Intro to the ACT-R subsymbolic level for declarative memory

Adrian Brasoveanu

April 20, 2015

1 Understanding the (basic) activation equation

(1) Activation equation: A; = B; + }, W;Sj;, for a chunk i and elements j that are part of the

jeC

current goal chunk.
This equation has three major components:

a.

n n
Base-level learning equation: B; = log < Yt d) = log ( Y \/17> (since usually d =
k=1 k=1 V*

0.5), where t; is the time since the k-th practice / access of chunk i.
Attentional weighting equation: W; = %

Associative strength equation: S;; ~ log (iﬁféé?f)

1.1 The base-level learning equation

n

(2) Base-level learning equation: B; = log < i te d) = log ( )3 1) (since usually d = 0.5),
k=1

where t; is the time since the k-th practicei/ access of chunk i.

(3) Anderson and Schooler (1991, p. 396):

In this paper we explore the issue of whether human memory is behaving opti-
mally with respect to the pattern of past information presentation. Each item in
memory has had some history of past use. For instance, our memory for one per-
son’s name may not have been used in the past month but might have been used
five times in the month previous to that. What is the probability that the memory
will be needed (used) during the conceived current day? Memory would be be-
having optimally if it made this memory less available than memories that were
more likely to be used but made it more available than less likely memories.

In this paper we examine a number of environmental sources to determine how
probability of a memory being needed varies with pattern of past use.

Let’s first examine the Ebbinghaus (1913) retention data presented in his chapter 7.

(4) Ebbinghaus (1913, ch. 7) retention data

a.

Stimulus materials: nonsense CVC syllables, about 2300 in number; mixed together,
randomly selected to construct series of different lengths.



b. Method: learning to criterion; the subject repeats the material as many times as neces-
sary to reach a prespecified level of accuracy (e.g., one perfect reproduction).

c. Retention measure: ‘savings’, i.e., subtracting the number of repetitions required to
relearn material to a criterion from the number originally required to learn the material
to the same criterion.

> ebbinghaus_data = read.csv("ebbinghaus_retention_data.csv", header=T)
> ebbinghaus_data

delay_in_hours percent_savings

1 0.33 58.2
2 1.00 44 .2
3 8.80 35.8
4 24.00 33.7
5 48.00 27.8
6 144.00 25.4
7 744.00 21.1

> summary (ebbinghaus_data)

delay_in_hours percent_savings

Min. : 0.3 Min. :21.1
1st Qu.: 4.9 1st Qu.:26.6
Median : 24.0 Median :33.7
Mean :138.6 Mean :35.2
3rd Qu.: 96.0 3rd Qu.:40.0
Max. :744.0 Max. :58.2



[e2]
o

(a) Ebbinghaus retention data:
non—transformed data

a
o
|

Savings (percent)
&
1

30 -
20 = ] ] i —
0 200 400 600 800
Delay (hours)
(b) Ebbinghaus retention data:
log performance (i.e., log savings), base e

= 44

c €

3

E e3.8_

- 3.6

8%

%83'4_

S G321

b

63 I I I
0 200 400 600 800
Delay (hours)
(c) Ebbinghaus retention data:
log—-log (log delay, log savings), base e

= 4

c €

3

E e3.8_

- 3.6
S’e 0

» e3.4_

2
= .32

% e
n 3

I I
0 2

e
Delay (log hours)

Figure 1: Ebbinghaus retention data
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The forgetting curve plotted in panel (a) of Figure 1 is sometimes taken to reflect an underlying
negative exponential forgetting function of the form:

(5) P = Ae'T, where P is the performance measure (percent savings in the Ebbinghaus data),
T is the delay in time, and A, b are the parameters of the model.

But this predicts that performance should be a linear function of time if we log-transform P,
and panel (b) of Figure 1 shows that is not the case:

(6) log(P) =1log(A)—bT

Instead, we see a power function, as panel (c) of Figure 1 shows. That is, performance is a
linear function of time only if you log-transform both of them:

(7) log(P) = log(A) — blog(T), ie,

n
The base-level learning equation B; = log ( Y tkd> reflects exactly this: the base-level activa-
k=1

tion B, is basically a log-performance value.
The basic idea of the account in Anderson and Schooler (1991):

®) The basic idea is that at any point in time, memories vary in how likely they are
to be needed and the memory system tries to make available those memories that
are most likely to be useful. The memory system can use the past history of use of
a memory to estimate whether the memory is likely to be needed now. This view
sees human memory in some sense as making a statistical inference. However,
it does not imply that memory is explicitly engaged in statistical computations.
Rather, the claim is that whatever memory is doing parallels a correct statistical
inference.

What memory is inferring is something we call the need probability, which is the
probability that we will need a particular memory trace now. The basic assump-
tion developed in Anderson (1990) is that memories are considered in order of
their need probabilities until the need probability is so low that it no longer is
worth considering any more. If we let p be the need probability, C be the cost of
considering a memory, and G be the gain associated with a successful retrieval,
one should stop when C > pG.

Despite the description of this process in terms that evoke images of memories
being considered one at a time, there are equivalent parallel processes. We prefer
a parallel model in which different memories are allocated different resources
according to their need probability.

[..]

