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Abstract. The J2(R2,R) space of 2-jets of a real function of
two real variables x and y admits the structure of a Carnot group
with step 3. As any subRiemannia manifold, J2(R2,R) has an
associated Hamiltonian geodesic flow, which is non-integrable. To
prove this, we used the reduced Hamiltonian Hµ on T ∗H , given
by a symplectic reduction of the subRiemannian geodesic flow on
J2(R2,R), using the fact that J2(R2,R) is a meta-abelian group.

1. Introduction

Let J2(R2,R) be the space of 2-jets of a real function of two vari-
ables, then J2(R2,R) is an 8-dimensional Carnot group with step 3 and
growth vector (5, 7, 8). Let j be the graded Lie algebra of J2(R2,R),
that is,

j = j1 ⊕ j2 ⊕ j3, such that [j1, jr] = jr+1.

Let π : J2(R2,R) → j1 be the canonical projection and let j1 be en-
dowed with the Euclidean metric, let us consider the subRiemannian
metric on J2(R2,R) such that π is a subRiemannian submersion, then
the subRiemannian structure is left-invariant under the Carnot group
multiplication. Like any subRiemannian structure, the cotangent bun-
dle T ∗J2(R2,R) is endowed with a Hamiltonian system whose underly-
ing Hamiltonian HsR is that whose solutions curves are subRiemannian
geodesics on J2(R2,R). We call this Hamiltonian system the geodesic
flow on J2(R2,R).

Theorem A. The subRiemannian geodesic flow on J2(R2,R) is non-
integrable.

Another example of a Carnot group with a non-integrable geodesic
flow: the group of all 4 by 4 lower triangular matrices with 1s on the
diagonal proved by R. Montgomery, M. Saphirom and A. Stolin, see [2].
The Carnot group with growth vector (3, 6, 14) showed by I. Bizyaev,
A. Borisov, A. Kilin, and I. Mamaev, see [9]. The free Carnot group
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(2, 3, 5, 8) with step 4 verified by L. V. Lokutsievskiy and Y. L. Sachkov,
see [10].

2. J2(R2,R) as a Carnot group

The 2-jet of a smooth function f : R2 → R at a point (x0, y0) ∈ R2

is its 2-th order Taylor expansion at x0. We will encode this 2-jet as a
8-tuple of real numbers (jkf)|(x0,y0) as follows:

(x0, y0,
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2
,
∂f

∂x
,
∂f

∂y
, f)|(x0,y0) ∈ R8

As f varies over smooth functions and (x0, y0) varies over R2, these
2-jets sweep out the 2-jet space, denoted by J2(R2,R). One can see
that J2(R2,R) is diffeomorphic to R8 and its points are coordinatized
according to

(x, y, u2,0, u1,1, u0,2, u1,0, u0,1, u) ∈ R8 := J2(R2,R).

Recall that if u = f(x, y), then u1,0 = du/dx, u0,1 = du/dy, u2,0 =
du1,0/dx, u1,1 = du1,0/dy = du0,1/dx and u0,2 = du0,1/dy. We see
that J2(R2,R) is endowed with a natural rank 5 distribution j1 ⊂
TJ2(R2,R) ' j characterized by the following Pfaffian equations

u1,0dx+u0,1dy−du = u2,0dx+u1,1dy−du1,0 = u1,1dx+u0,2dy−du0,1 = 0.

A subRiemannian structure on a manifold consists of a non-integrable
distribution together with a smooth inner product on the distribution.
We arrive at our subRiemannian structure by observing that j1 is glob-
ally framed by

X1 =
∂

∂x
+ u1,0

∂

∂u
+ u2,0

∂

∂u1,0
+ u1,1

∂

∂u0,1
,

X2 =
∂

∂y
+ u0,1

∂

∂u
+ u1,1

∂

∂u1,0
+ u0,2

∂

∂u0,1
,

Y2,0 =
∂

∂u2,0
, Y1,1 =

∂

∂u1,1
, Y0,2 =

∂

∂u0,2
.

An equivalent way to define the subRiemannian metric is to declare
these vector fields to be orthonormal. Now the restrictions of the one-
forms dx, dy, du2,0, du1,1, du0,2 to j1 form a global co-frame for j∗1 which
is dual to our frame. Therefore an equivalent way to describe our
subRiemannian structure is to say that its metric is dx2 +dy2 +du22,0 +

du21,1 + du20,2 restricted to j1.
For more detail about the jet space as Carnot group, see [4].
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The left-invariant vector fields {X1, X2, Y2,0, Y1,1, Y0,2} generates the
following Lie algebra:

Y1,0 := [X1, Y2,0] = [X2, Y1,1], Y0,1 := [X1, Y1,1] = [X2, Y0,2],(2.1)

Equations (2.1) defined the left-invariant vector fields corresponding to
the second layer.

Y := [X1, Y1,0] = [X2, Y0,1],(2.2)

Equations (2.1) defined the left-invariant vector field corresponding to
the third layer. All the other brackets are zero.

We say that a group G is meta-abelian if [G,G] = 0 is abelian.
The Lie bracket relationship in equations (2.1) and (2.2) show that
J2(R2,R) is a meta-abelian Carnot group, we will use the symplectic
reduction performance on [1] to prove the main Theorem.

Following the notation used in [1]: let a be the maximal abelian ideal
containing [j, j]; thus the Lie bracket relationship in equations (2.1) and
(2.2) implies that a is framed by {Y2,0, Y1,1, Y0,2, Y1,0, Y0,1, Y }. Let A be
the normal abelian sub-group whose Lie algebra is a and consider its
action on J2(R2,R) by left multiplication. Thus the action is free and
proper, so J2(R2,R)/A is well defined, and H := J2(R2,R)/A is 2-
dimensional Euclidean space such that J2(R2,R) ' HnA.

