) above are translated as shown in (7) and (8) below and, when 
interpreted dynamically, the translations capture the intuitively correct truth-conditions. 

7. �x(farmer(x) � �y(donkey(y) � own(x, y)) � beat(x, y)) 
8. �x(farmer(x) � �y(donkey(y) � own(x, y))) � beat(x, y) 

Consider (7) first: 

� every is translated as universal quantification plus implication and the indefinite as 
existential quantification plus conjunction 

� the syntactic scope of the existential quantification is 'local' (restricted to the antecedent of 
the implication), but it does semantically bind the occurrence of the variable y in the 
consequent. 

 Similarly, in (8): 

� the conditional is translated as implication and the indefinites are translated as existentials 
plus conjunction, again with syntactically 'local' but semantically 'non-local' scope. 

DPL has two crucial properties that enable it to provide compositional translations for 
donkey sentences – the equivalences in (9) and (10) below valid.  

9. �x(�) � � 	 �x(� � �)2 
10. �x(�) � � 	 �x(� � �) 

So:  

� indefinites can semantically bind outside their syntactic scope and indefinitely to the right  
� in combination with the definition of dynamic implication, this allows them to scope out of 

the antecedent and universally bind in the consequent of the implication. 

 

1.1. Definitions and Abbreviations 

The 'official' definition of a well-formed formula (wff) of DPL is easily recoverable on the 
basis of the definition of the interpretation function �
� in (11) below – the syntax is therefore 
not provided. 

11. Dynamic Predicate Logic (DPL). The definition of the DPL interpretation function 
���DPL

M relative to a standard first-order model M=<DM, IM>, where D is the domain of 
entities and I is the interpretation function which assigns to each n-place relation 'R' a 

                                                 

2 The symbol '	' should be interpreted as requiring the identity of the semantic value of two formulas. 

1



subset of D
n
. For readability, I drop the subscript and superscript on �
�DPL

M
, D

M
 and I

M
. 

'T' and 'F' stand for the two truth values.             
For any pair of M-variable assignments <g, h>:               
a. Atomic formulas ('lexical' relations and identity):    
 �R(x1, …, xn)�<g, h> = T iff g=h and <g(x1), …, g(xn)>�I(R)   
 �x1=x2�<g, h> = T iff g=h and g(x1)=g(x2)       
b. Connectives (dynamic conjunction and dynamic negation):   
 ��; ��<g, h> = T iff there is a k s.t. ���<g, k> = T and ���<k, h> = T  
 �~��<g, h> = T iff g=h and there is no k s.t. ���<g, k> = T,   
  i.e., �~��<g, h> = T iff g=h and g�Dom(���),     
  where Dom(���) := {g: there is an h s.t. ���<g, h> = T}     
c. Quantifiers (random assignment of value to variables):   
 �[x]�<g, h> = T iff for any variable �, if �x then g(�)=h(�)    
d. Truth: A formula � is true with respect to an input assignment g iff there is an output 
assignment h s.t. ���<g, h> = T, i.e., g�Dom(���). 

Given that variable assignments are functions from variables to entities, if two variable 
assignments assign identical values to all the variables, they are identical. Hence, based on 
definition (11c), the formula [ ] defines the 'diagonal' of the product G�G, where G is the set of 
all M-variable assignments, as shown in (12). 

12. �[ ]�= {<g, g>: g�G},         
 where G is the set of all M-variable assignments. 

We define the other sentential connectives and the quantifiers as in (13) below. 

13. a. Abbreviations – Connectives (anaphoric closure, disjunction and implication): 
 !� := ~~�,

3
           

  i.e., �!��={<g, h>: g=h and g�Dom(���)}
4
    

 � � � := ~(~�; ~�),          
  i.e., �� � ��={<g, h>: g=h and g�Dom(���)�Dom(���)} 
 � � � := ~(�; ~�),          
  i.e., �� � ��={<g, h>: g=h and for any k s.t.���<g, k> = T,   
      there is an l s.t.���<k, l> = T}

5
,  

                                                 

3
 I use the symbol '!' for closure, as in van den Berg (1996b) and unlike Groenendijk & Stokhof (1991), who use '�'. 

4
 The connective '!' is labeled 'anaphoric closure' because, when applied to a formula �, it closes off the possibility of 

subsequent reference to any dref introduced in �. This is because the input and the output assignments in the 
denotation of !� are identical. The operator '!' is important because � and !� have the same truth-conditions – see the 
definition of truth in (11a), i.e., '!' can be said to factor out the truth-conditions of a dynamic formula.  
5
 This is shown by the following equivalences:: �� � ��<g, h> = T iff �~(�; ~�)�<g, h> = T iff g=h and there is 

no k s.t. ��; ~��<g, k> = T iff g=h and there is no k and no l s.t.���<g, l> = T and �~��<l, k> = T iff g=h and 
there is no k and no l s.t.���<g, l> = T and l=k and l�Dom(���) iff g=h and there is no k s.t.���<g, k> = T and 
k�Dom(���) iff g=h and for any k s.t.���<g, k> = T, we have that k�Dom(���) iff g=h and for any k 
s.t.���<g, k> = T, there is an l s.t.���<k, l> = T. Summarizing: �� � ��<g, h> = T iff g=h and for any k 
s.t.���<g, k> = T, there is an l s.t.���<k, l> = T. 

  i.e., �� � ��={<g, h>: g=h and (�)
g
 � Dom(���)},    

  where (�)
g
 := {h: ���<g, h> = T}       

b. Abbreviations – quantifiers (existential, universal, multiple random assignment):  
 �x(�) := [x]; �          
 �x(�) := ~([x]; ~�),          
  i.e., [x] � � or, equivalently, ~�x(~�),     
  i.e., ��x(�)�={<g, h>: g=h and       
     for any k s.t. g[x]k, there is an l s.t.���<k, l> = T}

6
, 

  i.e., ��x(�)�={<g, h>: g=h and ([x])
g
 � Dom(���)}   

 [x1, …, xn] := [x1]; …; [xn] 

Given the definitions of dynamic negation '~' and closure '!', the equivalence in (14) below 
holds; (14) is very useful in proving that many equivalences of interest hold in DPL (e.g., the one 
in (15) below). Two formulas are equivalent, symbolized as '	', iff they denote the same set of 
pairs of variable assignments. 

14. ~(�; �) 	 ~(�; !�)
7
 

The equivalence in (15) below exhibits the limited extent to which the existential and 
universal quantifiers are duals;

8
 this will prove useful, for example, when we try to determine the 

DPL translation of the English determiner no. 

