
Reinforcement Learning for
Production-based Cognitive Models
Adrian Brasoveanu & Jakub Dotlačil
UC Santa Cruz & Utrecht University

AMLaP · September 5, 2020



Decision making

• How do we make decisions?
• How do we learn to make decisions in situations with

recurring choices?

Decision making and processing
• After visual encoding of a word, I can choose from:

1. moving attention 2. lex. retrieval 3. syn. integration

What should I choose first?
What sequence of actions should I choose?

• In parsing, what interpretation should I pursue?

1 / 30



Decision making

• How do we make decisions?
• How do we learn to make decisions in situations with

recurring choices?

Decision making and processing

• After visual encoding of a word, I can choose from:
1. moving attention 2. lex. retrieval 3. syn. integration

What should I choose first?
What sequence of actions should I choose?

• In parsing, what interpretation should I pursue?

1 / 30



Decision making

• How do we make decisions?
• How do we learn to make decisions in situations with

recurring choices?

Decision making and processing
• After visual encoding of a word, I can choose from:

1. moving attention 2. lex. retrieval 3. syn. integration

What should I choose first?
What sequence of actions should I choose?

• In parsing, what interpretation should I pursue?

1 / 30



Decision making

• How do we make decisions?
• How do we learn to make decisions in situations with

recurring choices?

Decision making and processing
• After visual encoding of a word, I can choose from:

1. moving attention 2. lex. retrieval 3. syn. integration

What should I choose first?
What sequence of actions should I choose?

• In parsing, what interpretation should I pursue?

1 / 30



Parsing and decision making

The horse raced past the barn fell. ; Main Clause Int.
; Reduced Rel. Int.

2 / 30



Production-system frameworks and decision making

• Production systems in cognitive sciences and psychology
(Newell, 1973)

• Productions: conditionalized actions
(actions that fire only if particular conditions are met)
(ACT-R, SOAR)

• Production systems in psycholinguistics:
cognitive models in ACT-R, SOAR
Brasoveanu and Dotlačil, 2020; Hale, 2014; Lewis and
Vasishth, 2005

Can the agent acquire such production systems?
• Can the agent learn which decisions to make under which

conditions?
Fu and Anderson (2006), Sutton and Barto (2018, Ch. 14)

3 / 30



Production-system frameworks and decision making

• Production systems in cognitive sciences and psychology
(Newell, 1973)

• Productions: conditionalized actions
(actions that fire only if particular conditions are met)
(ACT-R, SOAR)

• Production systems in psycholinguistics:
cognitive models in ACT-R, SOAR
Brasoveanu and Dotlačil, 2020; Hale, 2014; Lewis and
Vasishth, 2005

Can the agent acquire such production systems?
• Can the agent learn which decisions to make under which

conditions?
Fu and Anderson (2006), Sutton and Barto (2018, Ch. 14)

3 / 30



Production-system frameworks and decision making

• Production systems in cognitive sciences and psychology
(Newell, 1973)

• Productions: conditionalized actions
(actions that fire only if particular conditions are met)
(ACT-R, SOAR)

• Production systems in psycholinguistics:
cognitive models in ACT-R, SOAR
Brasoveanu and Dotlačil, 2020; Hale, 2014; Lewis and
Vasishth, 2005

Can the agent acquire such production systems?

• Can the agent learn which decisions to make under which
conditions?
Fu and Anderson (2006), Sutton and Barto (2018, Ch. 14)

3 / 30



Production-system frameworks and decision making

• Production systems in cognitive sciences and psychology
(Newell, 1973)

• Productions: conditionalized actions
(actions that fire only if particular conditions are met)
(ACT-R, SOAR)

• Production systems in psycholinguistics:
cognitive models in ACT-R, SOAR
Brasoveanu and Dotlačil, 2020; Hale, 2014; Lewis and
Vasishth, 2005

Can the agent acquire such production systems?
• Can the agent learn which decisions to make under which

conditions?
Fu and Anderson (2006), Sutton and Barto (2018, Ch. 14)

3 / 30



Acquisition of production systems

Can the agent acquire such production systems?

Our contribution: show how Reinforcement Learning (RL,
Sutton and Barto 2018) methods can be combined with a
production system (ACT-R) to learn sequential-choice behavior.

