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Abstract. The paper establishes a correspondence, making a
symplectic reduction, between the regular geodesics in a meta-
abelian Carnot group G and the space of solutions to a family
of classical electro-mechanical systems on Euclidean space. The
correspondence characterizes when these normal subRiemannian
geodesic flows are integrable or admit no closed geodesics. More-
over, we can classify the integrable subRiemannian geodesic flow
on the Carnot group with a rank higher than 2, which is a more
general perspective than the previously done.

1. Introduction

This paper is devoted to establishing a correspondence between the
normal geodesics in a meta-abelian Carnot group G and the space of
solutions to a family of classical electro-mechanical systems on a Eu-
clidean space H, sub-space of the group’s first level. Let n be the
dimension of H and m its codimension within G. Then the systems
of our family have n-degrees of freedom and are defined by polynomial
static electromagnetic fields depending linearly on m parameters. See
equation (1.1). This correspondence allows us to quickly characterize
when these normal subRiemannian geodesic flows are integrable or ad-
mit no closed geodesics. This perspective also allows us to understand
the cut loci better. See Theorem B. Moreover, we can classify the inte-
grable subRiemannian geodesic flow on the Carnot group with a rank
higher than 2, see Section 8, which is a more general perspective than
the previously done by B. Kruglikov, A. Vollmer, G Lukes-Gerakopulos,
in [1].

A Carnot group G is a simply connected Lie group whose Lie algebra
g of the left-invariant vector fields is graded stratified nilpotent Lie
algebra of step s. Let g1 be the first layer of g, with the Euclidean
inner product and dimension d1, then the canonical projection π :
G → Rd1 ' g1 induces a left-invariant subRiemannian inner product
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in G. Since g is nilpotent, the exponential map exp : g→ G is a global
diffeomorphism. In general the dimension of the layer gr is dr.

We say that G is meta-abelian if [G,G] is abelian. Let G be a meta-
abelian Carnot group and let a be a maximal abelian ideal of g among
all those ideals containing [g, g], thus a defines a sub-group A of G, and
we can see G as H extension of A, that is, exists a short exact sequence

1→ A ↪→iA G→πA H → 1,

which is equivalent to G ' HnA. a might not be unique, so A might
not. Thus, the projection πA is canonical up to the choice of a. If
a∩ g = 0, then πA is just the canonical projection π. If V := a∩ g 6= 0,
then A acts by translation on Rd1 , so quotient the Rd1/A is well defined
and exist a orthonormal projection πH : Rd1 → Rd1/A ' H, such that
πA = πH ◦ π. Let n1 be the dimension of V .

Group Dimension Isomorphic
G n+m = d1 + · · ·+ ds Rn+m

A ' V × [G,G] m = n1 + d2 + · · ·+ ds Rm

[G,G] d2 + · · ·+ ds Rd2+···+ds

g1 ' G/[G,G] ' H⊕ V d1 = n+ n1 Rd1

H := G/A n Rn

V := H⊥ ⊂ g1 n1 Rn1

Let T ∗G be the cotangent bundle of G with traditional coordinates
(p, g), and let HsR be subRiemannian kinetic energy, then HsR is A-
invariant, and the geodesic flow has m constant of motion in involution.
Let T ∗H be the cotangent bundle ofH with the exponential coordinates
of the second kind (px, x), the Hamiltonian structure for a charged
particle under the influence of a static electromagnetic field is given by
a magnetic potential A and effective potential or electrostatic potential
φ, see [2], [3] or [4] for more details.

The mathematical object relating the Hamiltonian structures is a a∗

value one-form αG = AG + βG in Ω1(Rd1 , a), where AG is in Ω1(H, a∗)
and βG is in Ω1(V , a∗). Let µ be in a∗ and αµ the paring of αG with µ,
then

(1.1) αµ(x) :=< µ, αG >=

n=dim(H)∑
i=1

Ai,µ(x)dxi +

n1=dim(V)∑
k=1

βk,µ(x)dθk

is a one-form on Rd1 with local coordinates xi’s and θk’s. αµ just
depends on the coordinates x’s in a polynomial way with degree s− 1
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and defines Hamiltonian Hµ in T ∗H, given by

Hµ :=
1

2
||px + αµ(x)||2Rd1

=
1

2
||px +Aµ(x)||2H +

1

2
φ(x)

=
1

2

n∑
i=1

(pi +

dr,s∑
j,r

Ari,jr(x)prjr)
2 +

1

2

n1∑
k=1

(pk +

dr,s∑
j,r

βrb,j(x)prj)
2

(1.2)

In the second line φ(x) := ||βµ(x)||2V is a polynomial. In the third line
The pi are momenta for H, the pk are momenta for V and the pri are
momenta for [G,G]. Hence pk’s and prj ’s are the µ’s - they are linear
coordinates on g∗, and are constants of motion. Understanding and
explaining this expression for HsR, understood as a rewriting of the
subRiemannian kinetic energy , is at the heart of work.

Let J : T ∗G→ a∗ be the momentum map associated to the action of
A. We say that γ(t) is a subRiemannian geodesic in G parameterized by
arc-length and has momentum µ, if γ(t) is the projection of the geodesic
flow for HsR with energy 1/2 and J(p(t), γ(t)) = µ. We say that c(t)
is αG-curve for µ in H, if c(t) is the projection of the Hamiltonian flow
for Hµ with energy 1/2, we call the Hamiltonian system given by Hµ

an αG-system. We shall find a horizontal lift of αG-curve c(t) in H to
G, see sub-Section 4.1, and prove the main Theorem of this work.