15. ~�x(�) 	 �x(~�)
9
  

The practice of setting up abbreviations as opposed to directly defining various connectives 
and quantifiers might seem cumbersome, but it is useful in three ways: 

� by setting up explicit abbreviations, we see exactly which component of the basic dynamic 
system does the work, e.g., we see that the universal 'effect' of universal quantification 

                                                 

6
 This is shown by the following equivalences: ��x(�)�<g, h> = T iff �~([x]; ~�)�<g, h> = T iff g=h and there is 

no k s.t. �[x]; ~��<g, k> = T iff g=h and there is no k and no l s.t.�[x]�<g, l> = T and �~��<l, k> = T iff g=h and 
there is no k and no l s.t. g[x]l and l=k and l�Dom(���) iff g=h and there is no k s.t. g[x]k and k�Dom(���) iff 
g=h and for any k s.t. g[x]k, we have that k�Dom(���) iff g=h and for any k s.t. g[x]k, there is an l s.t.���<k, l> = 
T. Summarizing: ��x(�)�<g, h> = T iff g=h and for any k s.t. g[x]k, there is an l s.t.���<k, l> = T. 
7
 The equivalence holds because the following equalities hold (I use two abbreviations: (�)

g
 := {h: ���<g, h> = T} 

and Dom(���) := {g: there is an h s.t. ���<g, h> = T}):  

�~(�; �)� = {<g, h>: g=h and g�Dom(��; ��)} = {<g, h>: g=h and it is not the case that there is a k s.t. ��; 
��<g, k> = T} = {<g, h>: g=h and it is not the case that there is an l and a k s.t. ���<g, l> = T and ���<l, k> = T} 
= {<g, h>: g=h and there is no l s.t. ���<g, l> = T and l�Dom(���)} = {<g, h>: g=h and (�)

g
�Dom(���)=Ø} = 

{<g, h>: g=h and (�)
g
�Dom(�!��)=Ø} = {<g, h>: g=h and g�Dom(��; !��)} = �~(�; !�)�. 

8
 The other 'half' of the duality, i.e., �x(~�) 	 ~�x(�), clearly doesn't hold: using the terminology defined in (16), 

~�x(�) is a test, while �x(~�) isn't. 
9
 ~�x(�) 	 ~([x]; �) 	 (given (14)) ~([x]; !�) 	 ~([x]; ~~�) 	 �x(~�).  

2



�x(�), just as the universal unselective binding 'effect' of implication � � �, is in fact due 
to dynamic negation

10
 

� distinguishing basic definitions and derived abbreviations will prove useful when we start 
generalizing the system in various ways. The official definition is the logical 'core' that 
undergoes modifications when we define extensions of DPL; the system of abbreviations, 
however, remains more or less constant across extensions. In this way, we are able to 
exhibit in a transparent way the commonalities between the various systems we consider 
and also between the analyses of natural language discourses and within these different 
systems. 

� the abbreviations indicate explicitly the relation between the 'core' dynamic system and 
related systems (e.g., DRT). From this perspective, it is useful to add to the core layer of 
definitions in (11) above and the layer of abbreviations in (13) (which 'recovers' first-order 
logic) yet another and final layer of abbreviations that 'recovers' DRT (Kamp 1981, Kamp 
& Reyle 1993). 

1.2. Discourse Representation Structures (DRSs) in DPL 

The semantic notion of test and the corresponding syntactic notion of condition are defined 
in (16) and (17) below (see Groenendijk & Stokhof (1991): 57-58, Definitions 11 and 12). The 
relation between them is stated in (18) (see Groenendijk & Stokhof (1991): 58, Fact 6).  

16. A wff � is a test iff ��� � {<g, g>: g�G}, where G is the set of all M-variable 
assignments,           
 i.e., in our terms, a wff � is a test iff ��� � �[ ]� 

11
. 

17. The set of conditions is the smallest set of wffs containing atomic formulas, [ ], negative 
formulas (i.e., formulas whose main connective is dynamic negation '~'

12
) and closed 

under dynamic conjunction. 
18. � is a test iff � is a condition or a contradiction (� is a contradiction iff ���= Ø) 

We indicate that a formula is a condition by placing square brackets around it. 

19. Conditions:           
 [�] is defined iff � is a condition; when defined, [�] := �    
 [�1, …, �m] := [�1]; …; [�m] 

We can now define a Discourse Representation Structure (DRS) or linearized 'box' as 
follows: 

20. Discourse Representation Structures (DRSs), a.k.a. linearized 'boxes':  
 [x1, …, xn | �1, …, �m] := [x1, …, xn]; [�1, …, �m],      

                                                 

10
 See the observations in van den Berg (1996b): 6, Section 2.3. 

11
 Note that � 	 !� iff � is a test; see Groenendijk & Stokhof (1991): 62. 

12
 Note that, given our abbreviations in (13) above, the set of negative formulas includes closed formulas (i.e., 

formulas of the form '!�'), disjunctions, implications and universally quantified formulas. 

 equivalently: [x1, …, xn | �1, …, �m] := �x1…�xn([�1, …, �m]).     
That is, [x1, …, xn | �1, …, �m] is defined iff �1, …, �m are conditions and, if defined: 
 �[x1, …, xn | �1, …, �m]� := {<g, h>:  g[x1, …, xn]h and     
      ��1�<h, h> = T and … ��m �<h, h> = T} 

2. Anaphora in DPL 

The benefit of setting up this system of abbreviations becomes clear as soon as we begin 
translating natural language discourses into DPL.  

2.1. Cross-sentential Anaphora 

Consider again discourse (1-2) above, repeated in (21-22) below. 

21. A
x
 house-elf fell in love with a

y
 witch. 

22. Hex bought hery an
z
 alligator purse. 

The representation of (21-22) in the unabbreviated system is provided in (23) below. 

The 'first-order'-style abbreviation is provided in (24) and the DRT-style abbreviation in 
(25). 

23. [x]; house_elf(x); [y]; witch(y); fall_in_love(x, y);        
[z]; alligator_purse(z); buy(x, y, z) 

24. �x(house_elf(x); �y(witch(y); fall_in_love(x, y)));      
�z(alligator_purse(z); buy(x, y, z)) 

25. [x, y | house_elf(x), witch(y), fall_in_love(x, y)];        
[z | alligator_purse(z), buy(x, y, z)] 

2.2. Relative-clause Donkey Sentences 

Consider now the relative-clause donkey sentence in (26) below (repeated from (4) above). 
The 'first-order'-style translation in terms of universal quantification and implication is provided 
in (27) and the DRT-style translation in (28). 

One way to see that the two translations are equivalent is to notice that both of them are 
equivalent to the formula in (29). 

26. Every
x
 house-elf who falls in love with a

y
 witch buys hery an

z
 alligator purse. 

27. �x(house_elf(x); �y(witch(y); fall_in_love(x, y))       
 � �z(alligator_purse(z); buy(x, y, z))) 

28. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]       
 � [z | alligator_purse(z), buy(x, y, z)] 

29. [x]; house_elf(x); [y]; witch(y); fall_in_love(x, y)       
 � [z]; alligator_purse(z); buy(x, y, z) 

3



Moreover, the three translations in (27), (28) and (29) are all equivalent (in DPL) to the 
formula in (30) below, which is the formula that assigns sentence (26) the intuitively correct 
truth-conditions when interpreted as in classical first-order logic. 

30. �x�y(house_elf(x); witch(y); fall_in_love(x, y)       
 � �z(alligator_purse(z); buy(x, y, z))) 

As already noted, the formulas in (27) through (30) are equivalent because DPL validates 
the equivalence in (10) above, i.e., �x(�) � � 	 �x(� � �).