Explore two RL algorithms: tabular Q-learning and Deep
Q-networks.

4 / 30



Road map

1 Introduction

2 Learning goal-conditioned rules in lexical decision

3 Production-rule ordering as an RL problem

4 Simulations and results

5 Conclusion

5 / 30



Learning goal-conditioned rules in lexical decision

Focus on a simple task: lexical decision (LD)
• participants see a string of letters on a screen
• if they think the string is a word, they press one key (J)
• if they think the string is not a word, they press a different

key (F)
• after pressing the key, the next stimulus is presented

6 / 30



Why a model for LD, and what kind of model

• Our specific goal: investigate the extent to which tabular
Q-learning and the Deep Q-network agent can learn the
order of productions in LD tasks

• The model for LD tasks is simple, so good starting point

• But it is a component of more complex syntactic and
semantic parsing models, so it is relevant when we scale up

• Not our focus:
• fleshing out the model to capture major exp. results about

LD
(cf. Brasoveanu and Dotlačil 2020)

• comparing it to previously proposed cognitive models of LD

7 / 30



Why a model for LD, and what kind of model

• Our specific goal: investigate the extent to which tabular
Q-learning and the Deep Q-network agent can learn the
order of productions in LD tasks

• The model for LD tasks is simple, so good starting point

• But it is a component of more complex syntactic and
semantic parsing models, so it is relevant when we scale up

• Not our focus:
• fleshing out the model to capture major exp. results about

LD
(cf. Brasoveanu and Dotlačil 2020)

• comparing it to previously proposed cognitive models of LD

7 / 30



Why a model for LD, and what kind of model

• Our specific goal: investigate the extent to which tabular
Q-learning and the Deep Q-network agent can learn the
order of productions in LD tasks

• The model for LD tasks is simple, so good starting point

• But it is a component of more complex syntactic and
semantic parsing models, so it is relevant when we scale up

• Not our focus:
• fleshing out the model to capture major exp. results about

LD
(cf. Brasoveanu and Dotlačil 2020)

• comparing it to previously proposed cognitive models of LD

7 / 30



Three LD tasks

We model three LD tasks of increasing length, hence difficulty:
• 1 stimulus: a word (elephant)

• 2 stimuli: a word (elephant) and a non-word

• 4 stimuli: a word (elephant), a non-word, another word
(dog) and another non-word

The model components are split between:
• declarative memory: stores the lexical knowledge of an

English speaker

• procedural memory: stores production rules that enable
the model to carry out the LD task

8 / 30



Three LD tasks

We model three LD tasks of increasing length, hence difficulty:
• 1 stimulus: a word (elephant)

• 2 stimuli: a word (elephant) and a non-word

• 4 stimuli: a word (elephant), a non-word, another word
(dog) and another non-word

The model components are split between:
• declarative memory: stores the lexical knowledge of an

English speaker

• procedural memory: stores production rules that enable
the model to carry out the LD task

8 / 30



Four production rules

1 If the goal is to retrieve lex. information and the visual
buffer has a string of letters

=⇒
Attempt to retrieve that string from declarative memory

2 If the retrieval is done and it is successful
=⇒

Press the success key (J)
3 If the retrieval is done and it is a failure

=⇒
Press the failure key (F)

4 If there is a string ‘FINISHED’ in the visual buffer
=⇒

Done
The Q-learning agent has to learn the conditions (what
precedes =⇒).

9 / 30



Four production rules

1 If the goal is to retrieve lex. information and the visual
buffer has a string of letters

=⇒
Attempt to retrieve that string from declarative memory

2 If the retrieval is done and it is successful
=⇒

Press the success key (J)

3 If the retrieval is done and it is a failure
=⇒

Press the failure key (F)
4 If there is a string ‘FINISHED’ in the visual buffer

=⇒
Done

The Q-learning agent has to learn the conditions (what
precedes =⇒).

9 / 30



Four production rules

1 If the goal is to retrieve lex. information and the visual
buffer has a string of letters

=⇒
Attempt to retrieve that string from declarative memory

2 If the retrieval is done and it is successful
=⇒

Press the success key (J)
3 If the retrieval is done and it is a failure

=⇒
Press the failure key (F)

4 If there is a string ‘FINISHED’ in the visual buffer
=⇒

Done
The Q-learning agent has to learn the conditions (what
precedes =⇒).