Theorem A. Let G be a meta-abelian Carnot group and a a choice
of maximal abelian ideal ([g, g] ⊂ a). Then there exists an a∗ value
polynomial one-form αG on H = G/A of the form αG = AG + βG,
x ∈ H with the following significance. If c(t) is a αG-curve for µ,
then its horizontal-lift is a normal subRiemannian geodesic in G with
momentum µ. Conversely, if γ(t) is a normal subRiemannian geodesic
in G with momentum µ, then the curve c(t) = πA(γ(t)) is an αG-curve
for µ.

The Theorem is proved by showing that the symplectic reduction
of the subRiemannian flow on T ∗G yields the αG-systems. Then, we
reduce the study of subRiemannian geodesic in meta-abelian Carnot
groups to the study of the αG-systems. An example of this is the second
main Theorem, but first let us introduce the following definitions.

When Aµ(x) = 0 the electromagnetic field is just a static electric
field, as well as when βµ(x) = 0 the electromagnetic field is just mag-
netic. Then, we recall the αG-system as βG-system if Aµ(x) = 0, and
as AG-system if βµ(x) = 0.
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The map exp endows G with the exponential coordinates g = Φ(x, θ)
of the second kind; during this work, we will call them exponential
coordinates of the second kind since the x’s and θ’s are the coordinates
for H and A inside G, respectively, see sub-section 2.3.

Theorem B. Let G be a meta-abelian Carnot group,

(1) Let G be such that G has a βG-system, then G does not have
periodic normal geodesics.

(2) If c(t) is L-periodic in H and γ(t) in G is its horizontal lift,
then the upper bound of the cut time for γ(t) is L.

(3) The geodesic flow in G is integrable if and only if Hµ is inte-
grable for all µ in a∗.

(4) Let (x, θ) be the coordinates for G and let Ψ(x) be an eigen-

vector for the quantum Hamiltonian Ĥµ := Ĥ( ∂
∂x
, x;µ), that is,

ĤµΨ(x) = λµΨ(x) and let Ψ(θ, t) be the following function

Ψ(θ, t) := exp(
i

2~
(−λµt+

m∑
`=1

a`θ`)).(1.3)

Then Ψ(x, θ, t) := Ψ(x)Ψ(θ, t) is a solution for the sub-Riemannian
Schrodinger equation on G, that is,

ĤsRΨ(x, θ, t) = λi~
∂

∂t
Ψ(x, θ, t).

To remark the degree of freedom n of the reduce Hamiltonian Hµ,
we will introduce the following definition

Definition 1.1. We say that a meta-abelian Carnot group is n-abelian
extension if n is the co-dimension of the maximal abelian ideal a in G.

The fourth main contribution of the paper is the approach to meta-
abelian Carnot groups as n-abelian extensions. In the last two sections,
we provide

Theorem C. The meta-abelian Carnot groups which integrability of
subRiemannian geodesic flow has been decide are the following:

(1) Let G be 1-abelian extension Carnot group, then the geodesic
flow in G is integrable.

(2) The known 2-abelian extension with integrable geodesic flow are
the following:

Group n+m d1 Step System
F23 5 2 3 A-system
N6,2,5a∗ 6 2 3 A-system
En(2) 6 3 3 β-system
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(3) The known 2-abelian extension with non-integrable geodesic flow
are the following:

Group n+m d1 Step System
F24 8 2 4 A-system
N6,2,5 6 3 3 β-system
J2(R2,R) 6 5 3 β-system

(4) The n-abelian extension Eng(n) is non-commutative integrable

1-abelian extension. This sub-Section introduces the example of the
1-Abelard extension. The first consequence of Theorem B is the proof
of part one.

Proof. The reduced system is one-degree of freedom, then Hµ is always
integrable, and so is HsR. �

The quantum version of the integrability of the subRiemannian ge-
odesic flow is the following.

Proposition 1.1. Let G be 1-abelian extension Carnot group and let
Ĥµ be the quantum Hamiltonian, then Ĥµ is a self-adjoint operator.

The proof is the same that the one given by Y. C. de Verdire and C.
Letrouit in [35], see Section 3.

Any 1-abelian extension G ' R n A is a sub-group of Jk(R,Rn).
In this context, the Heisenberg group is the easiest example and is
diffeomorphic to J2(R,R). We will start with the example of Engel’s
group denoted by Eng ' J2(R,R).

Eng as 1-abelian extension. Let Eng be the 4-dimension Carnot group
with growth vector (2, 3, 4). The first layer g1 is framed by {X, Y }, and
the following relationships give its Lie algebra:

Y 2 := [X1, Y 1], Y 3 := [X1, Y 2].

Otherwise, zero. The biggest algebra a is given by Y 1, Y 2 and Y 3. So
in this case A ' R4, V = R, [Eng,Eng] ' R2 and Eng ' R1 × A.

The base of left-invariant vector fields for g1 in the coordinates (x, θ)
is given by

X =
∂

∂x
Y =

∂

∂θ1
+ x

∂

∂θ2
+
x2

2

∂

∂θ3
.

