Handout 4: Introduction to DPL+GQ

Seminar in Semantics: Decomposing Quantification (Fall 2008)

1. Dynamic Predicate Logic (DPL)

1. A^{x} house-elf fell in love with $\mathrm{a}^{x^{\prime}}$ witch.
2. He_{x} bought her ${ }_{x^{\prime}}$ an $^{x^{\prime \prime}}$ alligator purse.
3. Every farmer who owns a^{x} donkey beats it_{x}.
4. Every house-elf who falls in love with a^{x} witch buys her $_{x} \mathrm{an}^{x^{\prime}}$ alligator purse
5. If a ${ }^{x}$ farmer owns $\mathrm{a}^{x^{\prime}}$ donkey, he ${ }_{x}$ beats $\mathrm{it}_{x^{\prime}}$.
6. If a^{x} house-elf falls in love with $\mathrm{a}^{x^{\prime}}$ witch, he e_{x} buys $_{\operatorname{her}_{x^{\prime}}} \mathrm{an}^{x^{\prime \prime}}$ alligator purse.

The particular version of dynamic semantics we look at is (based on) DPL (Groenendijk \& Stokhof 1991) - and for three reasons:

- the syntax of the system is a fairly close variant of the familiar syntax of classical first-order logic; this enables us to focus on what is really new, namely the semantics;
- - the semantics of DPL is minimally different from the standard Tarskian semantics for firstorder logic: instead of interpreting a formula as a set of variable assignments (i.e., the set of variable assignments that satisfy the formula in the given model), we interpret it as a binary relation between assignments ${ }^{1}$; moreover, this minimal semantic modification encodes in a transparent way the core dynamic idea that meaning is not merely truth-conditional content, but context change potential;
- third, just as classical predicate logic can be straightforwardly generalized to static type logic, DPL can be easily generalized to a dynamic version of type logic, which is what Muskens' Compositional DRT is; and CDRT enables us to introduce compositionality at the sub-sentential/sub-clausal level in the tradition of Montague semantics.

[^0]Also, DPL is able to translate the donkey sentences in (3) through (6) above compositionally, with sentences / clauses as the building blocks (i.e., basically, as compositional as one can get in first-order logic).

Sentences (3) and (5) above are translated as shown in (7) and (8) below and, when interpreted dynamically, the translations capture the intuitively correct truth-conditions.
7. $\forall x(\operatorname{farmer}(x) \wedge \exists y(\operatorname{donkey}(y) \wedge o w n(x, y)) \rightarrow \operatorname{beat}(x, y))$
8. $\exists x(\operatorname{farmer}(x) \wedge \exists y(\operatorname{donkey}(y) \wedge o w n(x, y))) \rightarrow \operatorname{beat}(x, y)$

Consider (7) first:

- every is translated as universal quantification plus implication and the indefinite as existential quantification plus conjunction
- the syntactic scope of the existential quantification is 'local' (restricted to the antecedent of the implication), but it does semantically bind the occurrence of the variable y in the consequent.

Similarly, in (8):

- the conditional is translated as implication and the indefinites are translated as existentials plus conjunction, again with syntactically 'local' but semantically 'non-local' scope.

DPL has two crucial properties that enable it to provide compositional translations for donkey sentences - the equivalences in (9) and (10) below valid.
9. $\exists x(\phi) \wedge \psi \Leftrightarrow \exists x(\phi \wedge \psi)^{2}$
10. $\exists x(\phi) \rightarrow \psi \Leftrightarrow \forall x(\phi \rightarrow \psi)$

So:

- indefinites can semantically bind outside their syntactic scope and indefinitely to the right
- in combination with the definition of dynamic implication, this allows them to scope out of the antecedent and universally bind in the consequent of the implication.