9 / 30



Four production rules

1 If the goal is to retrieve lex. information and the visual
buffer has a string of letters

=⇒
Attempt to retrieve that string from declarative memory

2 If the retrieval is done and it is successful
=⇒

Press the success key (J)
3 If the retrieval is done and it is a failure

=⇒
Press the failure key (F)

4 If there is a string ‘FINISHED’ in the visual buffer
=⇒

Done

The Q-learning agent has to learn the conditions (what
precedes =⇒).

9 / 30



Four production rules

1 If the goal is to retrieve lex. information and the visual
buffer has a string of letters

=⇒
Attempt to retrieve that string from declarative memory

2 If the retrieval is done and it is successful
=⇒

Press the success key (J)
3 If the retrieval is done and it is a failure

=⇒
Press the failure key (F)

4 If there is a string ‘FINISHED’ in the visual buffer
=⇒

Done
The Q-learning agent has to learn the conditions (what
precedes =⇒).

9 / 30



Four production rules

1 If the goal is to retrieve lex. information and the visual
buffer has a string of letters

=⇒
Attempt to retrieve that string from declarative memory

2 If the retrieval is done and it is successful
=⇒

Press the success key (J)
3 If the retrieval is done and it is a failure

=⇒
Press the failure key (F)

4 If there is a string ‘FINISHED’ in the visual buffer
=⇒

Done
The Q-learning agent has to learn the conditions (what
precedes =⇒).

9 / 30



Rule ordering and rule learning

The sequences of rule firings for the learned LD tasks:
• 1-stim: Rules [1 – 2] – 4
• 2-stim: Rules [1 – 2] – [1 – 3] – 4
• 4-stim: Rules [1 – 2] – [1 – 3] – [1 – 2] – [1 – 3] – 4

We let the Q-learning agent learn to successfully carry out these
LD tasks. The agent gets a reward of:

1 if it reaches the final goal-state done
-0.15 for any intermediate rule firing, to encourage it to finish

the task asap
0 (no penalty) if it chooses to wait and fire no rule

10 / 30



Rule ordering and rule learning

The sequences of rule firings for the learned LD tasks:
• 1-stim: Rules [1 – 2] – 4
• 2-stim: Rules [1 – 2] – [1 – 3] – 4
• 4-stim: Rules [1 – 2] – [1 – 3] – [1 – 2] – [1 – 3] – 4

We let the Q-learning agent learn to successfully carry out these
LD tasks. The agent gets a reward of:

1 if it reaches the final goal-state done
-0.15 for any intermediate rule firing, to encourage it to finish

the task asap
0 (no penalty) if it chooses to wait and fire no rule

10 / 30



Preview of task and results

• The agent learns by trial and error how to properly order
the rules and complete the LD tasks as efficiently as
possible

• The actual number of steps, i.e., decision points, when the
agent needs to select an action, is larger than the high-level
sequences of rule firings discussed above

• 1-stimulus task: 12 steps where the agent needs to decide
whether to wait or to fire a specific rule

• 2-stimuli task: 18 steps if task completed perfectly

• 4-stimuli task: 34 steps if task completed perfectly

11 / 30



Preview of task and results

• The agent learns by trial and error how to properly order
the rules and complete the LD tasks as efficiently as
possible

• The actual number of steps, i.e., decision points, when the
agent needs to select an action, is larger than the high-level
sequences of rule firings discussed above

• 1-stimulus task: 12 steps where the agent needs to decide
whether to wait or to fire a specific rule

• 2-stimuli task: 18 steps if task completed perfectly

• 4-stimuli task: 34 steps if task completed perfectly

11 / 30



Preview of task and results (ctd.)