Then the Hamiltonian function in T ∗Eng with the traditional coordi-
nates (p, g) = (px, pθ, x, θ) is given by

HsR(p, g) =
p2x
2

+
1

2
(p1 + p2x+ p3

x2

2
)2.
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Since HsR does not depend on the variables θ1, θ2 and θ3, then they are
cycle coordinates and p1, p2 and p3 (see [5] or [6] for the definition of
cycle coordinate). These momentum functions correspond to the frame
of killing vector fields ∂

∂θ1
, ∂
∂θ2

, and ∂
∂θ3

.
The a∗ value one-form αEng is given by

αEng = dθ0 ⊗ (e1 + xe2 +
x2

2
e3).

Notice the polynomial is degree two since the step s = 3. If µ =
(a1, a2, a3) is in a∗ and F (x) := βµ( ∂

∂θ0
). Then the reduced Hamiltonian

is given by

Hµ(px, x) =
p2x
2

+
1

2
(a0 + a1x+ a2

x2

2
)2 =

1

2
(p2x + F 2(x)).

Let c(t) = x(t) be a µ-curve, then the horizontal lift equation is the
following

(1.4) γ̇ = ẋ(t)X1(x(t)) + F (x(t))Y 1(x(t)).

When a2 = 0, the above system is the harmonic oscillator, and the
geodesic γ(t) in Eng is the lift of a geodesic in the Heisenberg group.

After a translation the system is written as 1
2
(p2x + (a1 + a2

x2

2
)2),

which is the an-harmonic oscillator. Richard Montgomery used the
an-harmonic oscillator to quantize Engel’s group Eng, see [7].

Outline. In Section 2, the subRiemannian structure in G is described,
and the notation for the left-invariant vector fields followed during the
paper is introduced. The formal definition of the action and the ex-
ponential coordinates of the second kind (x, θ) are introduced in the
sub-sections 2.1 and 2.3, respectively. In Section 3, the cotangent bun-
dle T ∗G is endowed with the traditional coordinates (p, g) and subRie-
mannian geodesic flow. The properties of the traditional coordinates
(px, pθ, x, θ) are shown in sub-section 3.2. In Section 4, the cotan-
gent bundle T ∗H is provided with the traditional coordinates (px, x),
the horizontal lift of a αG-curve c(t) to G is described. In Section 5,
Theorem A is proved. In Section 6, some essential properties to prove
Theorem B of the αG-system is exposed by the cases: electric, magnetic
and electromagnetic.

In sub-Section 6.4, we consider the case a 6= [g, g] and explain some
details about the intermediate Hamiltonian Hτ : T ∗Rd1 → R in the re-
duction: the action of [G,G] on G induce a lift action on T ∗G, then Hτ

is a A-invariant Hamiltonian function on the cotangent bundle T ∗Rd1

for a charged particle under the influence of the static magnetic field,
the mathematical object relating the Hamiltonian structures HsR and
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Hτ is a [g, g]∗ value one-form βG in Ω1(Rd1 , a). We say that c̃(t) is
ηG-curve for τ in Rd1 , if c̃(t) is the projection of the Hamiltonian flow
for Hτ with energy 1/2. Theorem D is the fourth main result of this
work and establishes a correspondence between a geodesic γ(t) in G
and ηG-curve c̃(t).

In Section 7, Theorem 7 is shown. In Section 8, the method to clas-
sify the integrable meta-abelian Carnot group is proposed In Section
9, a n-abelian extension Eng(n) is presented, whose subRiemannian
geodesic flow is invariant under the action of SO(n) and the reduced
Hamiltonian Hµ, after a translation, is the radial-an-harmonic oscilla-
tor, which is an example of non-commutative integrability.
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gomery and Enrico Le Donne: To Richard for being my advisor and
for his invaluable help. To Enrico for my time at Fribourg University,
where he introduced the definition of the meta-abelian Carnot group
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plained to me the subRiemannian Schrodinger equation and the quan-
tum consequences of the symplectic reduction, see sub-Section 7.4.

I want to thank Nicola Paddeu, Andrei Ardentov, Yuri Sachkov,
Felipe Monroy-Perez , Luis Garcia-Naranjo Angel Carrillo-Hoyo and
Hector Sanchez-Morgado, for e-mail conversations and talks regarding
the course of this work. This paper was developed with the support of
the scholarship (CVU 619610) from “Consejo de Ciencia y Tecnologia”
(CONACYT).

2. G as subRiemannian manifold

A Carnot group G is a simply connected Lie group whose Lie algebra
g of the left-invariant vector fields is graded stratified nilpotent Lie
algebra of step s, that is, the Lie algebra g of step s satisfies:

g = g1 ⊕ · · · ⊕ gs [g1, gr] = gr+1, gs+1 = 0, dim gr := dr.

We remark that the left-invariant subRiemannian structure in G is
given by declaring the left-invariant vector fields in g1 be orthonormal.

Let g be in G, then the formal definition of the canonical projection
π is given by

(2.1) π(g) := g mod [G,G].

The canonical injection i : [G,G] ↪→ G and the projection π define a
short sequence

0→ A ↪→iA G→πA H → 0,
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which is equivalent to G ' Rn+m.
Let G be meta-abelian abelian Carnot and let a be its maximal

abelian ideal contannig [GG], then projection πA is given by

(2.2) πA(g) := g mod A.
Note: During this work, all the natural maps corresponding to G,

as π and i are not labeled. The maps depending on the selection of a,
as πA, are labeled with A, and the intermediate maps are labeled with
the target, as πH.

