NON-INTEGRABLE SUBRIEMANNIAN GEODESIC FLOW ON $J^2(\mathbb{R}^2, \mathbb{R})$

ALEJANDRO BRAVO-DODDOLI

ABSTRACT. The $J^2(\mathbb{R}^2, \mathbb{R})$ space of 2-jets of a real function of two real variables x and y admits the structure of a Carnot group with step 3. As any subRiemannia manifold, $J^2(\mathbb{R}^2, \mathbb{R})$ has an associated Hamiltonian geodesic flow, which is non-integrable. To prove this, we used the reduced Hamiltonian H_{μ} on $T^*\mathcal{H}$, given by a symplectic reduction of the subRiemannian geodesic flow on $J^2(\mathbb{R}^2, \mathbb{R})$, using the fact that $J^2(\mathbb{R}^2, \mathbb{R})$ is a meta-abelian group.

1. INTRODUCTION

Let $J^2(\mathbb{R}^2, \mathbb{R})$ be the space of 2-jets of a real function of two variables, then $J^2(\mathbb{R}^2, \mathbb{R})$ is an 8-dimensional Carnot group with step 3 and growth vector (5,7,8). Let j be the graded Lie algebra of $J^2(\mathbb{R}^2, \mathbb{R})$, that is,

 $\mathbf{j} = \mathbf{j}_1 \oplus \mathbf{j}_2 \oplus \mathbf{j}_3$, such that $[\mathbf{j}_1, \mathbf{j}_r] = \mathbf{j}_{r+1}$.

Let $\pi : J^2(\mathbb{R}^2, \mathbb{R}) \to \mathfrak{j}_1$ be the canonical projection and let \mathfrak{j}_1 be endowed with the Euclidean metric, let us consider the subRiemannian metric on $J^2(\mathbb{R}^2, \mathbb{R})$ such that π is a subRiemannian submersion, then the subRiemannian structure is left-invariant under the Carnot group multiplication. Like any subRiemannian structure, the cotangent bundle $T^*J^2(\mathbb{R}^2, \mathbb{R})$ is endowed with a Hamiltonian system whose underlying Hamiltonian H_{sR} is that whose solutions curves are subRiemannian geodesics on $J^2(\mathbb{R}^2, \mathbb{R})$. We call this Hamiltonian system the geodesic flow on $J^2(\mathbb{R}^2, \mathbb{R})$.

Theorem A. The subRiemannian geodesic flow on $J^2(\mathbb{R}^2, \mathbb{R})$ is nonintegrable.

Another example of a Carnot group with a non-integrable geodesic flow: the group of all 4 by 4 lower triangular matrices with 1s on the diagonal proved by R. Montgomery, M. Saphirom and A. Stolin, see [2]. The Carnot group with growth vector (3, 6, 14) showed by I. Bizyaev, A. Borisov, A. Kilin, and I. Mamaev, see [9]. The free Carnot group

Key words and phrases. Carnot group, Jet space, non-integrable system, sub Riemannian geometry.

A. BRAVO-DODDOLI

(2, 3, 5, 8) with step 4 verified by L. V. Lokutsievskiy and Y. L. Sachkov, see [10].

2. $J^2(\mathbb{R}^2,\mathbb{R})$ as a Carnot group

The 2-jet of a smooth function $f : \mathbb{R}^2 \to \mathbb{R}$ at a point $(x_0, y_0) \in \mathbb{R}^2$ is its 2-th order Taylor expansion at x_0 . We will encode this 2-jet as a 8-tuple of real numbers $(j^k f)|_{(x_0, y_0)}$ as follows:

$$(x_0, y_0, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, f)|_{(x_0, y_0)} \in \mathbb{R}^8$$

As f varies over smooth functions and (x_0, y_0) varies over \mathbb{R}^2 , these 2-jets sweep out the 2-jet space, denoted by $J^2(\mathbb{R}^2, \mathbb{R})$. One can see that $J^2(\mathbb{R}^2, \mathbb{R})$ is diffeomorphic to \mathbb{R}^8 and its points are coordinatized according to

$$(x, y, u_{2,0}, u_{1,1}, u_{0,2}, u_{1,0}, u_{0,1}, u) \in \mathbb{R}^8 := J^2(\mathbb{R}^2, \mathbb{R}).$$