Why so many steps per task?
• Several points where agent should wait (retrieval, waiting

for key press to complete, while encoding visual
information)

The higher the number of steps, the harder the task is to learn:
• learning is faster and less noisy for shorter tasks (fewer

stimuli)
• but the RL agents learn even the most complex 4-stimuli

task fairly well (at least the tabular Q agent) …
• …they just ‘learn’ a lot of noise (incorrect rules) in the

process also, particularly the neural-network agents

12 / 30



1 Introduction

2 Learning goal-conditioned rules in lexical decision

3 Production-rule ordering as an RL problem

4 Simulations and results

5 Conclusion

13 / 30



Markov Decision Processes (MDPs)

Agent

state st, reward rt action at

Environment

• MDPs: stochastic models of sequential decision making, and the
basis of RL approaches to learning

• Agent interacts with environment, needs to make decisions at
discrete time steps t = 1, 2, . . . , n

• At every time step t: current state st provides all info relevant
for the current action selection (Markov property)

• Environment passes to agent state st and reward signal rt
• Agent observes st and rt, and takes action at, which is passed

from agent to environment; cycle continues at time step t+ 1

14 / 30



Markov Decision Processes (MDPs)

Agent

state st, reward rt action at

Environment

• MDPs: stochastic models of sequential decision making, and the
basis of RL approaches to learning

• Agent interacts with environment, needs to make decisions at
discrete time steps t = 1, 2, . . . , n

• At every time step t: current state st provides all info relevant
for the current action selection (Markov property)

• Environment passes to agent state st and reward signal rt

• Agent observes st and rt, and takes action at, which is passed
from agent to environment; cycle continues at time step t+ 1

14 / 30



Markov Decision Processes (MDPs)

Agent

state st, reward rt action at

Environment

• MDPs: stochastic models of sequential decision making, and the
basis of RL approaches to learning

• Agent interacts with environment, needs to make decisions at
discrete time steps t = 1, 2, . . . , n

• At every time step t: current state st provides all info relevant
for the current action selection (Markov property)

• Environment passes to agent state st and reward signal rt
• Agent observes st and rt, and takes action at, which is passed

from agent to environment; cycle continues at time step t+ 1

14 / 30



Markov Decision Processes (MDPs, ctd.)

• Agent’s policy: complete specification of what action to
take at any time step

• A stochastic policy π is a mapping from any given state st
to a probability distribution over actions at ∼ π(st)

• Agent’s goal: maximize cumulative reward over LD task
• Learning: agent learns (solves/optimizes the MDP) by

updating its policy π to maximize cumulative reward

15 / 30



Markov Decision Processes (MDPs, ctd.)

• Agent’s policy: complete specification of what action to
take at any time step

• A stochastic policy π is a mapping from any given state st
to a probability distribution over actions at ∼ π(st)

• Agent’s goal: maximize cumulative reward over LD task

• Learning: agent learns (solves/optimizes the MDP) by
updating its policy π to maximize cumulative reward

15 / 30



Markov Decision Processes (MDPs, ctd.)

• Agent’s policy: complete specification of what action to
take at any time step

• A stochastic policy π is a mapping from any given state st
to a probability distribution over actions at ∼ π(st)

• Agent’s goal: maximize cumulative reward over LD task
• Learning: agent learns (solves/optimizes the MDP) by

updating its policy π to maximize cumulative reward

15 / 30



Discounted return and state-action values

The discounted return G at a time step t < n

Gt = rt+1 + γrt+2 + γ2rt+3 · · ·+ γn−t−1rn

• sum of current reward and discounted future rewards until
the final step n

• discount factor γ determines the present value of future
rewards (0 ≤ γ ≤ 1)

The (state-)action value function Qπ(s, a)

Q function provides expected discounted return when:
• starting in state s,
• performing action a,
• following the policy π until the end of the episode.

16 / 30



Discounted return and state-action values

The discounted return G at a time step t < n

Gt = rt+1 + γrt+2 + γ2rt+3 · · ·+ γn−t−1rn

• sum of current reward and discounted future rewards until
the final step n

• discount factor γ determines the present value of future
rewards (0 ≤ γ ≤ 1)

The (state-)action value function Qπ(s, a)

Q function provides expected discounted return when:
• starting in state s,
• performing action a,
• following the policy π until the end of the episode.