Given the maximal ableian Lie algebra containing [g, g], the first
layer g1 has a two natural left-invariant sub-space: v := a ∩ g1, and h
the orthogonal complement of v in g1, thus g1 = h⊕ v. Moreover, the
map π is compatible with the splitting of g1 and Rd1 , that is, dπ(h) = H
and dπ(v) = V , where we identity TH ' H and TV ' V .

We will introduce the notation used during this work: Let X i be the
base for h with 1 ≤ i ≤ n, let {Y `} be the base for a with 1 ≤ ` ≤ m.
An alternative notation is; {Y k} be the base for v with 1 ≤ k ≤ n1

and let {Y j
r } be the base for gr whit 1 < r ≤ s and 1 ≤ j ≤ dr. Then,

we will use the index i’s for vector fields in h, `’s for vector fields in a,
and when we want to distinguish between the different layers, we will
use k’s for vector fields in v and r’s and j’s for vector fields in gs .

Corollary 2.1. Let G be a meta-abelian Carnot group, then h is or-
thonormal to v with respect to the subRiemannian structure.

G has a canonical projection π : G→ g1, such that dπ has a canonical
inverse map hor : TRd1 → TG called the horizontal lift, that is, if
v = (v1, · · · , vn, u1, · · · , un1) is in TRd1 , then hor(v) :=

∑n
i=1 viX

i +∑n1

k=1 ukY
j and dπ ◦ hor = Idg1 , we say that hor is a horizontal lift

with respect to dπ.
hor defines an inverse map in the space of curves c̃(t) in Rd1 with

coordinates (x, θ), which is unique up to a constant of integration, also
called the horizontal lift. The Pfaffian system gives another construc-
tion of hor in the following way. Let us consider the frame {Y j

r }, with
1 < r ≤ s and 1 ≤ j ≤ dr. Then {Y j

r } defines a co-frame of left-
invariant one-form {Θr

j}, with 1 < r ≤ s and 1 ≤ j ≤ dr such that

Θr1
j1

(Y j
r ) = δr1r δ

j
j1

and Θr
j(g1) = 0, where δ is the delta of Kronecker.

Let c̃(t) = (x(t), θ(t)) be in g1, then the c̃(t) defines a curve γ(t) in G
and tangent to g1 by solving the equations

(2.3) γ̇(t) =
m∑
i=1

ẋi(t)X
i(c̃(t)) +

n1∑
k=1

θ̇k(t)Y
k(c̃(t)).

Let us formalize the definition.
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Definition 2.1. Let c̃(t) be in H, we say that γ(t) is the horizontal lift
of c̃ if γ(t) is the solution to the equation (2.3).

2.0.1. Horizontal lift horG. The horizontal lift horRd1 with respect the
projection πH is defined as follows if (v1, · · · , vn) is in H then

horRd1 (v1, · · · , vn) := (v1, · · · , vn, 0, · · · , 0) ∈ Rd1 ,

by construction dπH ◦ horRd1 = IdH.
Then the horizontal lift horG with respect the projection πA is given

by hor ◦ horRd1 , let us formalize the definition.

Definition 2.2. The horizontal lift horG with respect the projection πA
is given by horA := hor ◦ horRd1 , that is,

horA(v1, · · · , vn) =
n∑
i=1

viXi.

2.1. Action of A. The action of the sub-group A on G is given by the
multiplication by the left. Let us be more clear, let a be in A then a
defines the translation in the following way

(2.4) ϕ(a, g) := a ∗ g.
Then by definition ϕ(a1 ∗ a2, g) = ϕ(a2 ∗ a1, g).

If ξ is in g then the action of A on G defines the infinitesimal gener-
ator map σ : a→ g in the following way

(2.5) σ(ξ)(g) =
d

dt
ϕ(tξ, g)|t=0 =

d

dt
exp(tξ) ∗ g|t=0.

For clarity, we shall distinguish between the group A as a sub-group
of G and as a group acting in G. We will make the convention to
use AG as a sub-group and aG for its sub-Lie algebra. In addition, we
distinguish between the Euclidean space as n-dimensional vector space
sub-manifold and as a sub-manifold of G, then we use HG as a sub-
manifold. Then we write G ' HG nAG and g = h⊕ aG also, we use H
as the configuration space of the αG-systems and A as a group acting
in G, as well as, a for its Lie algebra.

We say that the vector field X and the map is σ are equivariant if
X(a ∗ g) = (La)∗X(g) and σ(a ∗ g) = (La)∗σ(g). For more details of
this definition, see [8] pg 108 or [9] pg 161. The general property of
infinitesimal generators and the fact that A is abelian imply that the
left-invariant vector fields and σ(g) are A-equivariant.
σ(g) send the canonical base e` for A, with 1 ≤ ` ≤ m, into the frame

of Killing vector fields σ`(g). Thus, the frame σ`(g) defines a co-frame
ω`(g) with 1 ≤ ` ≤ m, such that, ω`1(σ

`2)(g) = δ`2`1 . so, the co-frame σ`
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is A-equivariant. We also split the base e`, σ`(g) and ω`(g) according
to the grading of G as we did with the left-invariant vector field; that
is, we use ek, σk(g) and ωk(g) for 1 ≤ k ≤ n1 and ejr, σ

j
r(g) and ωrj (g)

for 1 ≤ j ≤ dr and 1 < r ≤ s such that, ωr1`1 (σ`2r2)(g) = δ`2`1δ
r1
r2

.
We remark that aG and σ(a) as abstract Lie algebras and a sub-

vector space inside g are the same, however, inside g, they are different
Lie algebras, in general only the left-invariant vector fields in σ(a) and
gG are the one in the last layer gs.