Recall that if u = f(x, y), then $u_{1,0} = du/dx$, $u_{0,1} = du/dy$, $u_{2,0} = du_{1,0}/dx$, $u_{1,1} = du_{1,0}/dy = du_{0,1}/dx$ and $u_{0,2} = du_{0,1}/dy$. We see that $J^2(\mathbb{R}^2, \mathbb{R})$ is endowed with a natural rank 5 distribution $\mathfrak{j}_1 \subset TJ^2(\mathbb{R}^2, \mathbb{R}) \simeq \mathfrak{j}$ characterized by the following Pfaffian equations

 $u_{1,0}dx + u_{0,1}dy - du = u_{2,0}dx + u_{1,1}dy - du_{1,0} = u_{1,1}dx + u_{0,2}dy - du_{0,1} = 0.$

A subRiemannian structure on a manifold consists of a non-integrable distribution together with a smooth inner product on the distribution. We arrive at our subRiemannian structure by observing that j_1 is globally framed by

$$X_{1} = \frac{\partial}{\partial x} + u_{1,0}\frac{\partial}{\partial u} + u_{2,0}\frac{\partial}{\partial u_{1,0}} + u_{1,1}\frac{\partial}{\partial u_{0,1}},$$

$$X_{2} = \frac{\partial}{\partial y} + u_{0,1}\frac{\partial}{\partial u} + u_{1,1}\frac{\partial}{\partial u_{1,0}} + u_{0,2}\frac{\partial}{\partial u_{0,1}},$$

$$Y_{2,0} = \frac{\partial}{\partial u_{2,0}}, Y_{1,1} = \frac{\partial}{\partial u_{1,1}}, Y_{0,2} = \frac{\partial}{\partial u_{0,2}}.$$

An equivalent way to define the subRiemannian metric is to declare these vector fields to be orthonormal. Now the restrictions of the oneforms $dx, dy, du_{2,0}, du_{1,1}, du_{0,2}$ to j_1 form a global co-frame for j_1^* which is dual to our frame. Therefore an equivalent way to describe our subRiemannian structure is to say that its metric is $dx^2 + dy^2 + du_{2,0}^2 + du_{1,1}^2 + du_{0,2}^2$ restricted to j_1 .

For more detail about the jet space as Carnot group, see [4].

 $\mathbf{2}$

The left-invariant vector fields $\{X_1, X_2, Y_{2,0}, Y_{1,1}, Y_{0,2}\}$ generates the following Lie algebra:

$$(2.1) Y_{1,0} := [X_1, Y_{2,0}] = [X_2, Y_{1,1}], Y_{0,1} := [X_1, Y_{1,1}] = [X_2, Y_{0,2}],$$

Equations (2.1) defined the left-invariant vector fields corresponding to the second layer.

(2.2)
$$Y := [X_1, Y_{1,0}] = [X_2, Y_{0,1}],$$

Equations (2.1) defined the left-invariant vector field corresponding to the third layer. All the other brackets are zero.

We say that a group \mathbb{G} is meta-abelian if $[\mathbb{G}, \mathbb{G}] = 0$ is abelian. The Lie bracket relationship in equations (2.1) and (2.2) show that $J^2(\mathbb{R}^2, \mathbb{R})$ is a meta-abelian Carnot group, we will use the symplectic reduction performance on [1] to prove the main Theorem.

Following the notation used in [1]: let \mathfrak{a} be the maximal abelian ideal containing $[\mathbf{j}, \mathbf{j}]$; thus the Lie bracket relationship in equations (2.1) and (2.2) implies that \mathfrak{a} is framed by $\{Y_{2,0}, Y_{1,1}, Y_{0,2}, Y_{1,0}, Y_{0,1}, Y\}$. Let \mathbb{A} be the normal abelian sub-group whose Lie algebra is \mathfrak{a} and consider its action on $J^2(\mathbb{R}^2, \mathbb{R})$ by left multiplication. Thus the action is free and proper, so $J^2(\mathbb{R}^2, \mathbb{R})/\mathbb{A}$ is well defined, and $\mathcal{H} := J^2(\mathbb{R}^2, \mathbb{R})/\mathbb{A}$ is 2dimensional Euclidean space such that $J^2(\mathbb{R}^2, \mathbb{R}) \simeq \mathcal{H} \ltimes \mathbb{A}$.

We say that $J^2(\mathbb{R}^2, \mathbb{R})$ is a 2-abelian extension since \mathcal{H} is 2-dimensional Euclidean space, latter we will see that 2 is the degree of freedom of reduced Hamiltonian H_{μ} , see sub-Section 3.1. Therefore Theorem A is part of the classification of 2-abelian extension Carnot Groups with the non-integrable geodesic flow.

