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I. Learnability of Mechanistic Processing Models. We introduce a framework in which we
can start exploring in a computationally explicit way how complex, mechanistically specified
cognitive models of linguistic skills (e.g., the parsers in Lewis and Vasishth 2005; Hale 2011;
Engelmann 2016) can be acquired. Linguistic cognitive model learnability is an understudied
issue, primarily because computationally explicit cognitive models are only starting to be more
widely used in psycholinguistics. Cognitive models for linguistic skills pose this learnability prob-
lem much more starkly than models for other ‘high-level’ cognitive processes, since cognitive
models that use theoretically-grounded linguistic representations and processes call for richly
structured representations and complex rules that require a significant amount of hand-coding.

The learnability problem for production-rule based models can be divided into 2 parts: (/) rule

acquisition: forming complex rules out of simpler ones, and (ii) rule ordering: deciding which
rule to fire when. ACT-R’s (Anderson and Lebiere, 1998) partial answers to these problems
are production compilation for (i), and rule-utility estimation for (ii). Neither solution has been
systematically applied to the complex models for linguistic skills. We focus here on the easier
problem (ii) and show how advances in the machine learning subfield of Reinforcement Learning
(RL, Sutton and Barto 2018) can be leveraged to solve it. RL and ACT-R have very close
connections (Fu and Anderson, 2006), but they have remained largely unexplored.
ll. Example: Learning goal-conditioned rules for lexical decision (LD). We show how a
Q-learning agent (a model-free off-policy learning algorithm; Watkins 1989; Watkins and Dayan
1992; Mnih and al 2015) can be used to learn goal-conditioned rules in an ACT-R based cog-
nitive model of LD tasks. LD tasks can be modeled in ACT-R with a small number of rules
(Brasoveanu and Dotlacil, 2019), so they are a good starting example. We model three LD
tasks of increasing length (hence difficulty): 1 stimulus (the word elephant), 2 stimuli (the word
elephant and a non-word), and 4 stimuli (elephant, non-word, dog, another non-word).

The model components are split between declarative memory, which stores the lexical
knowledge of an English speaker, and procedural memory, which stores rules that enable the
model to carry out the LD task. The rules are conditionalized actions: they fire/execute actions
when their conditions are satisfied by the cognitive state of the ACT-R mind (the buffers). We
assume 4 rules, provided in standard ACT-R format on the next page. These 4 rule were origi-
nally hand-coded to fire serially. Assume the initial goal state of the ACT-R model is retrieving,
and the word elephant appears on the virtual screen of the model, which is automatically stored
in the value slot of the visual buffer. Rule 1 fires, attempting to retrieve a word with the form
elephant from declarative memory, and the goal state is updated to retrieval-done. When
the word is successfully retrieved, Rule 2 fires and the J key is pressed. At that point: (i) in the
1-stimulus task, the text FINISHED is displayed on the screen, then Rule 4 fires and ends the
task; (ii) in the 2/4-stimuli tasks, a non-word is displayed, then Rule 1 fires; the retrieval attempt
fails (cannot retrieve a non-word), so Rule 3 fires and the F key is pressed, after which the next
text (FINISHED or dog) is displayed, etc.

Instead of hand-coding the rule conditions, we only specify the actions — that’s the reason
for striking out the goal specifications — and let the Q-learning agent learn to successfully carry
out the LD task. We give the agent a reward of 1 if it reaches the final goal-state done; for any
intermediate rule firing, we give it a small negative reward of —0.15 to encourage it to finish
the task asap. The agent learns by trial and error to successfully carry out the LD tasks, i.e.,
to properly order the rules to efficiently complete LD tasks. Learning is faster and better for
shorter tasks (fewer stimuli). In the presentation, we will conclude with a discussion of possible
ways to model learning from instructions, curriculum learning (progressing from simpler tasks to
difficult ones), other RL algorithms, and limitations of RL approaches to more realistic cognitive
tasks, e.g., LDs task with hundreds of stimuli (presented in random order) or parsing tasks.
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(1) Rule 1: Retrieving