2.2. G as A-principle bundle. We can think of πA : G → H as a
principle A-bundle. In our case, we have identified the base H with a
sub-vector space H ⊂ g1, one which is complementary to a ⊂ g so that

H⊕ a = g.

This way, H also defines a connection on our principal bundle πA. Note:
a represents the vertical space for πA. And by left-translation about
G, H ⊂ g defines an A-invariant choice of horizontal, as required for
connections on principal A-bundles.

For more bundles with connections, see [10] Chapter 8, [9] Chapter
12, or [8] sub-Chapter 2.9.

2.2.1. Connection form. The connection one-form ωg on G is a a value
one-form given by

(2.6) ω(g) =
m∑
`=1

ω` ⊗ e`(g) =

n1∑
k=1

ωk ⊗ ek|g +
s∑
r=2

ds∑
`=1

ωrj ⊗ ejr(g).

A-equivariant; (La)∗ω(g) = ω(a ∗ g). By definition ker ω(g) = HG(g)
and ω ◦ σ(g) = Ida. The first condition tells dπG is the canonical
identification between H and HG , while, the second asserts that ω is
the canonical identification between a and aG

0 −→ a −→σ(g) g|g −→dπA TxH −→ 0

A connection is a splitting of the exact sequence

0←− g←−ω(g) g|g ←−hx TxH ←− 0

where hx : TxH → g|g is the lineal map given by

hx(e
i) := X i(g)−

m∑
`=1

ω`(X
i)|gσ`(g),

where ei is the canonical base for H. If we define X̃ i := h(ei), then the
vector fields X i’s are a base for HG, so hx(H) = HG and dπA ◦ hx =
IdTxRm . We summarize saying that, X i’s is a base for the sub-space
HG|g, while, σ`’s is a base for the space aG|g.
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2.2.2. The a∗ value one-form αG. Let us introduce the formal definition
of the a value one-form αG on Rn1 . The horizontal map hor allows us
to define a linear projection ΠRd1 from T ∗G to T ∗H, let λ in T ∗G then
ΠRd1 (λ) := λ ◦ hor.

Definition 2.3. The a∗ value one-form αG on Rd1 is given by

αG := ΠRd1 (ω)(g).

αG and ω(g) are A equivariant one-form on T ∗Rd1 and T ∗G, to give
a formal definition of the derivative with respect a vector field v in H,
we use the covariant derivative.

2.2.3. Covariant derivative. The connection on G induce a covariant
derivative ∇ on the space of A-equivariant zero-form Ω0(G,H), that is,
∇ : Ω0(G,H)→ Ω1(G,H) such that for any A-equivariant vector field
Z on G the contraction of the covariant derivative with a vector field
v(x) on H is

∇vZ := (
n∑
i=1

vi(x)X̃ i)Z and satisfies ∇vfZ = df(v)Z + f(x)∇vZ.

See [9], and [10] for more details.

2.3. Exponential coordinates of the second kind (x, θ). We use
this frame to give coordinates to the Carnot group in the following way
a point g. We define a map from the coordinates x’s and θ’s

Φ(x) := exp(xnX
n) ∗ · · · ∗ exp(x1X

1)

Φ(θ) := exp(
m∑
j=1

θ`Y
`) = exp(

n1∑
k=1

θkY
k +

s∑
r=2

dr∑
j=1

θrjY
j
r )

(2.7)

Definition 2.4. The exponential coordinates (x, θ) are given by unique
chart (Rn+m,Φ) where a point g of is given by g := Φ(x, θ) := Φ(θ) ∗
Φ(x).

Proposition 2.1. Let G be a meta-abelian Carnot group, then the
horizontal left-invariant vector fields {X i} and {Y k} only depend on
the coordinates x’s in a polynomial way of degree s− 1, so does {Y j

r }.
Let g = (x, θ) be in G, then : the left-invariant vector fields and the
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left-invariant one-forms on G are given by

X1(g) =
∂

∂x1
, X i =

∂

∂xi
+

s∑
r=2

dr∑
j=1

Ari,j(x)
∂

∂θrj
2 ≤ i ≤ n,

Y k(g) =
∂

∂θk
+

s∑
r=2

dr∑
j=1

βrk,j(x)
∂

∂θrj
1 ≤ k ≤ n1,

Θk(g) = dθk, Θr
j(g) = dθrj −

n∑
i=1

Arij(x)dxi,

where Ai,jr (x) and βk,j1r (x) are homogeneous polynomial functions on
the horizontal coordinates of degree r − 1 or zero.

Proof. We will use that ∂
∂xi

:= d
dt

Φ(x + tei, θ), as well as, ∂
∂θrj

:=
d
dt

Φ(x, θ + terj) to write the base { ∂
∂xi
, ∂
∂θk
, ∂
∂θrj
} in terms of the base

{X i.Y k, Y r
j }, then we will see that change of base matrix is an upper

diagonal matrix with the following form,

∂
∂xi
∂
∂θk
∂
∂θ1j
...
∂
∂θsj

 =


Idg1 Q1,2(x) · · · · · · Q1,s(x)

0 Idg2 Q2,3(x)
. . . Q2,s(x)

... 0
. . . . . .

...
...

. . . 0 Idgs−1 Qs−1,s(x)
0 · · · · · · 0 Idgs




X i

Y k

Y j
2
...
Y j
s

 .