1.1. Definitions and Abbreviations

The 'official' definition of a well-formed formula (wff) of DPL is easily recoverable on the basis of the definition of the interpretation function $\|\cdot\|$ in (11) below - the syntax is therefore not provided
11. Dynamic Predicate Logic (DPL). The definition of the DPL interpretation function $\|\phi\|_{D P L}{ }^{\boldsymbol{M}}$ relative to a standard first-order model $\boldsymbol{M}=\left\langle\boldsymbol{D}^{\boldsymbol{M}}, \boldsymbol{I}^{\boldsymbol{M}}\right\rangle$, where \boldsymbol{D} is the domain of entities and \boldsymbol{I} is the interpretation function which assigns to each n-place relation ' R ' a

[^1]

иоџ̣еэц!

$$
{ }_{6}(\phi \sim) x_{\mathrm{A}} \Leftrightarrow(\phi) x_{\mathrm{E} \sim} \cdot \varsigma \mathrm{I}
$$

 pue ןе!̣иәц!

$$
{ }_{\iota}\left(\Lambda_{i}!\phi\right) \sim \Leftrightarrow(\not \subset \vdots) \sim \cdot \downarrow I
$$

рие $y=\delta:<4 \cdot 8>\}=\|(\phi) x A\| \cdot \cdot \partial!$

$'(\phi \sim![x]) \sim=:(\phi) x^{\prime}$
$\phi ؛[x]=:(\phi) x_{\mathrm{E}}$

$\{\mathrm{L}=<\varphi ‘ 8>\|\phi\|: y\}=:{ }_{8}(\phi)$ әәуцм

$$
\begin{aligned}
& \text { ' }(\nsim \varsigma \phi) \sim=: \pitchfork \leftarrow \phi
\end{aligned}
$$

$$
\begin{aligned}
& \text { ‘(} \AA \sim \text { ‘ } \phi \sim) \sim=: \AA \wedge \phi
\end{aligned}
$$

$$
\begin{aligned}
& \text { غ } \phi \sim \sim=: \phi_{i}
\end{aligned}
$$

$'\{\boldsymbol{D} \ni \dot{\delta}:<\delta \subset \mathscr{\delta}>\}=\|[]\| \cdot Z I$

$(\tau x)^{\delta}=(I x) \delta$ pue $y=\delta$ J!! $\mathrm{L}=<y^{\prime} \delta>\| \|^{\tau} x=I x \|$

（6乙）и！в в

eлочdeu＊Ie！

7dの u！eıoydeu＊＇乙

：SMOIIOJ

$$
\phi=:[\phi] \text { 'рәиџəр иәчм ‘ио!!!pиoл е s! } \phi \text { Ј!! рәиџәр s! }[\phi]
$$

$$
\text { :suo!!puo } \% \text { I }
$$

sumpishs

-әл!̣əәиио๐ [घ! !

$$
\begin{aligned}
& \left.(\phi \sim) x_{\mathrm{A}} \Leftrightarrow(\phi \sim \leftarrow[]) x_{\mathrm{A}} \text { әэиәч } \quad \text { ' } \phi \sim \Leftrightarrow \phi \sim \sim \sim \Leftrightarrow(\phi \sim \sim![]) \sim \phi \sim \leftarrow[] \text { (!! }\right) \\
& \left.(\phi) x_{\mathrm{E} \sim} \Leftrightarrow(\phi![]) x_{\mathrm{E} \sim} \text { әวиәч } \quad \phi \Leftrightarrow \phi![] \text { (! }\right)
\end{aligned}
$$

$$
{ }_{\iota \mathrm{I}} \pitchfork \leftarrow \leftarrow(\phi \leqq[x]) \Leftrightarrow(\hbar \leftarrow \phi) x_{\mathrm{A}} \cdot \tau \downarrow
$$

9! \cdot วп!

$$
\cdot(\pitchfork \sim \leftarrow \phi) x_{\mathrm{A}} \Leftrightarrow
$$

 рие ן

－моןәq（L¢）u！umoчs se＇siołeıәdo

－ио！̣эun！̣иол э！̣шеиКр

－әлоqе（ LI）u！Tdの лод рәицәр ио！！！риоә јо иоџ̣ои

$$
(\AA ‘ \phi)^{x} \text { К.ıəлə } \Leftrightarrow \AA \leftarrow(\phi![x]) \Leftrightarrow(\pitchfork \leftarrow \phi) x_{A} \cdot \varsigma \downarrow
$$