This analysis does allow predictions to be derived about the relationship between
need probability and the dependent measures of recall latency and recall accu-
racy. With respect to recall latency, the critical assumption is that there is a distri-
bution of memories in terms of their estimated need probabilities. The reasonable
assumption is that there will be a mass of need probabilities near zero with a tail
of a few higher probability memories; that is, to say the distribution of memo-
ries will be J-shaped or highly skewed. It is more convenient to think about the
shape of such a distribution in terms of need odds. If p is need probability, then
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q = p/(1— p) will be need odds. An odds measure has the advantage of vary-
ing from zero to infinity. Thus, the expectation is that most memories will have
near-zero odds and a rapidly diminishing few will have higher odds. (Anderson
and Schooler, 1991, p. 400)

In sum:

(9) The base-level activation equation encodes that (see Anderson and Schooler 1991, p. 407,
and Anderson et al. 2004, p. 1042):

a. the strength of a memory trace provides an encoding of its need odds memory perfor-
mance (base-level activation tracks log odds);

b. the strengths from individual presentations sum to produce a total strength (each pre-
sentation has an impact on odds, and the impacts of different presentations add up);

c. strengths of individual presentations decay as a power function of the time (the fact
that the impact on odds of an individual presentation decays as a power function pro-
duces the power law of forgetting).

Let’s work through some examples. Assume we have a fact — it can be an addition fact like the
one below, or the lexical representation of a word etc.

(10) a. A chunk of type ADDITION-FACT with slots ADDEND;, ADDEND, and SUM which mod-
els the fact 5 + 2 = 7. The slot values are the primitive elements 5, 2 and 7, respectively.
Chunks are boxed, whereas primitive elements are simple text. A simple arrow (—)
signifies that the chunk at the start of the arrow has the value at the end of the arrow
in the slot with the name that labels the arrow.

ADDENDq ADDEND>
ADDITION-FACT

SUM

7

b. The same chunk represented as an attribute-value matrix (AVM). We'll use only AVM
representations from now on. The various components of the activation equation have
been added.

ADDEND4 (S]-Z-): 5 (Wj)
ADDEND> (Sﬁ>: 2 (W]-)

SUM: 7
ADDITION-FACT (Bi>

Assume this chunk is presented 5 times, once every 300 ms, starting at time 0 ms. We want to
plot its base-level activation for the first 3500 ms.

We define a base_activation function: its inputs are the presentation times for the chunk,
and also the moments of time at which to obtain activation. The output is the base-level activation
values at the corresponding moments of time.



base_activation <- function(pres_times, moments) {
base_act = numeric(length=length(moments))
for (i in 1:length(moments)) {
base_act[i] = sum(1/sqrt(moments[i] - pres_times[pres_times<moments[i]]))
}
base_act [which(base_act!=0)] = log(base_act[which(base_act!=0)])
return(base_act)

pres_times = seq(0, 1200, length.out=5)
moments = 0:3500
base_act = base_activation(pres_times, moments)
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Figure 2: Base-level activation as a function of time

1.2 The attentional weighting equation

(11) Attentional weighting equation: W; = %

W is usually set to 1, so the attention weights are usually 1, where 7 is the number of sources
of activation / terms.



1.3 The associative strength equation

(12) Associative strength equation: S;; ~ log (p;ffb(zy)))

Sji is usually set to S — log(fanj), where fanj is the number of facts associated with term j. S is
usually set to 2.

2 Activation, probability of retrieval, and latency of retrieval

(13) DProbability of retrieval equation: P; = %, where s is the noise parameter and is

14~ —s
typically set at about 0.4, and 7 the retrieval threshold.
(14) Latency of retrieval equation: T; = Fe~“i, where F is the latency factor.

(15) The threshold T and the latency factor F vary from model to model, but there is a general
relationship between them:
F ~ 0.35¢"
i.e., the retrieval latency at threshold (when A; = 7) is approximately 0.35 seconds.

Let’s plot the probability and latency of retrieval for the same hypothetical case as above,
assuming the activation of the items is just the base-level activation. We assume:

e noises = 0.4
e threshold T = -2

¢ latency factor F = 50 (ms)

Note that according to the above equation, F &~ 0.35¢~2 ~ 0.35 x 0.1353 ~ 0.04736 (s), so our
value of 50 ms is very close to this. Also note that this value is different from F = 0.46 in Vasishth
et al. (2008, p. 692)), or F = 0.14 in Lewis and Vasishth (2005, p. 382).

> pres_times = seq(0, 1200, length.out=5)

> moments = 0:3500

> base_act = base_activation(pres_times, moments)

>

>s =0.4

> tau = -2

>F =50

>

> prob_retrieval = 1/(1 + exp(-(base_act - tau)/s))
> latency_retrieval = F * exp(-base_act)



—— Base-level activation == Presentation times
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Figure 3: Base-level activation, probability of retrieval, and latency of retrieval as a function of
time



2.1 Probability of retrieval

Let’s take a closer look at probability of retrieval. We plot the odds of retrieval in addition to
probability of retrieval, and also plot odds against activation.

> pres_times = seq(0, 1200, length.out=5)

> moments = 0:3500

> base_act = base_activation(pres_times, moments)
>

>s =0.4

> tau = -2

>

> prob_retrieval = 1/(1 + exp(-(base_act - tau)/s))
> odds_retrieval = exp((base_act - tau)/s)
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Figure 4: Base-level activation, probability of retrieval, and odds of retrieval as a function of time
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Let’s plot probability and odds of retrieval against activation. Note the linear relationship
between activation and odds of retrieval on the log scale, i.e., log-odds, i.e., logits.
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2.2 Latency of retrieval

Let’s plot time of retrieval and log time of retrieval against activation — and also against log odds of
retrieval. Note the linear relationship between activation and time of retrieval (or odds of retrieval)
on the log scale.

You can get an intuitive interpretation for the latency scale parameter F by looking at how
much time it takes to retrieve a chunk that has a threshold (7) activation.

> pres_times = seq(0, 1200, length.out=5)

> moments = 0:3500

> base_act = base_activation(pres_times, moments)
>

>s =0.4

> tau = -2

>

> prob_retrieval = 1/(1 + exp(-(base_act - tau)/s))
> odds_retrieval = exp((base_act - tau)/s)

>

>F =50

> latency_retrieval = F * exp(-base_act)
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