We say that J2(R2,R) is a 2-abelian extension sinceH is 2-dimensional
Euclidean space, latter we will see that 2 is the degree of freedom of
reduced Hamiltonian Hµ, see sub-Section 3.1. Therefore Theorem A
is part of the classification of 2-abelian extension Carnot Groups with
the non-integrable geodesic flow.

2.1. The exponential coordinates of the second kind. The jet
space J2(R2,R) has a natural definition using the coordinates x, y,
and u’s; however, these coordinates do not easily show the symmetries
of the system. The canonical coordinates defined in [1] exhibit the
symmetries,

We recall that the exponential map exp : j → J2(R2,R) is a global
diffeomorphism, this allow us to endow J2(R2,R) with coordinates
(x, y, θ1, θ2, θ3, θ4, θ5, θ6) in the following way: a point g in J2(R2,R)
is given by

g := exp(θ1Y2,0+θ2Y1,1+θ3Y0,2+θ4Y1,0+θ5Y0,1+θ6Y )∗exp(yX2)∗exp(xX1).

Then the horizontal left-invariant vector fields are given by

X1 :=
∂

∂x
, X2 :=

∂

∂y
,(2.3)
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the vector fields from equation (2.3) corresponding to the independent
variable, while the following correspond to second derivatives

Y2,0 :=
∂

∂θ1
+ x

∂

∂θ4
+
x2

2!

∂

∂θ6
,

Y1,1 :=
∂

∂θ2
+ y

∂

∂θ4
+ x

∂

∂θ5
+ xy

∂

∂θ6
,

Y0,2 :=
∂

∂θ3
+ y

∂

∂θ5
+
y2

2!

∂

∂θ6
.

(2.4)

The left-invariant vector fields from equation (2.3) and (2.4) just de-
pend on the independent variables x and y. All the meta-abelian
Carnot groups have this property, which is the heart of the symplectic
reduction. For more detail, see [1].

3. Geodesic flow on J2(R2,R)

Let us consider the traditional coordinates on T ∗J2(R2,R), that
is, p := (px, py, p1, p2, p3, p4, p5, p6) are the momentums associated to
canonical coordinates, see [5] and [6] for more details. Let λ be the
tautological one-form; then the momentum functions associated to the
left-invariant vector fields on the first layer j1 are given by

P1 := λ(X1), P2 := λ(X2), P2,0 := λ(Y2,0), P1,1 := λ(Y 2), P0,2 := λ(Y0,2).

See [7] or [8] for more detail about the momentum functions. Then the
Hamiltonian governing the subRiemannian geodesic flow on J2(R2,R)
is

(3.1) HsR :=
1

2
(P 2

1 + P 2
2 + P 2

2,0 + P 2
1,1 + P 2

0,2).

See [7] or [8] for more detail about the definition of HsR.
The Hamiltonian function HsR does not depend on the coordinates

θ1, θ2, θ3, θ4, θ5 and θ6, so they are cycle coordinate, in other words, p1,
p2, p3, p4, p5 and p6 are constants of motion. Moreover, HsR is invariant
under the action of A, then these constants of motion correspond to
the momentum map J : T ∗J2(R2,R) → a∗ defined by action, see [1]
for more details.

3.1. The reduced Hamiltonian. By general theory, the symplectic
reduced space is diffeomorphic to T (G/A) ' T ∗H and the reduced
Hamiltonian is a two-degree-of-freedom system with a polynomial po-
tential of degree four on variables x and y, and depending on the pa-
rameters µ = (a1, a2, a3, a4, a5, a6) in a∗, given by

(3.2) Hµ(px, py, x, y) :=
1

2
(p2x + p22 + φµ(x.y)),
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where the potential φµ(x, y) is given by

(3.3) (a1+a4x+
x2

2!
a6)

2+(a2+a5x+a4y+a6xy)2+(a3+a5y+a6
y2

2!
)2,

Setting p1 = a1, p
2 = a1, p

3 = a1, p
1
2 = a21, p

2
2 = a22 and p13 = a31, we

obtain HsR = Hµ.

3.2. Proof of Theorem A. One of the main consequences of the
symplectic reduction is that it is enough to verify the integrability of
Hµ for all µ in a∗ to prove the integrability of geodesic flow on J2(R2,R).
Thus, to prove Theorem A, it is enough to exhibit a µ such that Hµ is
not integrable.

Proof. If µ = (a1, a2, a3, a4, a5, a6) = (0, 0, 0, 0, 0, 0, 0, a) and a 6= 0, by
the definition of the potential given by equation (3.3) is with the form
φµ(x, y) = a2(1

4
x4 + x2y2 + 1

4
y4). Let Hµ be given by equation (3.2),

then Hµ is non-integrable. Indeed, this fact is a consequence of the
classification of the two-degree-of-freedom Hamiltonian systems with a
homogeneous potential of degree 4 made by J. Llibre, A. Mahdi, and
C. Valls, in [3]. �

Appendix A. The a∗ value one-form αJ2(R2,R)

In [1], we showed that the mathematical object relating the subRie-
mannian geodesic flow on J2(R2,R) and the reduced Hamiltonian on
T ∗H is a∗ value one-form αJ2(R2,R) on j1 ' R5 given by

αJ2(R2,R) = dθ1 ⊗ (e1 + xe4 +
x2

2!
e6)

+ dθ2 ⊗ (e2 + xe5 + ye4 + xye6)

+ dθ3 ⊗ (e3 + ye5 +
y2

2!
e6).

(A.1)
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