13
 

2.3. Conditional Donkey Sentences 

Finally, the conditional donkey sentence in (31) below (repeated from (6)) is truth-
conditionally equivalent to the relative clause donkey sentence in (26), as shown by the fact that 
they receive the same DRT-style translation – provided in (32). 

The 'first-order'-style compositional translation – equivalent to the DRT-style translation 
and all the other formulas listed above – is given in (33). 

31. If a
x
 house-elf falls in love with a

y
 witch, hex buys hery an

z
 alligator purse. 

32. [x, y | house_elf(x), witch(y), fall_in_love(x, y)]       
 � [z | alligator_purse(z), buy(x, y, z)] 

33. �x(house_elf(x); �y(witch(y); fall_in_love(x, y)))       
 � �z(alligator_purse(z); buy(x, y, z)) 

I conclude this section with the DPL analysis of two negative donkey sentences. 

34. No
x
 house-elf who falls in love with a

y
 witch buys hery an

z
 alligator purse. 

35. If a
x
 house-elf falls in love with a

y
 witch, hex never buys hery an

z
 alligator purse. 

If we follow the canons of classical first-order logic in translating sentence (34), we have a 
choice between a combination of negation and existential quantification and a combination of 
negation and universal quantification. But the limited duality exhibited by existential and 
universal quantification in DPL (see (15) above) is of help here. To see this, note first that the 
duality can be generalized to the equivalence in (36) below. 

36. ~�x(�; �) 	 �x(� � ~�) 
14,15

 

                                                 

13
 �x(�) � � 	 �x(� � �) iff ([x]; �) � � 	 ~([x]; ~(� � �)) iff ~(([x]; �); ~�) 	 ~([x]; ~~(�; ~�)) iff ~([x]; (�; 

~�)) 	 ~([x]; ~~(�; ~�)) iff ~([x]; (�; ~�)) 	 ~([x]; !(�; ~�)). The last equivalence holds because it is an instance 
of the more general equivalence ~(�; �) 	 ~(�; !�) (see (14) above). 
14

 The equivalence holds because: ~�x(�; �) 	 (by (15)) �x(~(�; �)) 	 (by (14)) �x(~(�; !�)) 	 �x(~(�; ~~�)) 
	 �x(� � ~�). 
15

 The equivalence ~�x(�; �) 	 �x(� � ~�) in (36) is a generalization of the equivalence ~�x(�) 	 �x(~�) in (15) 
expressing the partial duality of the two quantifiers because we can obtain (15) from (36) by inserting [ ] in the place 
of � in (36). In particular, the two equivalences in (i) and (ii) below hold: 

Now, given that the equivalence in (36) holds, we can translate sentence (34) either way, as 
shown in (37) and (38). Moreover, both translations are equivalent to the formula in (39), which 
explicitly shows that we quantify universally over all pairs of house-elves and witches standing 
in the 'fall in love' relation.  

37. ~�x(house_elf(x); �y(witch(y); fall_in_love(x, y));        
���������z(alligator_purse(z); buy(x, y, z))) 

38. �x(house_elf(x); �y(witch(y); fall_in_love(x, y))       
 � ~�z(alligator_purse(z); buy(x, y, z))) 

39. �x�y(house_elf(x); witch(y); fall_in_love(x, y)       
 � ~�z(alligator_purse(z); buy(x, y, z))) 

Consider now sentence (35). 

There is a compositional DPL translation for it, which becomes apparent as soon as we 
consider the intuitively equivalent English sentence in (40) below. 

Both sentence (35) and sentence (40) are compositionally translated as in (41).  

40. If a
x
 house-elf falls in love with a

y
 witch, hex doesn't buy hery an

z
 alligator purse. 

41. �x(house_elf(x); �y(witch(y); fall_in_love(x, y)))       
 � ~�z(alligator_purse(z); buy(x, y, z)) 

It is easily seen that the DPL translations capture the fact that the English sentences in (34), 
(35) and (40) are intuitively equivalent. 

3. Extending DPL with Unselective Generalized Quantification 

As the translations of the every- and if-examples in (26) and (31) above indicate, there is a 
systematic correspondence in DPL between the generalized quantifier every and the unselective 
implication connective.

16
  

The same point is established by the equivalence of the DPL translations of the no- and 
never-examples in (34) and (35). 

The correspondence between every and implication is concisely captured by the 
equivalence in (42) (which is none other than the equivalence we mentioned at the beginning of 
the previous section – see (10) above). 

42. �x(� � �) 	 ([x]; �) � � 
17

 

                                                                                                                                                             

(i) [ ]; � 	 �,     hence ~�x([ ]; �) 	 ~�x(�) 
(ii) [ ] � ~� 	 ~([ ]; ~~�) 	 ~~~� 	 ~�,     hence �x([ ] � ~�) 	 �x(~�)  

Moreover, we have (by (36)) that ~�x([ ]; �) 	 �x([ ] � ~�); it follows that ~�x(�) 	 �x(~�), i.e., (15), holds. 
16

 Implication is unselective basically because it is a sentential connective. 

4



When interpreted relative to an input assignment g, the implication connective � � � boils 
down to an inclusion relation between two sets of assignments: 

� (�)
g
 � Dom(���) 

� (�)
g
:={h: ���<g, h> = T},         

 i.e., (�)
g
 is the image of the singleton set {g} under the relation ��� 

� Dom(���):={h: there is a k s.t. ���<h, k> = T} 

The inclusion relation between the two sets is precisely the relation expressed by the static 
generalized quantifier EVERY when applied to the two sets in question, i.e., EVERY((�)

g
, 

Dom(���)). 

We can therefore give an alternative definition of implication using the static quantifier 
EVERY: 

43. �� � �� = {<g, h>: g=h and EVERY((�)
g
, Dom(���))},    

 where EVERY is the usual static generalized quantifier. 

Putting together (42) and (43), we obtain a definition of the natural language quantifier 
every as a binary operator over two DPL formulas: 

44. �everyx(�, �)� = {<g, h>: g=h and EVERY(([x]; �)
g
, Dom(���))} 

It is easily checked that the equivalence in (42) can be extended as follows: 

45. �x(� � �) 	 ([x]; �) � � 	 everyx(�, �) 

This equivalence shows that the operator everyx(�, �) can be successfully used to translate 
donkey sentences with every and assign them the intuitively correct truth-conditions. 

The 'in love house-elf' example and its DPL translation are repeated in (46) and (47) below. 
The equivalent translation based on the binary every operator is provided in (48). 

46. Every
x
 house-elf who falls in love with a

y
 witch buys hery an

z
 alligator purse. 

47. �x(house_elf(x); �y(witch(y); fall_in_love(x, y))       
 � �z(alligator_purse(z); buy(x, y, z))) 

48. everyx(house_elf(x); �y(witch(y); fall_in_love(x, y)),      
 �z(alligator_purse(z); buy(x, y, z))) 

We can define in a similar way a binary operator over DPL formulas nox(�, �). 