 ェəџ！

$$
'\left\{\left((\|\kappa\|) \text { шоの }{ }_{\delta}(\phi)\right) \text { Х甘ЯД甘 рие } \varphi=\delta:<\varphi ‘ \delta>\right\}=\|\kappa \leftarrow \phi\| \cdot \mathcal{E} t
$$

：ХУЯДН

$\cdot((\|\kappa\|) \mathbf{w o G}$

$$
\begin{aligned}
& (((z ‘ \subset ‘ x) \text { 氏nq } ؛(z) \text { asund } 10 \neq 8!!\mid p) z \mathrm{E} \leftarrow
\end{aligned}
$$

 әле әм п.,

 -Кұqо

-parndes

 ‘ه•ə 'иоџеэц!

†әр әлџ̣әәә

 :оби!реәл чвәм 9 (
:ои!редл увәм ‘SL
 - uosụieduoo

$$
‘(\pitchfork ‘ \phi) \wedge \phi \sim=: \pitchfork \leftarrow \phi \cdot Z L
$$

:(066I)

!! чı!

ККвм ләләәр

лоұэฺ!

:uоџ̣еџ!џuenb

:S! иоب̣!uџәр мәи әчL 's.əи!шшәәрр

 $\left\{_{\delta}(\phi![x]) \ni y:(x) y\right\}=:{ }_{s}(\phi) \cdot x \chi \cdot \angle 8$

$\left\{\mathrm{L}=<\varphi ‘{ }_{8}>\|\phi\|: \psi\right\}=:{ }_{\delta}(\phi)$ әләцм

- морәq (98) u! uмочs se ،1، горегәdo

$$
\begin{aligned}
& { }_{\delta}\left(\aleph_{i} \leftarrow \phi\right) \cdot x \chi={ }_{\delta}(\pitchfork \leftarrow \phi) \cdot x \chi \cdot \varsigma 8
\end{aligned}
$$

'sumo әч Кәуиор киала

sимо әч Кәуиор дшоя sұеәq Кәуиор диоя sимо ұвч

- (\cdots әппрегәң! ! э!шеикр әчъ и! әреш ККр!

$$
\begin{aligned}
& \left\{_{\delta}(\phi:[x]) \ni \psi:(x) y\right\}=:{ }_{\delta}(\phi) \cdot x \chi \text { рuв } \\
& \left\{\mathrm{L}=<\varphi \complement_{8}>\|\phi\|: 4\right\}=:{ }_{8}(\phi) \text { ә.әчм }
\end{aligned}
$$

- 7 II IOJ Ked

ヱиәрмя

${ }^{\cdot}+!$

 .

:๖əџ!̣uenb pəz!

-səuo ұsə

-мојәq (66) и! pəұиәsәıdәェ
‘әио уеәм әцң s! (86) u! әәиәұиәs ле!!ய!̣ К

 „əџ!

-иоџрұәлдәди! уеәм
 от sn sәı!

[^0]: Alternatively, and in certain respects equivalently, we can think of the interpretation of a formula as a function taking as argument a set of assignments and returning another set of assignments - this is the view underlying FCS, for example. However, in both cases the update is defined pointwise - and a relational view of update reflects this more directly. There are other differences between FCS and DPL (e.g., using partial and total assignments respectively and disallowing vs. allowing reassignment) - see the dynamic cube in Krahmer (1998): 59 for an overview. In particular, the fact that DPL (and CDRT) allows reassignment will be an essential ingredient in accounting for the interaction between anaphora and generalized conjunction (see section $\mathbf{5}$ of Chapter 1 below). The "destructive reassignment" or "downdate problem" associated with reassignment can be solved using stacks 'referent systems': see Nouwen (2003) for a recent discussion and Bittner (2006) for a set of 'stack' axioms for dynamic type logic.

[^1]: ${ }^{2}$ The symbol ' \Leftrightarrow ' should be interpreted as requiring the identity of the semantic value of two formulas.

