
Reinforcement Learning for Productionbased Cognitive Models
Adrian Brasoveanu (UC Santa Cruz), Jakub Dotlačil (Utrecht University)

abrsvn@gmail.com, j.dotlacil@gmail.com

I. Learnability of Mechanistic Processing Models. We introduce a framework in which we
can start exploring in a computationally explicit way how complex, mechanistically specified
cognitive models of linguistic skills (e.g., the parsers in Lewis and Vasishth 2005; Hale 2011;
Engelmann 2016) can be acquired. Linguistic cognitive model learnability is an understudied
issue, primarily because computationally explicit cognitive models are only starting to be more
widely used in psycholinguistics. Cognitive models for linguistic skills pose this learnability prob
lem much more starkly than models for other ‘highlevel’ cognitive processes, since cognitive
models that use theoreticallygrounded linguistic representations and processes call for richly
structured representations and complex rules that require a significant amount of handcoding.

The learnability problem for productionrule basedmodels can be divided into 2 parts: (i) rule
acquisition: forming complex rules out of simpler ones, and (ii) rule ordering: deciding which
rule to fire when. ACTR’s (Anderson and Lebiere, 1998) partial answers to these problems
are production compilation for (i), and ruleutility estimation for (ii). Neither solution has been
systematically applied to the complex models for linguistic skills. We focus here on the easier
problem (ii) and show how advances in themachine learning subfield of Reinforcement Learning
(RL, Sutton and Barto 2018) can be leveraged to solve it. RL and ACTR have very close
connections (Fu and Anderson, 2006), but they have remained largely unexplored.
II. Example: Learning goalconditioned rules for lexical decision (LD). We show how a
Qlearning agent (a modelfree offpolicy learning algorithm; Watkins 1989; Watkins and Dayan
1992; Mnih and al 2015) can be used to learn goalconditioned rules in an ACTR based cog
nitive model of LD tasks. LD tasks can be modeled in ACTR with a small number of rules
(Brasoveanu and Dotlačil, 2019), so they are a good starting example. We model three LD
tasks of increasing length (hence difficulty): 1 stimulus (the word elephant), 2 stimuli (the word
elephant and a nonword), and 4 stimuli (elephant, nonword, dog, another nonword).

The model components are split between declarative memory, which stores the lexical
knowledge of an English speaker, and procedural memory, which stores rules that enable the
model to carry out the LD task. The rules are conditionalized actions: they fire/execute actions
when their conditions are satisfied by the cognitive state of the ACTR mind (the buffers). We
assume 4 rules, provided in standard ACTR format on the next page. These 4 rule were origi
nally handcoded to fire serially. Assume the initial goal state of the ACTRmodel is retrieving,
and the word elephant appears on the virtual screen of the model, which is automatically stored
in the value slot of the visual buffer. Rule 1 fires, attempting to retrieve a word with the form
elephant from declarative memory, and the goal state is updated to retrieval-done. When
the word is successfully retrieved, Rule 2 fires and the J key is pressed. At that point: (i) in the
1stimulus task, the text FINISHED is displayed on the screen, then Rule 4 fires and ends the
task; (ii) in the 2/4stimuli tasks, a nonword is displayed, then Rule 1 fires; the retrieval attempt
fails (cannot retrieve a nonword), so Rule 3 fires and the F key is pressed, after which the next
text (FINISHED or dog) is displayed, etc.

Instead of handcoding the rule conditions, we only specify the actions – that’s the reason
for striking out the goal specifications – and let the Qlearning agent learn to successfully carry
out the LD task. We give the agent a reward of 1 if it reaches the final goalstate done; for any
intermediate rule firing, we give it a small negative reward of −0.15 to encourage it to finish
the task asap. The agent learns by trial and error to successfully carry out the LD tasks, i.e.,
to properly order the rules to efficiently complete LD tasks. Learning is faster and better for
shorter tasks (fewer stimuli). In the presentation, we will conclude with a discussion of possible
ways to model learning from instructions, curriculum learning (progressing from simpler tasks to
difficult ones), other RL algorithms, and limitations of RL approaches to more realistic cognitive
tasks, e.g., LDs task with hundreds of stimuli (presented in random order) or parsing tasks.

abrsvn@gmail.com
j.dotlacil@gmail.com


(1) Rule 1: Retrieving
goal> state: retrieving
[stricken out b/c the agent learns goal conditions]
visual> value: =val