49. �nox(�, �)� = {<g, h>: g=h and NO(([x]; �)
g
, Dom(���))},   

 i.e., �nox(�, �)� = {<g, h>: g=h and ([x]; �)
g
�Dom(���)=Ø} 

                                                                                                                                                             

17
 ��x(� � �)�<g, h> = T iff �[x] � (� � �)�<g, h> = T iff g=h and for any k s.t.�[x]�<g, k> = T, there is an l 

s.t.�� � ��<k, l> = T iff g=h and for any k s.t. g[x]k, there is an l s.t. k=l and for any k' s.t.���<k, k'> = T, there is 
an l' s.t.���<k', l'> = T iff g=h and for any k and k' s.t. g[x]k and ���<k, k'> = T, there is an l s.t.���<k', l> = T 
iff g=h and for any k s.t. �[x]; ��<g, k> = T, there is an l s.t.���<k, l> = T iff �([x]; �) � ��<g, h> = T. 

It is easily checked that the equivalence in (36) above extends as shown in (50). 

50. ~�x(�; �) 	 �x(� � ~�) 	 nox(�, �) 

So, we can translate sentence (34)/(51) as in (52): 

51. No
x
 house-elf who falls in love with a

y
 witch buys hery an

z
 alligator purse. 

52. nox(house_elf(x); �y(witch(y); fall_in_love(x, y)),        
��������z(alligator_purse(z); buy(x, y, z))) 

3.1. Dynamic Unselective Generalized Quantification 

The definitions of every and no in (44) and (49) and the way in which these operators are 
used to translate the English sentences in (48) and (51) suggest a way to add generalized 
quantification to DPL so that we can analyze the following donkey sentences: 

53. Most
x
 house-elves who fall in love with a

y
 witch buy hery an

z
 alligator purse. 

54. Few
x
 house-elves who fall in love with a

y
 witch buy hery an

z
 alligator purse. 

Let's first define the family of unselective binary operators det. Again, note that they are 
unselective because they are essentially sentential operators. 

55. �det(�, �)� = {<g, h>: g=h and DET((�)
g
, Dom(���))},     

 where DET is the corresponding static determiner. 

Given that Dom(���)=Dom(�!��), it follows that det(�, �) 	 det(�, !�). 

The fact that the det sentential operators are unselective is semantically reflected in the fact 
that they express generalized quantification between two sets of info states (a.k.a. variable 
assignments), namely (�)

g
 and Dom(���).  

Their unselectivity is the source of two problems: 

� the proportion problem  
� no account of weak vs. strong donkey readings 

Note that a formula of the form det(�, �) is a test. So, we should also extend our syntactic 
notion of condition defined for DPL in (17) above. 

56. The set of conditions is the smallest set of wffs containing atomic formulas, formulas 
whose main connective is dynamic negation '~' or a det operator and closed under 
dynamic conjunction. 

The definition in (56) enables us to construct DRSs of the form [… | …, det(�, �), …]. 

Natural language generalized determiners are defined in terms of the unselective det 
operators, as shown in (57) below. 

57. detx(�, �) := det([x]; �, �) 

5



The determiners everyx(�, �) and nox(�, �), i.e., the every and no instances of the general 
definition in (57), are just the determiners directly defined in (44) and (49) above. 

The generalized determiners defined in this way are still unselective, despite the presence of 
the variable x: the variable x in detx is only meant to indicate the presence of the additional 
update [x], but the basic operator is still the unselective det. 

That is, we still determine the denotation of detx(�, �) by checking whether the static 
determiner DET applies to two sets of info states – and not to two sets of individuals. 

The definition of det(�, �) in (55) above is just the definition of quantificational adverbs in 
Groenendijk & Stokhof (1991): 81-82, which follows Lewis (1975) in taking adverbs to quantify 
over cases. E.g., never is translated in Groenendijk & Stokhof (1991): 82 as the binary 
implication connective �no. The definition of � �no � is identical to the definition of no(�, �).  

The analysis can be extended in the obvious way to other adverbs of quantification, e.g., 
always can be interpreted as every(�, �) (just like bare conditionals), often and usually as 
most(�, �) and rarely as few(�, �) – where the corresponding static determiners MOST and 
FEW are interpreted as more than half and less than half respectively. 

The definition of detx(�, �) is actually equivalent to the (implicit) definition of generalized 
quantification in Kamp (1981) and Heim (1982/1988). 

A nice consequence of defining detx in terms of det (as in (57) above) is that the systematic 
natural language correspondence between adverbs of quantification and generalized quantifiers, 
e.g., the correspondence between no and never in examples (34) and (35) above, is explicitly 
captured. 

3.2. Limitations of Unselectivity: Proportions 

Consider the translations in (59) and (62) ('predicate logic'-style) and (60) and (63) (DRT-
style). 

58. Most
x
 house-elves who fall in love with a

y
 witch buy hery an

z
 alligator purse. 

59. mostx(house_elf(x); �y(witch(y); fall_in_love(x, y)),        
������������z(alligator_purse(z); buy(x, y, z))) 

60. mostx([y | house_elf(x), witch(y), fall_in_love(x, y)],        
�����������[z | alligator_purse(z), buy(x, y, z)]) 

 
61. Few

x
 house-elves who fall in love with a

y
 witch buy hery an

z
 alligator purse. 

62. fewx(house_elf(x); �y(witch(y); fall_in_love(x, y)),         
����������z(alligator_purse(z); buy(x, y, z))) 

63. fewx([y | house_elf(x), witch(y), fall_in_love(x, y)],        
���������[z | alligator_purse(z), buy(x, y, z)]) 

We do capture the anaphoric connections, but we do not derive the intuitively correct truth-
conditions. As shown in Partee (1984),

18
 Rooth (1987), Kadmon (1987) and Heim (1990), the 

analysis has a proportion problem.
19

 

This is easy to see if we examine the formula in (64) below (equivalent to (59) and (60)). 

64. most([x, y | house_elf(x), witch(y), fall_in_love(x, y)],       
����������[z | alligator_purse(z), buy(x, y, z)]) 

The representation in (64) makes clear that we are quantifying over most pairs <x, y> where 
x is a house-elf that fell in love with a witch y. For most such pairs <x, y>, the requirement in the 
nuclear scope, i.e., x bought y some alligator purse z, should be satisfied. 

But: we can produce a scenario in which the English sentence in (58) is intuitively false 
while the formula in (64) is true. 

� there are ten house-elves that fell in love with some witch or other 
� one of them, call him Dobby, is a Don Juan of sorts and he fell in love with more than one 

thousand witches
20

 and bought them all alligator purses 
� the other nine house-elves are less exceptional: they each fell in love with only one witch 

and they bought them new brooms, not alligator purses 

Sentence (58) is intuitively false in this scenario, while formula (64) is true: all the Dobby-
based pairs that satisfy the restrictor also satisfy the nuclear scope – and these pairs are more 
than half, i.e., most, of the pairs under consideration. 

3.3. Limitations of Unselectivity: Weak / Strong Ambiguities 

In addition, the unselective analysis of generalized quantifiers fails to account for the fact 
that the same donkey sentence can exhibit two different readings, a strong one and a weak one. 
Consider again the classical sentence in (65) below. 