2.1. The exponential coordinates of the second kind. The jet space $J^2(\mathbb{R}^2, \mathbb{R})$ has a natural definition using the coordinates x, y, and u's; however, these coordinates do not easily show the symmetries of the system. The canonical coordinates defined in [1] exhibit the symmetries,

We recall that the exponential map $\exp : \mathfrak{j} \to J^2(\mathbb{R}^2, \mathbb{R})$ is a global diffeomorphism, this allow us to endow $J^2(\mathbb{R}^2, \mathbb{R})$ with coordinates $(x, y, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6)$ in the following way: a point g in $J^2(\mathbb{R}^2, \mathbb{R})$ is given by

$$g := \exp(\theta_1 Y_{2,0} + \theta_2 Y_{1,1} + \theta_3 Y_{0,2} + \theta_4 Y_{1,0} + \theta_5 Y_{0,1} + \theta_6 Y) * \exp(y X_2) * \exp(x X_1).$$

Then the horizontal left-invariant vector fields are given by

(2.3)
$$X_1 := \frac{\partial}{\partial x}, \qquad X_2 := \frac{\partial}{\partial y},$$

the vector fields from equation (2.3) corresponding to the independent variable, while the following correspond to second derivatives

(2.4)

$$Y_{2,0} := \frac{\partial}{\partial \theta_1} + x \frac{\partial}{\partial \theta_4} + \frac{x^2}{2!} \frac{\partial}{\partial \theta_6},$$

$$Y_{1,1} := \frac{\partial}{\partial \theta_2} + y \frac{\partial}{\partial \theta_4} + x \frac{\partial}{\partial \theta_5} + xy \frac{\partial}{\partial \theta_6},$$

$$Y_{0,2} := \frac{\partial}{\partial \theta_3} + y \frac{\partial}{\partial \theta_5} + \frac{y^2}{2!} \frac{\partial}{\partial \theta_6}.$$

The left-invariant vector fields from equation (2.3) and (2.4) just depend on the independent variables x and y. All the meta-abelian Carnot groups have this property, which is the heart of the symplectic reduction. For more detail, see [1].

3. Geodesic flow on $J^2(\mathbb{R}^2, \mathbb{R})$

Let us consider the traditional coordinates on $T^*J^2(\mathbb{R}^2, \mathbb{R})$, that is, $p := (p_x, p_y, p_1, p_2, p_3, p_4, p_5, p_6)$ are the momentums associated to canonical coordinates, see [5] and [6] for more details. Let λ be the tautological one-form; then the momentum functions associated to the left-invariant vector fields on the first layer j_1 are given by

 $P_1 := \lambda(X_1), P_2 := \lambda(X_2), P_{2,0} := \lambda(Y_{2,0}), P_{1,1} := \lambda(Y^2), P_{0,2} := \lambda(Y_{0,2}).$ See [7] or [8] for more detail about the momentum functions. Then the Hamiltonian governing the subRiemannian geodesic flow on $J^2(\mathbb{R}^2, \mathbb{R})$ is

(3.1)
$$H_{sR} := \frac{1}{2} (P_1^2 + P_2^2 + P_{2,0}^2 + P_{1,1}^2 + P_{0,2}^2).$$

See [7] or [8] for more detail about the definition of H_{sR} .

The Hamiltonian function H_{sR} does not depend on the coordinates $\theta_1, \theta_2, \theta_3, \theta_4, \theta_5$ and θ_6 , so they are cycle coordinate, in other words, p_1 , p_2, p_3, p_4, p_5 and p_6 are constants of motion. Moreover, H_{sR} is invariant under the action of \mathbb{A} , then these constants of motion correspond to the momentum map $J : T^*J^2(\mathbb{R}^2, \mathbb{R}) \to \mathfrak{a}^*$ defined by action, see [1] for more details.