value: ∼FINISHED

=⇒ goal> state: retrieval-done

+retrieval> isa: word
form: =val

(2) Rule 2: Lexeme Retrieved
goal> state: retrieval-done

retrieval> buffer: full
state: free

=⇒ goal> state: retrieving

+manual> cmd: presskey
key: J

(3) Rule 3: No Lexeme Found
goal> state: retrieval-done

retrieval> buffer: empty
state: error

=⇒ goal> state: retrieving

+manual> cmd: presskey
key: F

(4) Rule 4: Finished
goal> state: retrieving

visual> value: FINISHED

=⇒ goal> state: done

More details about the ACTR and RL models

Onestimulus task Twostimuli task Fourstimuli task

Onestimulus task. We simulate 15,000 episodes, i.e., 15,000 lexical decision tasks consisting
of 1 stimulus only (the word ‘elephant’), from which the Qlearning agent learns. The leftmost
plot above shows that, after about 5,000 episodes, the task is completed in ≈ 12 steps, which
is the expected length for this task with fully specified, handcoded rules. A close examination
of the agent’s final Qvalue table, which stores the agent’s rulefiring preferences for any given
goal state, indicates that the agent has learned goalconditioned rules perfectly: there is no
need to handcode goal states in the conditions of a rule to deterministically guide the cognitive
process. The Qlearning agent learns by trialanderror interaction with the environment when
to fire which rule, and when to choose to wait and not fire any rule. The agent learns all this
from a minimally specified, but fairly carefully designed, reward structure.

The problem of learnability of productionbased cognitive models can be systematically for
mulated and computationally addressed as a reinforcement learning problem, but this is merely
a first inroad into what promises to be a very rich nexus of learnability questions, for example:

(i) Is it cognitively realistic to require such a high number of episodes (trialanderror inter
actions) for learning to happen? What specifically in the human cognitive architecture
enables us to learn from much fewer interactions?

(ii) There are other valuebased tabular learning algorithms (Sarsa, Expected Sarsa), as well
as nontabular approaches to reinforcement learning (both value and policy based), e.g.,



linear or nonlinear (e.g., neural network) functionapproximation approaches. How do
they perform on lexical decision tasks?

(iii) How do all these different approaches perform on a variety of productionbased cognitive
models, whether linguistic, e.g., syntactic or semantic parsing, or nonlinguistic?

Twostimuli task. We simulate 15,000 episodes, i.e., 15,000 lexical decision tasks consisting of
2 stimuli only (the word ‘elephant’ and the nonword ‘not_a_word’), from which the Qlearning
agent learns. The middle plot above shows that, after about 5,000 episodes, the task is com
pleted in ≈ 18 steps, which is the expected length for this task with fully specified, handcoded
rules. A close examination of the agent’s final Qvalue table indicates that the agent has learned
goalconditioned rules almost perfectly. Unlike in the 1stimulus task, there is one stateaction
pair that is not optimal, and is simply a reflection of the trialanderror learning process that takes
longer is and more error prone than for the simpler, 1stimulus task.

Fourstimuli task. We simulate 25,000 episodes, i.e., 25,000 lexical decision tasks consisting
of 4 stimuli (the word ‘elephant’, the nonword ‘not_a_word’, the word ‘dog’ and the nonword
‘not_a_word_again’), from which the Qlearning agent learns. We need more episodes for this
task because it is longer, hence more complex, than the onestimulus or the twostimuli tasks.
The rightmost plot above shows that it takes about 22,000 episodes for the task to be reliably
completed in less than 40 steps. The task takes 34 steps with fully specified, handcoded rules.

A close examination of the agent’s final Qvalue table indicates that the agent has learned
goalconditioned rules fairly well, but there still is a fairly large amount of noise associated with
multiple goal states. This noise is a reflection of the trialanderror learning process that be
comes increasingly difficult for tasks requiring large numbers of steps. In the 4stimuli task,
we see that even after 25,000 episodes, the agent still wastes time every now and then trying
incorrect rules or just waiting (selecting no action) for no good reason.

References:

Anderson, John R., and Christian Lebiere. 1998. The atomic components of thought. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Brasoveanu, Adrian, and Jakub Dotlačil. 2019. Quantitative comparison for generative theories.
In Proceedings of the 2018 Berkeley Linguistic Society 44.

Engelmann, Felix. 2016. Toward an integrated model of sentence processing in reading. Doc
toral Dissertation, University of Potsdam, Potsdam.

Fu, WaiTat, and John R. Anderson. 2006. From recurrent choice to skill learning: A
reinforcementlearning model. Journal of Experimental Psychology: General 135:184–206.

Hale, John. 2011. What a rational parser would do. Cognitive Science 35:399–443.
Lewis, Richard, and Shravan Vasishth. 2005. An activationbasedmodel of sentence processing
as skilled memory retrieval. Cognitive Science 29:1–45.

Mnih, Volodymyr, and al. 2015. Humanlevel control through deep reinforcement learning. Na
ture 518:529–533.

Sutton, Richard S, and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT
press.

Watkins, Christopher J. C. H., and Peter Dayan. 1992. Qlearning. Machine Learning 8:279–
292. URL https://doi.org/10.1007/BF00992698.

Watkins, Christopher John Cornish Hellaby. 1989. Learning from delayed rewards. Doctoral
Dissertation, King’s College, Cambridge, UK. URL http://www.cs.rhul.ac.uk/~chrisw/
new_thesis.pdf.

https://doi.org/10.1007/BF00992698
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