65. Every
x
 farmer who owns a

y
 donkey beats ity. 

The most salient reading of this sentence: every farmer behaves violently towards each and 
every one of his donkeys, i.e., the so-called strong reading. 

                                                 

18
 "[…] when we have to deal with quantification with a complicated and possibly uncertain underlying ontology, 

we need to specify a 'sort' (for the quantifier to 'live on' in the sense of Barwise & Cooper 1981) separately from 
whatever further restrictions we want to add (perhaps in terms of 'cases') about which instances of the sort we are 
quantifying over. In terms of Kamp's framework this means that we have to worry not only about what belongs in 
the antecedent box but also how to distinguish a substructure within it that plays the role of sortal (the head noun in 
the NP case)." (Partee 1984: 278). 
19

 The 'proportion problem' terminology is due to Kadmon (1987): 312. 
20

 To be more precise, one thousand and three witches only in Spain. 

6



The everyx operator correctly captures this reading, as shown in (66) below; the equivalent 
formulas in (67) and (68) are provided because they display the 'strength' of the reading in a 
clearer way. 

66. everyx([y | farmer(x), donkey(y), own(x, y)],  [beat(x, y)]) 
67. every([x, y | farmer(x), donkey(y), own(x, y)],  [beat(x, y)]) 
68. �x�y(farmer(x); donkey(y); own(x, y) � beat(x, y)) 

However, sentence (65) can receive another, weak reading: every farmer beats some donkey 
that he owns, but not necessarily each and every one of them.

21
 

Chierchia (1995): 64 provides a context in which the most salient reading is the weak one: 
imagine that the farmers under discussion are all part of an anger management program and they 
are encouraged by the psychotherapist in charge to channel their aggressiveness towards their 
donkeys (should they own any) rather than towards each other. The farmers scrupulously follow 
the psychotherapist's advice – in which case we can assert (65) even if the donkey-owning 
farmers beat only some of their donkeys. 

Furthermore, there are donkey sentences for which the weak reading is the most salient one: 

69. Every person who has a dime will put it in the meter.       
(Pelletier & Schubert 1989) 

70. Yesterday, every person who had a credit card paid his bill with it.      
(R. Cooper, apud Chierchia 1995: 63, (3a)) 

Thus, both readings seem to be semantically available
22

 and the unselective analysis of 
dynamic generalized quantifiers does not allow for both of them. 

The weak/strong ambiguity also provides an argument against the unselective analysis of 
conditionals and adverbs of quantification, as shown, for example, by (71) below.   

71. If a
x
 farmer owns a

y
 donkey, hex (always/usually/often/rarely/never) beats ity. 

For a detailed discussion of such conditionals, see (among others) Chierchia (1995): 66-69. 
I will only mention the generalization reached in Kadmon (1987) and summarized in Heim 
(1990): 

"Kadmon's generalization is that a multi-case conditional with two indefinites in the 
antecedent generally allows three interpretations: one where the QAdverb quantifies over pairs, 
one where it quantifies over instances of the first indefinite and one where it quantifies over 
instances of the second." (Heim 1990: 153) 

                                                 

21
 Partee (1984) seems to be (one of) the first to notice weak donkey readings: the example in (i) below is from 

Partee (1984): 280, fn. 12. 

(i) If you have a credit card, you should use it here instead of cash. 
22

 See for example the discussion in Chierchia (1995): 62-65, in particular the argument that the strong reading is not 
a conversational implicature triggered in certain contexts. 

A partial solution to the problem posed by weak donkey readings is available in classical 
DRT / FCS / DPL. As pointed out in Groenendijk & Stokhof (1991): 89, we can define an 
alternative implication connective, as shown in (72) below. 

72. � � � := ~� � (�; �),          
 i.e., �� � �� = {<g, h>: g=h and g�Dom(���) or (�)

g
�Dom(���)Ø}, 

 i.e., �� � �� = {<g, h>: g=h and g�Dom(���) or (�; !�)
g
Ø},   

 i.e., �� � �� = {<g, h>: g=h and g�Dom(���) or g�Dom(��; !��). 
73. �� � �� = {<g, h>: g=h and g�Dom(���) or (�)

g
 � Dom(���)} 

Note the 'some' flavor of �: (�)
g
�Dom(���)Ø. 

Compare with the 'every' flavor of �: (�)
g
 � Dom(���). 

The weak reading of sentence (74) (repeated from above) is presumably analyzed as shown 
in (75), which is 'unpacked' in (76). The strong reading is given in (77) and (78) for ease of 
comparison. 

74. Every
x
 farmer who owns a

y
 donkey beats ity. 

75. weak reading:  �x(farmer(x); �y(donkey(y); own(x, y)) � beat(x, y)) 
76. weak reading:  [x] � ([y | farmer(x), donkey(y), own(x, y)] � [beat(x, y)]) 
77. strong reading:  �x(farmer(x); �y(donkey(y); own(x, y)) � beat(x, y)) 
78. strong reading:  [x] � ([y | farmer(x), donkey(y), own(x, y)] � [beat(x, y)]) 

However, this analysis of weak implication faces three problems: 

� as we can see from the 'unpacked' formula in (76), we still need the 'strong' implication 
connective � in addition to the 'weak' one � to capture the correct truth-conditions for the 
weak reading of sentence (74), i.e., the weak reading is obtained via a combination of 
'strong' and 'weak' implication. So, this solution fails to extend to weak readings of 
conditionals: as argued by Kadmon, the conditional in (79) below can receive a weak 
reading that is equivalent to the weak reading of the every donkey sentence in (74) above. 
However, this reading is not captured by the formula in (80), precisely because the 
equivalence �x(�) � � 	 �x(� � �) fails for 'weak' implication – and we do want it to 
fail with respect to the indefinite a

y
 donkey, but not with respect to the indefinite a

x
 farmer. 

79.  If a
x
 farmer owns a

y
 donkey, hex beats ity. 

80. �x(farmer(x); �y(donkey(y); own(x, y))) � beat(x, y) 

� the 'weak' implication solution does not generalize to other determiners (e.g., most) 
� it does not account for the proportion problem. 

Summarizing: 

� a donkey sentence turns out to be ambiguous between a weak and a strong reading 

7



� the strong reading is intuitively paraphrasable by replacing the donkey pronoun in the 
nuclear scope of the donkey quantification with an every DP  

� the weak reading is intuitively paraphrasable by replacing the donkey pronoun in the 
nuclear scope of the donkey quantification with a some DP 

� extending DPL with an unselective form of generalized quantification fails to account for 
the weak / strong donkey ambiguity and for the proportion problem – so, we need to further 
extend DPL with a selective form of dynamic generalized quantification. 

3.4. Conservativity and Unselective Quantification 

Defining dynamic dets in terms of static DETs (as we did in (55) and (57) above) provides 
us with a version of unselective dynamic conservativity that underlies the definition of selective 
generalized quantification to be introduced in the next section. 

Consider again the definition in (55) above: 

�det(�, �)� = {<g, h>: g=h and DET((�)
g
, Dom(���))}. 