3.1. The reduced Hamiltonian. By general theory, the symplectic reduced space is diffeomorphic to $T(G/A) \simeq T^*\mathcal{H}$ and the reduced Hamiltonian is a two-degree-of-freedom system with a polynomial potential of degree four on variables x and y, and depending on the parameters $\mu = (a_1, a_2, a_3, a_4, a_5, a_6)$ in \mathfrak{a}^* , given by

(3.2)
$$H_{\mu}(p_x, p_y, x, y) := \frac{1}{2}(p_x^2 + p_2^2 + \phi_{\mu}(x.y)),$$

where the potential $\phi_{\mu}(x, y)$ is given by

$$(3.3) \quad (a_1 + a_4x + \frac{x^2}{2!}a_6)^2 + (a_2 + a_5x + a_4y + a_6xy)^2 + (a_3 + a_5y + a_6\frac{y^2}{2!})^2,$$

Setting $p^1 = a_1$, $p^2 = a_1$, $p^3 = a_1$, $p_2^1 = a_1^2$, $p_2^2 = a_2^2$ and $p_3^1 = a_1^3$, we obtain $H_{sR} = H_{\mu}$.

3.2. **Proof of Theorem A.** One of the main consequences of the symplectic reduction is that it is enough to verify the integrability of H_{μ} for all μ in \mathfrak{a}^* to prove the integrability of geodesic flow on $J^2(\mathbb{R}^2, \mathbb{R})$. Thus, to prove Theorem A, it is enough to exhibit a μ such that H_{μ} is not integrable.

Proof. If $\mu = (a_1, a_2, a_3, a_4, a_5, a_6) = (0, 0, 0, 0, 0, 0, 0, a)$ and $a \neq 0$, by the definition of the potential given by equation (3.3) is with the form $\phi_{\mu}(x, y) = a^2(\frac{1}{4}x^4 + x^2y^2 + \frac{1}{4}y^4)$. Let H_{μ} be given by equation (3.2), then H_{μ} is non-integrable. Indeed, this fact is a consequence of the classification of the two-degree-of-freedom Hamiltonian systems with a homogeneous potential of degree 4 made by J. Llibre, A. Mahdi, and C. Valls, in [3].

APPENDIX A. THE \mathfrak{a}^* VALUE ONE-FORM $\alpha_{J^2(\mathbb{R}^2,\mathbb{R})}$

In [1], we showed that the mathematical object relating the subRiemannian geodesic flow on $J^2(\mathbb{R}^2, \mathbb{R})$ and the reduced Hamiltonian on $T^*\mathcal{H}$ is \mathfrak{a}^* value one-form $\alpha_{J^2(\mathbb{R}^2,\mathbb{R})}$ on $\mathfrak{j}_1 \simeq \mathbb{R}^5$ given by

(A.1)

$$\alpha_{J^{2}(\mathbb{R}^{2},\mathbb{R})} = d\theta_{1} \otimes (e_{1} + xe_{4} + \frac{x^{2}}{2!}e_{6}) + d\theta_{2} \otimes (e_{2} + xe_{5} + ye_{4} + xye_{6}) + d\theta_{3} \otimes (e_{3} + ye_{5} + \frac{y^{2}}{2!}e_{6}).$$

References

- [1] A. Bravo-Doddoli. Sympletic reduction of the sub-riemannian geodesic flow on meta-abelian carnot groups. 2022.
- [2] R. Montgomery, M. Shapiro, and A. Stolin. Chaotic geodesics in carnot groups. 1997.
- [3] J. Llibre, A. Mahdi, and C. Valls. Polynomial integrability of the hamiltonian systems with homogeneous potential of degree 2. *Physics Letters. A*, 18, 2011.
- [4] B. Warhurst. Jet spaces as nonrigid carnot groups. Journal of Lie Theory, 15(1):341–356, 2005.
- [5] V. I. Arnol'd. Mathematical methods of classical mechanics, 2nd ed., New York: Springer, 1989.
- [6] L.D. Landau and E.M. Lifshitz. Mechanics third edition: Volume 1 of course of theoretical physics. 1976.

A. BRAVO-DODDOLI

- [7] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications. Number 91. American Mathematical Soc.
- [8] Barilari D. Agrachev, A. and U. Boscain. A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge University Press, 2019.
- [9] Ivan Bizyaev, Alexey Borisov, Alexander Kilin, and Ivan Mamaev. Integrability and nonintegrability of sub-riemannian geodesic flows on carnot groups. *Regular and Chaotic Dynamics*, 21:759–774, 11 2016.
- [10] L. V. Lokutsievskiy and Yu. L. Sachkov. Liouville integrability of subriemannian problems on carnot groups of step 4 or greater. *Shornik: Mathematics*, 209(5):672, 2018.

Alejandro Bravo: Dept. of Mathematics, UCSC, 1156 High Street, Santa Cruz, CA 95064

Email address: Abravodo@ucsc.edu