To calculate these expressions we will introduce the following notation
gi := exp(x1X1) ∗ · · · ∗ exp(xi−1Xi−1), then we notice that

Φ(x+ tei, θ) = Φ(x, θ) ∗ Adgi exp(tXi) = g ∗ Adgi exp(tXi)

Let us start with the case i = 1,

∂

∂x1
=

d

dt
Φ(x+ te1, θ)|t=0 =

d

dt
g ∗ exp(tX1)|t=0

= (Lg)∗X
1 = X1(g).

Let us calculate for 1 < i,

∂

∂xi
=

d

dt
Φ(x+ tej, θ)|t=0 =

d

dt
gAdgj exp(tXj)|t=0

= (Lg)∗ exp(−x1adX1) · · · exp(−xmadXm)(Xj)

= Xj(g) +
s∑
r=2

dr∑
j1=1

Qj,r
j1

(x)Y j1
r .
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We finish with the case 1 ≤ j ≤ d1 and 1 < r ≤ s,

∂

∂θrj
=

d

dt
Φ(x, θ + terj)|t=0 =

d

dt
gAdgm exp(tY r

j )|t=0

= (Lg)∗ exp(−x1adX1) · · · exp(−xmadXm)(Y j
r )

= Y j
r (g) +

s∑
r1=r+1

nr1∑
j1=1

Q̃j,r1
j1

(x)Y j1
r1
.

�

Lemma 2.1. Let G be a meta-abelian Carnot group and let g = (x, θ)
be in G, then :

(1) The frame of Killing vector field associated σ`(g) and its co-
frame are σ`(g) := ∂

∂θ`
and ω`(g) = dθ`.

(2) ω(g) =
∑m

`=1 dθ` ⊗ e` and X̃i(g) = ∂
∂xi

.

(3) The relationships between the covariant derivative ∇ and the
Lie bracket [ , ] are given by

∇ei1X
i −∇eiX

i1 = [X i1 , X i], ∇eiY
k = [X i, Y k], ∇eiY

j
r = [X i, Y j

r ].

(4) The coefficient Ai,µ and βj,µ are given by

Ai,µ(x) :=

dr,s∑
j=1,r=2

arjAri,j(x) βk,µ(x) =

dr,s∑
j=1,r=2

aj + arjβ
r
k,j(x).

Proof. (1) By definition

ϕ(exp(tY j
r ), g) = exp(tY j

r ) ∗ g = exp(tY `) ∗ Φ(θ) ∗ Φ(x)

= Φ(θ + tejr) ∗ Φ(x) = Φ(θ + tejr, x).

Then σjr = d
dt

Φ(θ + tejr, x) = ∂
∂θrj

, so σjr = dθrj .

(2) By part (2) and the definition ωg and X̃i(g).
(3) By part (1) and the definition of ∇ei .

(4) Let µ =
∑n1

k=1 ake
k +

∑dr,s
j=2,r=2 a

r
je
j
r, by definition

Ai,µ(x) =< µ, ω(X i) >=
m∑
`=1

ω` ⊗ e`(X i, µ) =

s,ds∑
`=1,r=2

arjA
r
i,j(x),

βk,µ(x) =< µ, ω(Y k) >=

n1∑
k1=1

ωk1(Y
k)µ(ek1) +

s,ns∑
`=1,r=2

ωrj (Y
k)µ(erj)

= ak +

s,ds∑
j=1,r=2

arjβ
r
k,j(x).



14 A. BRAVO-DODDOLI

�

We define functions βrj,µ :=< µ, ω(Y j
r ) > with 1 ≤ j ≤ dr and

1 < r ≤ s.

Lemma 2.2. The relation between the partial derivatives of the family
of functions Ai,µ, βk,µ(x) and βrj,µ and the Lie bracket [ , ] of the left-

invariant vector fields X i, Y j and Y j
r holds the following relationships

∂

∂xi1
Ai,µ −

∂

∂xi
Ai1,µ =< µ, ω([X i1 , X i]) >

∂

∂xi
βj,µ =< µ, ω([X i, Y j]) >

∂

∂xi
βrj,µ =< µ, ω([X i, Y j

r ]) > .

Proof. Then,

∂

∂xi1
Ai,µ := ∇ei1ω(X i, µ) = ω(∇ei1X

i, µ).

So

∂

∂xi1
Ai,µ −

∂

∂xi
Aii,µ = ω(∇ei1X

i −∇eiX
i1 , µ) =< µ, ω([X i1 , X i]) >,

same proof for βk,µ and βrj,µ. �

3. The contangent bundle of T ∗G

Let T ∗G be the cotangent bundle of G, with the traditional coordi-
nates (p, q). A vector field X in G define a function PX : T ∗G → R,
by p(X). T ∗G is endowed with the Poison bracket { , }T ∗G, the Lie
algebra of vector fields and the Lie algebra of momentum functions are
related by the equation

(3.1) {PX , PY }T ∗G = p([X, Y ]).

The frames {X i} and {Y k} and {Y j
r } define the frame {Pi}, {Pk} and

{P r
j } of momentum functions form T ∗G→ R. Thus, the Hamiltonian

function governing the geodesic flow is given by

(3.2) HsR =
1

2
(
n∑
i=1

P 2
i +

n1∑
k=1

P 2
k ).

Where the condition HsR = 1/2 implies that the geodesics are param-
eterized by arc-length.