Assuming that the static determiner DET is conservative, we have that: 

DET((�)
g
, Dom(���)) = T iff DET((�)

g
, (�)

g
�Dom(���)) = T.  

The r.h.s. formula encodes an intuitively appealing meaning for unselective dynamic 
generalized quantification:

23
 a dynamic generalized determiner relates two sets of info states, the 

first of which is the set of output states compatible with the restrictor, i.e., (�)
g
, while the second 

one is the set of output states compatible with the restrictor that can be further updated by the 
nuclear scope, i.e., (�)

g
�Dom(�).  

To reformulate this intuition in a more formal way, note that: 

DET((�)
g
, (�)

g
�Dom(���)) = T iff DET((�)

g
, (�; !�)

g
)) = T. 

Thus, assuming that all static generalized determiners DET are conservative, we can restate 
the definition in (55) above as follows: 

81. Built-in unselective dynamic conservativity:     
 �det(�, �)� = {<g, h>: g=h and DET((�)

g
, (�; !�)

g
))} 

Now, putting together the definition of detx(�, �) in (57), i.e., detx(�, �):=det([x]; �, �), 
and the 'conservative' definition in (81), we obtain the following definition of generalized 
quantification: 

82. Generalized quantification w/ built-in dynamic conservativity (unselective version):  
 �detx(�, �)� = {<g, h>: g=h and DET(([x]; �)

g
, ([x]; �; !�)

g
))} 

                                                 

23
 This has been previously noted with respect to the dynamic definition of selective generalized quantification – see 

for example Chiechia (1992, 1995) and Kamp & Reyle (1993) among others. 

The definition of conservative unselective quantification in (82) can in fact be thought of as 
the basis for the definition of selective generalized quantification introduced in Chierchia (1995) 
among others (see section 4 below): 

� we have access to the variable x in the restrictor of the static determiner DET, i.e., [x]; � 
� we also have access to the variable x in its nuclear scope, i.e., [x]; �; !� 
� so, we can be selective and (somehow) �-abstract over the variable x in both formulas 
� we thus obtain two sets of individuals and can require the static determiner DET to apply to 

these two sets individuals and not to the corresponding sets of info states. 

4. Extending DPL with Selective Generalized Quantification (DPL+GQ)  

The notion of selective generalized quantification introduced in this section has been 
proposed in various guises by many authors: Bäuerle & Egli (1985), Root (1986) and Rooth 
(1987) put forth the basic proposal and van Eijck & de Vries (1992) and Chierchia (1992, 1995) 
were the first to formulate it in DPL terms. The proposal is also adopted in Heim (1990) and 
Kamp & Reyle (1993). 

We use the same notation as above: 

� selective dynamic generalized quantification has the form detx(�, �) 
� x is the bound variable 
� � is the restrictor  
� � is the nuclear scope. 

But, since detx(�, �) is selective (it relates two sets of individuals), it will be directly 
defined – i.e., it isn't an abbreviation of a formula containing the unselective det(�, �). 

4.1. Dynamic Selective Generalized Quantification 

� the fact that detx(�, �) is defined in terms of sets of individuals (and not of info states) 
enables us to account for the proportion problem 

� the weak/strong donkey ambiguity is attributed to an ambiguity in the interpretation of the 
selective generalized quantifier, following the proposals in Bäuerle & Egli (1985), Rooth 
(1987), Reinhart (1987), Heim (1990) and Kanazawa (1994a, b) – for each dynamic 
generalized determiner, we will have a weak lexical entry det

wk
x(�, �) and a strong lexical 

entry det
str

x(�, �) 
� an English sentence containing a determiner det is ambiguous between the two readings 
 
 
 
 
 
 
 
 

8



83. �det
wk

x(�, �)� = {<g, h>: g=h and DET(�x. (�)
g
,  �x. (�; �)

g
)}            

�det
str

x(�, �)� = {<g, h>: g=h and DET(�x. (�)
g
,  �x. (� � �)

g
)},     

 where (�)
g
 := {h: ���<g, h> = T}        

 and �x. (�)
g
 := {h(x): h�([x]; �)

g
}        

 and DET is the corresponding static determiner. 

The abbreviation �x. (�)
g
 := {h(x): h�([x]; �)

g
} is really just �-abstraction in static terms: 

�x. (�)
g
 is the set of entities a s.t. ���static

g[x/a]
 = T, where �
�static is the usual static 

interpretation function (I don't know why this connection hasn't been explicitly made in the 
dynamic literature …). 

Both lexical entries are selective: the static determiner DET relates two sets of individuals, 
represented by means of abbreviations of the form �x. (…)

g
. 

The only difference between the weak and the strong entries has to do with how the nuclear 
scope of the static quantification is obtained: 

� by means of dynamic conjunction �x. (�; �)
g
 in the weak case  

� by means of dynamic implication �x. (� � �)
g
 in the strong case 

� dynamic conjunction yields the weak reading because an existential quantifier in the 
restrictor �x. (�)

g
 will still be an existential in the nuclear scope �x. (�; �)

g
: every farmer 

that owns some donkey beats some donkey he owns 
� dynamic implication yields the strong reading because it has universal quantification built 

into it (due to dynamic negation '~', since � � � := ~(�; ~�)): DPL validates the 
equivalence �x(�) � � 	 �x(� � �), so an indefinite in the restrictor ends up being 
universally quantified in the nuclear scope: every farmer that owns some donkey beats 
every donkey he owns. 

The unselective conservative entry defined in (82) above provides the basic format for the 
selective entries.  

Assuming that, in (83) above, [x] is not reintroduced in � (and it cannot be if we want the 
definitions to work properly), it is always the case that: 

84. �x. (�; �)
g
 = �x. (�; !�)

g
  

85. �x. (� � �)
g
 = �x. (� � !�)

g
          

(for dynamic implication �, we have the more general result that � � � 	 � � !�, 
which follows directly from the equivalence in (14) above) 

More generally, the weak and strong selective generalized determiners in (83) above can be 
defined in terms of generalized quantification over info states if we make use of the closure 
operator '!' as shown in (86) below. 

86. �det
wk

x(�, �)� = {<g, h>: g=h and DET(([x | !�])
g
, ([x | !(�; �)])

g
)}          

�det
str

x(�, �)� = {<g, h>: g=h and DET(([x | !�])
g
, ([x | !(� � �)])

g
)}

24
,   

 where (�)
g
 := {h: ���<g, h> = T}       

 and DET is the corresponding static determiner. 

It is easily checked that the two pairs of definitions are equivalent given the fact that there 
is a bijection between the sets of individuals quantified over in (83) and the set of info states (i.e., 
variable assignments) quantified over in (86): 

87. �x. (�)
g
 := {h(x): h�([x]; �)

g
}           

=  {a: there is an h s.t. �[x]; ��<g, h> = T and a=h(x)}       
= {a: there is a k and an h s.t. g[x]k and ���<k, h> = T and a=h(x)}      
(since x is not reintroduced in �, k(x)=h(x))        
=  {a: there is a k and an h s.t. g[x]k and ���<k, h> = T and a=k(x)}    
= {a: there is a k s.t.  a=k(x) and g[x]k and there is an h s.t. ���<k, h> = T }    
= {a: there is a k s.t. a=k(x) and g[x]k and k� Dom(���}       
=  {a: there is a k s.t. k�([x]; !�)

g
 and a=k(x)}. 

