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Many languages have lexical means to compare two elements and express identity / difference / similarity [1]-[5], [8], among others, use introspective judg-
between them. English uses adjectives of comparison (AOCs) like same, different and similar. Often, the ments to decide which NPs license sentence-internal
comparison is between an element in the current sentence and a sentence-external element mentioned in the readings of which AOCs. We extend their work and
previous discourse, see (1a). look at licensors of AOCs in a grammaticality judg-
, , ment task.
(1) a. Arnold saw ‘Waltz with Bashir’.
b. Heloise saw the same movie / a different movie / a similar movie. e We establish which NPs license which AOCs

. , , , . . and to what extent
But AOCs can also compare sentence-internally, that is, without referring to any previously introduced ele-

ment, see (2). This is possible if there is a semantically plural NP in the sentence. e We argue that using Bayesian methods to an-
alyze the resulting experimental data has sev-
eral advantages over the more traditional, fre-
quentist approach.

(2) Each of the students saw the same movie / a different movie/a similar mouvie.

In the reported research we focused solely on sentence-internal readings of AOC:s.

e We discuss consequences of the experimental
results for the semantic analysis of AOCs.

Questionnaire testing:

3 AOC:s: same, different, similar
4 licensors: NPs headed by each, all, none, the
Hence, 3 x 4 = 12 conditions

Each condition: tested 4 times (twice in a FALSE scenario, twice in a TRUE scenario), 32 fillers.

(3) EXAMPLE OF A SCENARIO+TEST ITEM:

Gustav, Ryan and Bill are three bank managers who share a passion for Volvo, Rolls Royce and Porsche

automobiles. Last year, each of them bought a new car. Gustav bought a Volvo PY30, Ryan bought a
Volvo XRT2000 and Bill bought a Volvo H4.

a. Each of the bank managers chose a similar car.

Each scenario followed by three test items and 2 fillers. Order of items and scenarios pseudo-randomized.

Task: judging (i) TRUTH and (ii)) ACCEPT(ABILITY): 5=completely acceptable to 1=completely unacceptable Barplots of responses by quant-AOC combination

Subjects: 42 undergraduate students, 3 excluded, 1 subject filled in only two thirds.
Final number of observations: n = 1856.

We use ordinal probit regression models to analyze We want to find which NPs license which AOCs and to what extent. Thus, we are interested in a wide range
the data. The final model has: of pairwise comparisons.

Problem: Running all pairwise comparisons would require an unfeasibly large amount ot data to achieve
significance due to the necessary a-level corrections.

Solution: We use Bayesian modelling and check the marginal posterior distribution of each relevant pair

o 2 fixed effects (QUANT-AOC, TRUTH)

e intercept-only random etfects for subjects (6L[71)

. The Bayesian model has the following structure: (i) vague priors for the non-reference levels of QUANT-AOC and TRUTH—
Reference level: EACH+DIFFERENT

independent normal distributions with mean O and variance 102 ; (i1) the subject random effects are assumed to come from a

Mapping mu normal distribution with mean 0 and variance o2, with o taken from a uniform distribution Unif(0, 10). The range of P is
partitioned into five intervals (since the acceptability scale was 1-5) by 4 cutoff points / thresholds; the priors for the thresholds

are also independent normal distributions with mean O and variance 1 02.
We estimate the posterior distributions of the predictors QUANT-AOC and TRUTH, the standard deviation o of the subject random
effects and the 4 thresholds by sampling from them using Markov Chain Monte Carlo techniques (3 chains, 125, 00O iterations
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We assume that for each z in the sorting key, dist makes available

at least some stacks which carry values of the sorting key other We assume two dist operators: dist, dist-COMP

than z. See [3] for details. dist dist-Comp no distributivity
different v v *
UuQ
Each“0boy [ oy, | disty,(recited a™! differentfle poem) sdarme v v v
4) a 0 " Tooys > similar * v *
boys 5] argues that distributive interpretation of a predicate depends on the type of subject:
( )
. u u u u
i s B 1 & poemy F poems (5) Dist: EACH > ALL > THE
boy1 | poemq boya | poemso .
b, ¢ o - o - > Following his work, we derive the scale of Diff (apart from the position of NONE).
i Fous T poerms | [oys T poerma & poemz # poem; Furthermore, we derive the scale of Same if we assume that no distributivity is easier to
interpret than dist and dist-COMP. Finally, we derive the scale of Sim if we assume that
1. ete. / ALL and EACH can make use of dist-COMP more readily than definites and NONE.
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