Lemma 3.1. Let T ∗G be the cotangent bundle of a meta-abelian Carnot
group and HsR the Hamiltonian function given by (3.2), then
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(1) The tangent vector of the geodesic γ(t) is

(3.3) γ̇(t) =
n∑
i=1

Pi(t)X
i(t) +

n1∑
k=1

Pk(t)Y
k(t).

(2) The evolution of Pi, Pk and P r
j with respect of the subRieman-

nian geodesic flow is given by

Ṗi =
n∑

i1=1

P[Xi,Xi1 ]Pi1 +

n1∑
k=1

P[Xi,Y k]Pk

Ṗk =
n∑
i=1

P[Y k,Xi]Pi +

n1∑
k1=1

P[Y k,Y k1 ]Pk1

Ṗ r
j =

n∑
i=1

P[Y jr ,Xi]Pi +

n1∑
k=1

P[Y jr ,Y k]
Pk.

(3.4)

Proof. (1) The momentum function {Pi}’s and {Pk}’s are lineal in p.
(2) We use the Poisson bracket { , }T ∗G to fiend equations (3.4),

that is, ḟ = {f,HsR}T ∗G.
�

3.1. The momentum map J(p, g). We will denote by Pξ := p(σξ) the
m-dimensional algebra of momentum functions defined by the algebra
of Killing vector field σ(a). The algebra of momentum functions Pξ
defines a momentum map J : T ∗G→ a∗ given by the µ in a∗ such that
< µ, ξ >= Pξ.

The Hamiltonian action of A on T ∗G is given by the Hamiltonian
flow associated to the function Pξ, under this action J is A-equivariant
and the relation between J and ωg is given by the following Lemma

Lemma 3.2. Let J : T ∗G → a∗ be the momentum map in the co-
tangent bundle T ∗G of a meta-abelian Carnot group G then

(1) The momentum functions Pξ and momentum map J are A-
equivariant

(2) J defines m constant of motion in involution with HsR.
(3) If ξ is in a then < J(p, g), ξ >=< J(p, g), ω(σξ) >.

Proof. (1) This is a well-known statement, see [11] or [8] pg 149.
(2) Because HsR is A-invariant, the functions Pξ’s are in involution

since {Pξ1 , Pξ2}T ∗G = −p([ξ1, ξ2]) = 0 and Poisson commute with H.
(3) Let ξ =

∑m
`=1 ξ`e

` be in a, then σ(ξ) =
∑m

`=1 ξ`σ
` and Pξ =∑m

`=1 ξ`P` where P`’s are a constant of motions. Let us fix the level set
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P` = a`, then J(p, g) = µ =
∑m

`=1 a
`e` and

< J(p, g), ξ >=< µ, ξ >=
m∑

`=`1=1

a`ξ`1e`(e
`1) =

m∑
`=1

a`ξ`.

On the other side, ωg(σξ, µ) =
∑n

`=1 a`ξ
`.

So < J(p, g), ξ >= ωg(σξ, µ). �

3.2. The traditional coordinates (px, pθ, x, θ) on T ∗G. Given the
exponential coordinates of the second kind (x, θ), we denote by pi’s,
pk’s and prj ’s the momentum associated these coordinates xi’s θk and
θrj .

Proposition 3.1. Let G be a meta-abelian Carnot group. Then the
horizontal momentum function {Pi} and {Pk} are given by

Pi = pi + Ari,j(x)prj , Pk = pk + βrj,j1(x)prj1 .

Where Ari,j(x) and βrk,j are given by proposition 2.1. As a consequence,
the proof of the third line of equation 1.2. Thus pk’s and prj ’s are
constant of motions.

Proof. Part one of Proposition 2.1 implies that Pi and Pj have the
desired expression by the definition of momentum function. So does
HsR, by equation (3.2). pk’s and prj ’s are constant of motion since θk’s
and θrj ’s are cyclic coordinates. �

4. The contagent bundle T ∗H and the αG-system

Let T ∗H be the cotangent bundle of Rn with the canonical symplectic
structure and the traditional coordinates (px, x), here we will use the
Poisson bracket { , }T ∗H which in coordinates is given by

{f, g}T ∗H :=
n∑
i=1

∂f

∂pi

∂g

∂xi
− ∂f

∂xi

∂g

∂pi
.

See [5] or [6] for more details.
An αG-system is a pair given by (T ∗Rn, αG), then the pair (T ∗Rn, µ)

defines the Hamiltonian function given by equation (1.2).

Lemma 4.1. The Hamilton equations for the αG-system are given by

ċ(t) := (p1(t) + A1,µ(c(t)), · · · , pn(t) + An,µ(c(t))).(4.1)

and

d

dt
(pi + Ai,µ) =

n∑
i1=1

(pi + Ai,µ)(
∂Ai1,µ
∂xi

− ∂Ai,µ
∂xi1

) +

n1∑
j=1

βj,µ
∂βj,µ
∂xi

(4.2)
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Proof. Hamilton equation ẋ = ∂Hµ
∂x

implies equation 4.1. Equation 4.6
is a consequence of the Hamilton equation using the Poisson structure;
in other words, ḟ read as {f,HsR}T ∗H. �

4.1. Symplectic reconstruction: Horizontal lift of c(t) in H. A
αG-curve c(t) for µ defines a curve γ(t) in G, this process is called the
horizontal lift of c(t) and is unique up to a constant of integration. For
the sake of clarity, we will introduce the horizontal lift of c(t) as the
composition of two horizontal lifts, one from c(t) to c̃(t) a curve in Rd1

and the horizontal lift defined by the Carnot structure and defined in
4.1, that is, from the curve c̃(t) to γ(t).