Let f be a function from the set of assignments ([x]; !�)
g
 to the set of individuals �x. (�)

g
 

s.t., for any assignment h, f(h)=h(x). By the above equality, f is surjective. Since for any 
assignment g and individual a there is a unique assignment h s.t. g[x]h and h(x)=a, f is injective. 

Note that f is just a 'type-lifted' of the variable x: it is the x-based projection function over 
variable assignments �g. g(x). 

Finally, according to definition (83), a formula of the form det
wk

x(�, �) or det
str

x(�, �) is a 
test. So, we should further extend the syntactic notion of condition with selective generalized 
determiners. The new definition is: 

88. The set of conditions is the smallest set of wffs containing atomic formulas, formulas 
whose main connective is dynamic negation '~', a det operator or a det

wk/str
� operator (for 

any variable �) and closed under dynamic conjunction. 

The definition in (88) enables us to construct DRSs of the form [… | …, det
wk/str

x(�, �), …]. 

4.2. Accounting for Weak / Strong Ambiguities 

Let us see how the above definitions derive the weak and strong readings of the classical 
example in (89) below (repeated from (65)). 

89. Every
x
 farmer who owns a

y
 donkey beats ity. 

The two lexical entries for every are given in (90) below and simplified in (91). 

                                                 

24
 Since !(� � �) 	 � � �, the strong determiner can be more simply defined as �det

str
x(�, �)� = {<g, h>: g=h 

and DET(([x | !�])
g
, ([x | � � �])

g
)}. 

9



90. �every
wk

x(�, �)� = {<g, h>: g=h and EVERY(�x. (�)
g
, �x. (�; �)

g
)}    

�every
str

x(�, �)� = {<g, h>: g=h and EVERY(�x. (�)
g
, �x. (� � �)

g
)} 

91. �every
wk

x(�, �)� = {<g, h>: g=h and �x. (�)
g
 � �x. (�; �)

g
}       

�every
str

x(�, �)� = {<g, h>: g=h and �x. (�)
g
 � �x. (� � �)

g
} 

The weak reading of (89) is represented in (92) and simplified in (93). 

92. every
wk

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))  
93. �every

wk
x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))� =         

{<g, g>: �x. (farmer(x); [y]; donkey(y); own(x, y))
g
 �      

    �x. (farmer(x); [y]; donkey(y); own(x, y); beat(x, y))
g
} =          

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �  
 {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�(I(own)�I(beat)}}=  
{<g, g>: any farmer a who owns a donkey b is s.t. he owns and beats a donkey b'}

25
 

The formula in (92) delivers the weak reading because the donkey-owning farmers do not 
have to beat all the donkeys they own – they only have to beat some of their donkeys. 

 

 

 

 

 

 

 

 

                                                 

25
 In more detail, the simplification proceeds as follows: 

�every
wk

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))� =  

{<g,g>: �x. (farmer(x); [y]; donkey(y); own(x, y))
g
 � �x. (farmer(x); [y]; donkey(y); own(x, y); beat(x, y))

g
}=  

{<g, g>: {h(x): h�([x]; farmer(x); [y]; donkey(y); own(x, y))
g
} �       

 {h(x): h�([x]; farmer(x); [y]; donkey(y); own(x, y); beat(x, y))
g
}} =  

{<g, g>: {h(x): g[x, y]h, h(x)�I(farmer), h(y)�I(donkey), <h(x), h(y)>�I(own)} �     
 {h(x): g[x, y]h, h(x)�I(farmer), h(y)�I(donkey), <h(x), h(y)>�(I(own)�I(beat)}} =  

{<g, g>: {a: there is a b s.t. a�I(farmer), b�I(donkey), <a, b>�I(own)} �      
 {a: there is a b s.t. a�I(farmer), b�I(donkey), <a, b>�(I(own)�I(beat)}} = 

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �    
 {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�(I(own)�I(beat)}} =  

{<g, g>: any farmer a who owns a donkey b is such that he owns and beats a donkey b'}. 

The strong reading of (89) is represented in (94) and simplified in (95). 

94. every
str

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y)) 
95. �every

str
x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))� =         

{<g, g>: �x. (farmer(x); [y]; donkey(y); own(x, y))
g
 �      

   �x. (farmer(x); [y]; donkey(y); own(x, y) � beat(x, y))
g
} =         

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �  
 {a: any b s.t. a�I(farmer), b�I(donkey), <a, b>�I(own) is s.t. <a, b>�I(beat)}} =  
{<g, g>: any farmer a who owns a donkey b beats any donkey b' that he owns}

26
 

The formula in (94) delivers the strong reading because the donkey-owning farmers have to 
beat all the donkeys they own. 

 

 

 

 

                                                 

26
 In more detail, the simplification proceeds as follows: 

�every
str

x(farmer(x); [y]; donkey(y); own(x, y),  beat(x, y))� =  

{<g, g>: �x. (farmer(x); [y]; donkey(y); own(x, y))
g
 � �x. (farmer(x); [y]; donkey(y); own(x, y) � beat(x, y))

g
} =  

{<g, g>: {h(x): h�([x]; farmer(x); [y]; donkey(y); own(x, y))
g
} �       

 {h(x): h�([x]; (farmer(x); [y]; donkey(y); own(x, y) � beat(x, y)))
g
}} = 

{<g, g>: {h(x): g[x, y]h, h(x)�I(farmer), h(y)�I(donkey), <h(x), h(y)>�I(own)} �     
 {h(x): h�([x]; ~(farmer(x); [y]; donkey(y); own(x, y); ~beat(x, y)))

g
}} =  

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �     
 {h(x): there is a k s.t. g[x]k and �~(farmer(x); [y]; donkey(y); own(x, y); ~beat(x, y))�<k, h> = T}} = 

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �    
 {h(x): g[x]h and there is no l s.t. �farmer(x); [y]; donkey(y); own(x, y); ~beat(x, y)�<h, l> = T}} = 

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �         
{h(x): g[x]h and there is no l s.t. h[y]l, l(x)�I(farmer), l(y)�I(donkey), <l(x), l(y)>�I(own), <l(x), l(y)>�I(beat)}} =  

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �         
{h(x): g[x]h and for any l, if h[y]l, l(x)�I(farmer), l(y)�I(donkey), <l(x), l(y)>�I(own), then <l(x), l(y)>�I(beat)}} =  

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �         
{h(x): g[x]h and for any b, if h(x)�I(farmer), b�I(donkey) and <h(x), b>�I(own), then <h(x), b>�I(beat)}} = 

{<g, g>: {a: a�I(farmer) and there is a b s.t. b�I(donkey) and <a, b>�I(own)} �     
 {a: any b s.t. a�I(farmer), b�I(donkey) and <a, b>�I(own) is s.t. <a, b>�I(beat)}}} = 

{<g, g>: any farmer a who owns a donkey b beats any donkey b' that he owns}. 