16 / 30



Tabular Q-learning

Estimating the Q function is one way to find an optimal policy
• optimal policy: choose max-value action in any state

• Q estimated based on experience (interactions between
agent and environment)

• tabular Q learning: Q function S ×A → R represented as
look-up table storing estimated values of all state-action
pairs

• Q table initialized to 0

• at each time step t: update entry for (st, at) based on info
agent gets from environment at next step

• reward rt+1

• new state st+1 (its value estimated from current Q table)

17 / 30



Tabular Q-learning

Estimating the Q function is one way to find an optimal policy
• optimal policy: choose max-value action in any state

• Q estimated based on experience (interactions between
agent and environment)

• tabular Q learning: Q function S ×A → R represented as
look-up table storing estimated values of all state-action
pairs

• Q table initialized to 0

• at each time step t: update entry for (st, at) based on info
agent gets from environment at next step

• reward rt+1

• new state st+1 (its value estimated from current Q table)

17 / 30



Tabular Q-learning

Estimating the Q function is one way to find an optimal policy
• optimal policy: choose max-value action in any state

• Q estimated based on experience (interactions between
agent and environment)

• tabular Q learning: Q function S ×A → R represented as
look-up table storing estimated values of all state-action
pairs

• Q table initialized to 0

• at each time step t: update entry for (st, at) based on info
agent gets from environment at next step

• reward rt+1

• new state st+1 (its value estimated from current Q table)

17 / 30



Q-learning for production selection

In our ACT-R model of LD tasks:
• agent: Q-value table guiding rule selection at every

cognitive step

• environment: cognitive state of ACT-R model/mind

• action space:
• the 4 rules retrieving, lexeme retrieved, no
lexeme found and finished

• a special action None: the agent selects it when it prefers to
wait for a new state

18 / 30



Q-learning for production selection

In our ACT-R model of LD tasks:
• agent: Q-value table guiding rule selection at every

cognitive step

• environment: cognitive state of ACT-R model/mind

• action space:
• the 4 rules retrieving, lexeme retrieved, no
lexeme found and finished

• a special action None: the agent selects it when it prefers to
wait for a new state

18 / 30



Q-learning for production selection

In our ACT-R model of LD tasks:
• agent: Q-value table guiding rule selection at every

cognitive step

• environment: cognitive state of ACT-R model/mind

• action space:
• the 4 rules retrieving, lexeme retrieved, no
lexeme found and finished

• a special action None: the agent selects it when it prefers to
wait for a new state

18 / 30



Reward structure

Rewards encourage the agent to finish the task asap & select
fewest rules in the process:

• positive reward 1 when LD task is completed
• negative reward −0.15 for every rule other than None

• no penalty for None

• at every step, negative temporal reward: time elapsed
between immediately preceding and current step

• negative temporal reward discourages agent from repeatedly
selecting an action (None) and timing out task in small
number of steps

19 / 30



Reward structure

Rewards encourage the agent to finish the task asap & select
fewest rules in the process:

• positive reward 1 when LD task is completed
• negative reward −0.15 for every rule other than None

• no penalty for None

• at every step, negative temporal reward: time elapsed
between immediately preceding and current step

• negative temporal reward discourages agent from repeatedly
selecting an action (None) and timing out task in small
number of steps

19 / 30



1 Introduction

2 Learning goal-conditioned rules in lexical decision

3 Production-rule ordering as an RL problem

4 Simulations and results

5 Conclusion

20 / 30



One-stimulus task

• we simulate 15,000 episodes (LD tasks consisting of 1 stim
only – the word ‘elephant’)

• agent learns to complete task perfectly in 12 steps after
5,000 episodes

• fewer steps when agent times out task, e.g., repeatedly
selects action None

21 / 30



One-stimulus task

• we simulate 15,000 episodes (LD tasks consisting of 1 stim
only – the word ‘elephant’)

• agent learns to complete task perfectly in 12 steps after
5,000 episodes

• fewer steps when agent times out task, e.g., repeatedly
selects action None

21 / 30



One-stimulus task: final Q-table

• Look only at states for which at least one rule has non-0
value – a total of 8 states

• For each state, identify rule with highest value

• 3 states in which agent fires no rule (None has max-value)
• waiting for text to be read off the virtual screen
• waiting for retrieval process to complete

• 3 states where max-value rule is finished; in all of them,
text on the virtual screen is FINISHED

• Last 2 state-action pairs:
• correctly start the retrieval process as soon as the text is

read off the virtual screen
• correctly press the J key when retrieval is successful