goal> | state: retrieving | = goal> | state: retrieval-done |
[stricken out b/c the agent learns goal conditions]
visual> | value: =val +retrieval> | isa: word
value: ~FINISHED form: =val
(2) Rule 2: Lexeme Retrieved
goal> | state: retrievai-dome | — goal> | state: retrieving |
retrieval> | buffer: full +manual> | cmd:  press-key
state: free key: J
(3) Rule 3: No Lexeme Found
goal> | state: retrieval-dome | — goal> | state: retrieving |

retrieval >

cmd:  press-key
key: F

buffer: empty +manual>
state:  error
(4) Rule 4: Finished

goal> | state: retrieving | — goal> | state: done |

visual> | value: FINISHED |

More details about the ACT-R and RL models
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One-stimulus task. We simulate 15,000 episodes, i.e., 15,000 lexical decision tasks consisting
of 1 stimulus only (the word ‘elephant’), from which the Q-learning agent learns. The leftmost
plot above shows that, after about 5,000 episodes, the task is completed in ~ 12 steps, which
is the expected length for this task with fully specified, hand-coded rules. A close examination
of the agent’s final Q-value table, which stores the agent’s rule-firing preferences for any given
goal state, indicates that the agent has learned goal-conditioned rules perfectly: there is no
need to hand-code goal states in the conditions of a rule to deterministically guide the cognitive
process. The Q-learning agent learns by trial-and-error interaction with the environment when
to fire which rule, and when to choose to wait and not fire any rule. The agent learns all this
from a minimally specified, but fairly carefully designed, reward structure.

The problem of learnability of production-based cognitive models can be systematically for-
mulated and computationally addressed as a reinforcement learning problem, but this is merely
a first inroad into what promises to be a very rich nexus of learnability questions, for example:

(i) lIs it cognitively realistic to require such a high number of episodes (trial-and-error inter-
actions) for learning to happen? What specifically in the human cognitive architecture
enables us to learn from much fewer interactions?

(if)y There are other value-based tabular learning algorithms (Sarsa, Expected Sarsa), as well
as non-tabular approaches to reinforcement learning (both value and policy based), e.g.,



linear or non-linear (e.g., neural network) function-approximation approaches. How do
they perform on lexical decision tasks?

(iil) How do all these different approaches perform on a variety of production-based cognitive
models, whether linguistic, e.g., syntactic or semantic parsing, or non-linguistic?

Two-stimuli task. We simulate 15,000 episodes, i.e., 15,000 lexical decision tasks consisting of
2 stimuli only (the word ‘elephant’ and the non-word ‘not_a_word’), from which the Q-learning
agent learns. The middle plot above shows that, after about 5,000 episodes, the task is com-
pleted in = 18 steps, which is the expected length for this task with fully specified, hand-coded
rules. A close examination of the agent’s final Q-value table indicates that the agent has learned
goal-conditioned rules almost perfectly. Unlike in the 1-stimulus task, there is one state-action
pair that is not optimal, and is simply a reflection of the trial-and-error learning process that takes
longer is and more error prone than for the simpler, 1-stimulus task.

Four-stimuli task. We simulate 25,000 episodes, i.e., 25,000 lexical decision tasks consisting
of 4 stimuli (the word ‘elephant’, the non-word ‘not_a_word’, the word ‘dog’ and the non-word
‘not_a_word_again’), from which the Q-learning agent learns. We need more episodes for this
task because it is longer, hence more complex, than the one-stimulus or the two-stimuli tasks.
The rightmost plot above shows that it takes about 22,000 episodes for the task to be reliably
completed in less than 40 steps. The task takes 34 steps with fully specified, hand-coded rules.

A close examination of the agent’s final Q-value table indicates that the agent has learned
goal-conditioned rules fairly well, but there still is a fairly large amount of noise associated with
multiple goal states. This noise is a reflection of the trial-and-error learning process that be-
comes increasingly difficult for tasks requiring large numbers of steps. In the 4-stimuli task,
we see that even after 25,000 episodes, the agent still wastes time every now and then trying
incorrect rules or just waiting (selecting no action) for no good reason.
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