10



4.3. Solving Proportions 

Selective generalized quantification also solves the proportion problem. Consider again 
sentence (58), repeated in (96) below (alternatively, consider (100)). 

The most salient reading of this sentence seems to be the strong one, represented in (97), 
just as the most salient reading of the structurally similar sentence in (98) is the weak one, 
represented in (99) below. 

96. Most
x
 house-elves who fall in love with a

y
 witch buy hery an

z
 alligator purse. 

97. most
str

x(house_elf(x); [y]; witch(y); fall_in_love(x, y),       
   [z]; alligator_purse(z); buy(x, y, z)) 

98. Most
x
 drivers who have a

y
 dime will put ity in the meter. 

99. most
wk

x(driver(x); [y]; dime(y); have(x, y),  put_in_meter(x, y)) 
100. Most

x
 people that owned a

y
 slave also owned hisy offspring. (Heim 1990: 162, (49)) 

The formula in (97) is true iff more than half of the house-elves who fall in love with a 
witch are such that they buy any witch that they fall in love with (strong reading) some alligator 
purse or other. This formula is false in the 'Dobby as Don Juan' scenario above, in agreement 
with our intuitions about the corresponding English sentence in (96). 

The formula in (99) makes similarly correct predictions about the truth-conditions of the 
English sentence in (98): both of them are true in a scenario in which there are ten drivers, each 
of them has ten dimes in his/her pocket and nine of them put exactly one dime in their respective 
meters. Out of the one hundred possible pairs of drivers and dimes, only nine pairs (far less than 
half) satisfy the nuclear scope of the quantification, but this is irrelevant as long as a majority of 
drivers (and not of pairs) satisfies it. 

5. Limitations of DPL+GQ: Mixed Weak & Strong Donkey Sentences 

The dynamic notion of selective generalized quantification introduced in the previous 
section does not offer a completely general account of weak/strong donkey ambiguities: it fails 
for more complex weak & strong donkey sentences much as the unselective notion failed for the 
simplest ones. 

Consider again the dime example from Pelletier & Schubert (1989), repeated in (101). 

101. Every
x
 person who has a

y
 dime will put ity in the meter. 

Unselective generalized quantification fails to assign the correct weak interpretation to this 
example because it cannot distinguish between the various discourse referents (drefs) introduced 
in the restrictor of the generalized quantifier: 

� x (the persons) should be quantified over universally 
� y (their dimes) should be quantified over existentially 

Selective generalized quantification provides a solution to this problem because it can 
distinguish between x, which is the dref contributed by the generalized determiner, and y, which 
is the dref contributed by the indefinite in the restrictor of the determiner. 

Thus, selective generalized quantification: 

� can distinguish between the 'main' quantified-over dref and the other drefs introduced in the 
restrictor  

� cannot further distinguish between the latter ones, which are collectively interpreted as 
either weak or strong. 

Since the decision about the 'strength' of the drefs introduced in the restrictor is not made on 
an individual basis, selective generalized quantification as defined in (83) above fails to account 
for any examples in which two indefinites in the restrictor of a generalized quantifier are not 
interpreted as both weak or both strong.  

102. Every
x
 person who buys a

y
 book on amazon.com and has a

z
 credit card uses itz to pay for 

ity. 
103. Every

x
 man who wants to impress a

y
 woman and who has an

z
 Arabian horse teaches hery 

how to ride itz. 

The most salient interpretation of (102) is strong with respect to a
y
 book and weak with 

respect to a
z
 credit card, i.e., for every book bought on amazon.com by any person that is a 

credit-card owner, the person uses some credit card or other to pay for the book. 

In particular, note that the credit card might vary from book to book, i.e., the strong 
indefinite a

y
 book seems to be able to 'take scope' over the weak indefinite a

z
 credit card: I can 

use my Mastercard to buy set theory books and my Visa to buy sci-fi novels. This means that, 
despite the fact that it receives a weak reading, the indefinite a

u'
 credit card can introduce a 

possibly non-singleton set of credit cards. 

Similarly, in the case of (103), the indefinite a
y
 woman is interpreted as strong and the 

indefinite an
z
 Arabian horse as weak. Yet again, the strong indefinite seems to 'take scope' over 

the weak one: the horse used in the pedagogic activity might vary from female student to female 
student. 

We can easily construct examples of this kind if we are willing to countenance other 
anaphoric expressions besides pronouns. For example, we can replace one of the non-animate 
pronouns in sentence (102) with a definite description – as shown in (104) below

27
.  

104. Every
x
 person who buys a

y
 book on amazon.com and has a

z
 credit card uses thez card to 

pay for ity. 

                                                 

27
 I substitute a definite description for the pronoun that enters the anaphoric dependency receiving a weak reading; 

substituting a definite description for the strong pronoun might bring in the additional complexity that the strong 
reading is in fact due to the use of the (maximal) definite description (see for example the D-/E-type analyses in 
Neale 1990, Lappin & Francez 1994 and Krifka 1996b). 

11



How can we extend the DPL-style definition of dynamic selective quantification in a way 
that can discriminate between the drefs introduced by indefinites in the restrictor? 

The basic idea: introduce additional lexical entries for generalized determiners that bind 
universally or existentially the indefinites in their restrictor, e.g., most would have: 

�  a 'single quantifier' entry of the form mostx 
� two 'double quantifier' entries of the form mostx�y and mostx�y 
� four 'triple quantifier' entries of the form mostx�y�z, mostx�y�z, mostx�y�z, mostx�y�z etc. 

Note that interpreting English sentences in terms of such determiners is not compositional, 
e.g., to interpret (103), we need a 'triple quantifier' of the form everyx�y�z, which requires us to 
look inside the second relative clause, identify the indefinite an

z
 Arabian horse and assign it a 

weak interpretation.  

The situation is in fact even more complicated and non-compositional: 

� the indefinites in the restrictor can enter pseudo-scopal relations since the value of the weak 
indefinite can vary with the value of the strong indefinite, e.g., the same 'triple quantifier' 
everyx�y�z has a choice of scoping �y over �z or the other way around, i.e., everyx�z�y. 

� these relations are pseudo-scopal because the two donkey indefinites in both (102) and 
(103) are 'trapped' in a coordination island and none of them can scope out of their VP- or 
CP-conjunct to take scope over the other. 

The impossibility of scoping out of a coordination structure is not dependent on any 
particular scoping mechanism – the two sentences in (105) and (106) below show that a 
quantifier like every cannot scope out of VP- or CP-coordination structures. 

105. #Every person who buys every
x
 Harry Potter book on amazon.com and gives itx to a 

friend must be a Harry Potter addict. 
106. #Every boy who wanted to impress every

x
 girl in his class and who planned to buy herx 

a fancy Christmas gift asked his best friend for advice. 

Many accounts of weak and strong readings fail to analyze such conjunction-based, mixed 
weak & strong donkey sentences. The main difficulty: 

� they cannot allow for the weak indefinite to be a (possibly) non-singleton set and to covary 
with the value of the strong indefinite. 

12