Thus: no need to hand-code goal states in rule preconditions.
(at least for tabular Q in this very simple task)

22 / 30



One-stimulus task: final Q-table

• Look only at states for which at least one rule has non-0
value – a total of 8 states

• For each state, identify rule with highest value
• 3 states in which agent fires no rule (None has max-value)

• waiting for text to be read off the virtual screen
• waiting for retrieval process to complete

• 3 states where max-value rule is finished; in all of them,
text on the virtual screen is FINISHED

• Last 2 state-action pairs:
• correctly start the retrieval process as soon as the text is

read off the virtual screen
• correctly press the J key when retrieval is successful

Thus: no need to hand-code goal states in rule preconditions.
(at least for tabular Q in this very simple task)

22 / 30



One-stimulus task: final Q-table

• Look only at states for which at least one rule has non-0
value – a total of 8 states

• For each state, identify rule with highest value
• 3 states in which agent fires no rule (None has max-value)

• waiting for text to be read off the virtual screen
• waiting for retrieval process to complete

• 3 states where max-value rule is finished; in all of them,
text on the virtual screen is FINISHED

• Last 2 state-action pairs:
• correctly start the retrieval process as soon as the text is

read off the virtual screen
• correctly press the J key when retrieval is successful

Thus: no need to hand-code goal states in rule preconditions.
(at least for tabular Q in this very simple task)

22 / 30



One-stimulus task: final Q-table

• Look only at states for which at least one rule has non-0
value – a total of 8 states

• For each state, identify rule with highest value
• 3 states in which agent fires no rule (None has max-value)

• waiting for text to be read off the virtual screen
• waiting for retrieval process to complete

• 3 states where max-value rule is finished; in all of them,
text on the virtual screen is FINISHED

• Last 2 state-action pairs:
• correctly start the retrieval process as soon as the text is

read off the virtual screen
• correctly press the J key when retrieval is successful

Thus: no need to hand-code goal states in rule preconditions.
(at least for tabular Q in this very simple task)

22 / 30



One-stimulus task: final Q-table

• Look only at states for which at least one rule has non-0
value – a total of 8 states

• For each state, identify rule with highest value
• 3 states in which agent fires no rule (None has max-value)

• waiting for text to be read off the virtual screen
• waiting for retrieval process to complete

• 3 states where max-value rule is finished; in all of them,
text on the virtual screen is FINISHED

• Last 2 state-action pairs:
• correctly start the retrieval process as soon as the text is

read off the virtual screen
• correctly press the J key when retrieval is successful

Thus: no need to hand-code goal states in rule preconditions.
(at least for tabular Q in this very simple task)

22 / 30



Two-stimuli task: final Q-table

• 15,000 episodes, task completed perfectly (18 steps) after
9,000 episodes

• Final Q-table: 13 states with non-0-value rules
• 4 states where the agent does nothing

• waiting for retrieval process to complete
• waiting for text to be read off the virtual screen

23 / 30



Two-stimuli task: final Q-table

• 15,000 episodes, task completed perfectly (18 steps) after
9,000 episodes

• Final Q-table: 13 states with non-0-value rules

• 4 states where the agent does nothing
• waiting for retrieval process to complete
• waiting for text to be read off the virtual screen

23 / 30



Two-stimuli task: final Q-table

• 15,000 episodes, task completed perfectly (18 steps) after
9,000 episodes

• Final Q-table: 13 states with non-0-value rules
• 4 states where the agent does nothing

• waiting for retrieval process to complete
• waiting for text to be read off the virtual screen

23 / 30



Two-stimuli task: final Q-table (ctd.)

• 4 states where agent fires finished correctly because text
on the virtual screen is FINISHED

• 4 state-action pairs are exactly what we expect:
• trigger retrieving as soon as text is read off virtual

screen
• trigger lexeme retrieved when retrieval process

successful
• trigger no lexeme found when retrieval process

unsuccessful

• 1 state-action pair that reflects trial-and-error learning
process

• state: previous stimulus not fully processed, but new
stimulus already read off virtual screen

• action: agent attempts to retrieve

24 / 30



Two-stimuli task: final Q-table (ctd.)

• 4 states where agent fires finished correctly because text
on the virtual screen is FINISHED

• 4 state-action pairs are exactly what we expect:
• trigger retrieving as soon as text is read off virtual

screen
• trigger lexeme retrieved when retrieval process

successful
• trigger no lexeme found when retrieval process

unsuccessful

• 1 state-action pair that reflects trial-and-error learning
process

• state: previous stimulus not fully processed, but new
stimulus already read off virtual screen

• action: agent attempts to retrieve

24 / 30



Two-stimuli task: final Q-table (ctd.)

• 4 states where agent fires finished correctly because text
on the virtual screen is FINISHED

• 4 state-action pairs are exactly what we expect:
• trigger retrieving as soon as text is read off virtual

screen
• trigger lexeme retrieved when retrieval process

successful
• trigger no lexeme found when retrieval process

unsuccessful

• 1 state-action pair that reflects trial-and-error learning
process

• state: previous stimulus not fully processed, but new
stimulus already read off virtual screen

• action: agent attempts to retrieve

24 / 30



Four-stimuli task: final Q-table

• 25,000 episodes, task completed fairly well after 22,000 episodes

• Even after 25,000 episodes, agent still tries incorrect rules, waits
for no good reason

• Final Q-table: 24 states with at least one non-0-value action
• 18 are exactly what we expect
• 6 reflect the noise in the trial-and-error learning process

25 / 30



Four-stimuli task: final Q-table

• 25,000 episodes, task completed fairly well after 22,000 episodes

• Even after 25,000 episodes, agent still tries incorrect rules, waits
for no good reason

• Final Q-table: 24 states with at least one non-0-value action
• 18 are exactly what we expect
• 6 reflect the noise in the trial-and-error learning process

25 / 30



Four-stimuli task: final Q-table

• 25,000 episodes, task completed fairly well after 22,000 episodes

• Even after 25,000 episodes, agent still tries incorrect rules, waits
for no good reason

• Final Q-table: 24 states with at least one non-0-value action
• 18 are exactly what we expect
• 6 reflect the noise in the trial-and-error learning process

25 / 30



Deep Q-Networks (DQN) in LD tasks

• we use a neural network (multilayer perceptron, one hidden
layer) to approximate the Q-function

• DQN takes longer to learn the 1-stim task (≈ 8,000 episodes),
does not reliably learn 2-stim task, but learns the 4-stim task
much faster than tabular Q-learning (≈ 2,000 episodes)

DQN: 1-stim DQN: 2-stim DQN: 4-stim

• DQN generalizes much more aggressively, which might be why it
is good at the more difficult 4-stim task

• but even for 4-stim, it only partially learns when to trigger rules,
and learns a lot more noise (incorrect rules) than tabular Q

26 / 30



Deep Q-Networks (DQN) in LD tasks

• we use a neural network (multilayer perceptron, one hidden
layer) to approximate the Q-function

• DQN takes longer to learn the 1-stim task (≈ 8,000 episodes),
does not reliably learn 2-stim task, but learns the 4-stim task
much faster than tabular Q-learning (≈ 2,000 episodes)

DQN: 1-stim DQN: 2-stim DQN: 4-stim

• DQN generalizes much more aggressively, which might be why it
is good at the more difficult 4-stim task

• but even for 4-stim, it only partially learns when to trigger rules,
and learns a lot more noise (incorrect rules) than tabular Q

26 / 30



Deep Q-Networks (DQN) in LD tasks

• we use a neural network (multilayer perceptron, one hidden
layer) to approximate the Q-function

• DQN takes longer to learn the 1-stim task (≈ 8,000 episodes),
does not reliably learn 2-stim task, but learns the 4-stim task
much faster than tabular Q-learning (≈ 2,000 episodes)

DQN: 1-stim DQN: 2-stim DQN: 4-stim

• DQN generalizes much more aggressively, which might be why it
is good at the more difficult 4-stim task

• but even for 4-stim, it only partially learns when to trigger rules,
and learns a lot more noise (incorrect rules) than tabular Q

26 / 30



Deep Q-Networks (DQN) in LD tasks

• we use a neural network (multilayer perceptron, one hidden
layer) to approximate the Q-function

• DQN takes longer to learn the 1-stim task (≈ 8,000 episodes),
does not reliably learn 2-stim task, but learns the 4-stim task
much faster than tabular Q-learning (≈ 2,000 episodes)

DQN: 1-stim DQN: 2-stim DQN: 4-stim

• DQN generalizes much more aggressively, which might be why it
is good at the more difficult 4-stim task

• but even for 4-stim, it only partially learns when to trigger rules,
and learns a lot more noise (incorrect rules) than tabular Q

26 / 30



Conclusion

We’ve shown that:
• the learnability problem for production-based cognitive

models can be systematically formulated and
computationally addressed as an RL problem

But this is merely a first inroad into a rich nexus of issues:
• what specifically in the human cognitive architecture

enables us to learn from much fewer interactions?
• there are other RL algorithms, e.g., (Expected) Sarsa,

policy-based approaches etc.; how do these algorithms
perform on LD tasks?

• how do all these different RL algorithms perform on a
variety of production-based cognitive models?

27 / 30



Conclusion

We’ve shown that:
• the learnability problem for production-based cognitive

models can be systematically formulated and
computationally addressed as an RL problem

But this is merely a first inroad into a rich nexus of issues:
• what specifically in the human cognitive architecture

enables us to learn from much fewer interactions?

• there are other RL algorithms, e.g., (Expected) Sarsa,
policy-based approaches etc.; how do these algorithms
perform on LD tasks?

• how do all these different RL algorithms perform on a
variety of production-based cognitive models?

27 / 30



Conclusion

We’ve shown that:
• the learnability problem for production-based cognitive

models can be systematically formulated and
computationally addressed as an RL problem

But this is merely a first inroad into a rich nexus of issues:
• what specifically in the human cognitive architecture

enables us to learn from much fewer interactions?
• there are other RL algorithms, e.g., (Expected) Sarsa,

policy-based approaches etc.; how do these algorithms
perform on LD tasks?

• how do all these different RL algorithms perform on a
variety of production-based cognitive models?

27 / 30



Conclusion

We’ve shown that:
• the learnability problem for production-based cognitive

models can be systematically formulated and
computationally addressed as an RL problem

But this is merely a first inroad into a rich nexus of issues:
• what specifically in the human cognitive architecture

enables us to learn from much fewer interactions?
• there are other RL algorithms, e.g., (Expected) Sarsa,

policy-based approaches etc.; how do these algorithms
perform on LD tasks?

• how do all these different RL algorithms perform on a
variety of production-based cognitive models?

27 / 30



Acknowledgments

We are grateful to four anonymous AMLaP 2020 reviewers and
the audience of the UCSC Linguistics Department S-circle (May
2020) for their questions and feedback.

We gratefully acknowledge the support of the NVIDIA
Corporation with the donation of two Titan V GPUs used for
this research, as well as the UCSC Office of Research and The
Humanities Institute for a matching grant to purchase
additional hardware.

28 / 30



References I

Brasoveanu, Adrian and Jakub Dotlačil (2020). Computational Cognitive
Modeling and Linguistic Theory. Language, Cognition, and Mind
(LCAM) Series. Springer (Open Access). DOI:
https://doi.org/10.1007/978-3-030-31846-8.

Fu, Wai-Tat and John R. Anderson (2006). “From recurrent choice to skill
learning: A reinforcement-learning model”. In: Journal of Experimental
Psychology: General 135.2, pp. 184–206. DOI:
10.1037/0096-3445.135.2.184.

Hale, John T. (2014). Automaton Theories of Human Sentence
Comprehension. Stanford: CSLI Publications.

Lewis, Richard and Shravan Vasishth (2005). “An activation-based model of
sentence processing as skilled memory retrieval”. In: Cognitive Science
29, pp. 1–45.

Newell, Alan (1973). “Production systems: Models of control structures”.
In: Visual information processing. Ed. by W.G. Chase et al. New York:
Academic Press, pp. 463–526.

29 / 30

https://doi.org/https://doi.org/10.1007/978-3-030-31846-8
https://doi.org/10.1037/0096-3445.135.2.184


References II

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An
introduction. MIT press.

30 / 30


	Introduction
	Learning goal-conditioned rules in lexical decision
	Production-rule ordering as an RL problem
	Simulations and results
	Conclusion
	Acknowledgments
	References