Let us set the following function on T ∗H:

(4.3) Fi,µ(px, x) := pi + Ai,µ(x), Fk,µ(px, x) = βk,µ(x),

where 1 ≤ i ≤ n and 1 ≤ k ≤ n1. Let c(t) be a αG-curve and (p(t), c(t))
the Hamiltonian flow associated to c(t), by evaluating the Fi,µ and Fk,µ
along the flow (p(t), c(t)) we get the control functions associated to
c(t). Thus c(t) defines c̃(t) as the solution to the control problem

(4.4)
d

dt
c̃(t) =

n∑
i=1

ẋi(t)e
i+

n1∑
k=1

Fk,µ(t)ek =
n∑
i=1

Fi,µ(t)ei+

n1∑
k=1

Fk,µ(t)ek.

(By abuse of notation we have written Fi,µ(t) for Fi,µ(c(t), p(t)) etc.)
We formalize the above discussion with the following definition.

Definition 4.1. Let c(t) be in H, we say that c̃(t) is the horizontal lift
of c(t) to Rd1 if c̃(t) is the solution to the equation (4.4).

Moreover, we say that γ(t) is the horizontal lift of c(t) if γ(t) is the
solution to the following equation

γ̇(t) =
n∑
i=1

ẋi(t)X
i(c(t)) +

n1∑
k=1

Fk,µ(t)Y k(c(t))

=
n∑
i=1

Fi,µ(t)X i(c(t)) +

n1∑
k=1

Fk,µ(t)Y k(c(t)).

(4.5)

Compare (4.5) with the equation (1.4) from Engel’s example.

4.2. The algebra of functions. We define F r
k,µ(px, x) := βrk,µ(x) with

1 ≤ j ≤ dr and 1 < r ≤ s.

Proposition 4.1. The Lie algebra of functions {Fi,µ, Fk,µ, F r
i,µ} with

the Poisson bracket the Poisson bracket { , }T ∗H is equivalent to g.
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Proof. By the definition of the Poisson bracket { , }T ∗H, it follows that

{Fi1,µ, Fi,µ }T ∗H = {pi1 , Ai,µ}+ {Ai1,µ, pi}

=
∂

∂xi1
Ai,µ −

∂

∂xi
Ai1,µ =< µ, ω([X i1 , X i]) > .

Same proof to find

{Fi,µ, Fk,µ }T ∗H =< µ, ω([X i, Y k]) >,

{Fi,µ, F r
j,µ }T ∗H =< µ, ω([X i, Y j

r ]) > .

�

The equivalence between the algebra of left-invariant vector fields,
left-invariant momentum functions, and control functions is summa-
rized by the following equations:

{Pi, Pi1}T ∗G =< µ, ω([Xi, Xi1 ] >= {Fi,µ, Fi,µ}T ∗H

{Pi, Pk}T ∗G =< µ, ω([Xi, Yk] >= {Fi,µ, Fk,µ}T ∗H

{Pi, P r
j }T ∗G =< µ, ω([Yi, Y

r
j ] >= {Fi,µ, F r

j,µ}T ∗H.

Corollary 4.1. The Hamilton equations for the αG-system in terms of
the algebra of functions {Fi,µ, Fk,µ, F r

i,µ} are given by equation and the
following equations

Ḟi,µ =
n∑

i1=1

Fi1,µ{Fi,µ, Fi1,µ}T ∗H +

n1∑
k=1

Fk,µ{Fi,µ, Fk,µ}T ∗H

Ḟk,µ =
n∑

i1=1

Fi,µ{Fk,µ, Fi,µ}T ∗H +

n1∑
k1=1

Fk1,µ{Fk,µ, Fk1,µ}T ∗H

Ḟ r
j,µ =

n∑
i1=1

Fi,µ{F r
j,µ, Fi,µ}T ∗H +

n1∑
j=1

Fj,µ{F r
j,µ, Fj,µ}T ∗H

(4.6)

Proof. By the definition ḟ = {f,HsR}. �

5. Proof of Theorem A

Proof. Let c(t) be a αG-curve, that is, (px(t), c(t)) is solution to Hamil-
tonian system given by (4.1) and (4.2). If we define the momentum
function in T ∗G by Pi(t) := Fi,µ(t), Pk(t) := Fk,µ(t) and P r

jr(t) :=
F r
j,µ(t). If γ(t) is the lift of c(t), γ(t) satisfies the horizontal lift equa-

tion (4.5), then γ(t) holds equation (3.3). Thus, it is enough to prove
that Fi(t), Fk(t) and F r

j (t) satisfy the O.D.E. given by (3.4).
Indeed, Proposition 4.1 shows that the algebra of functions (Fµ)i(t)

and (Fµ)j(t) generate the Lie algebra g with Poisson bracket { , }T ∗H,
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moreover, Fi,µ(t), Fk,µ(t) and F r
j,µ(t) satisfies equations (4.6), compar-

ing equations from with equations (3.4); we conclude that Pi(t) :=
Fi,µ(t), Pk(t) := Fk,µ(t) and P r

j,µ(t) := F r
jr(t) hold Hamilton equations,

and the solution (p(t), γ(t)) have the level µ by construction.
Conversely, let γ(t) be a normal geodesic in G with level set µ and

c(t) := πA(γ(t)), then γ(t) satisfies the equation (3.3) and it is enough
to prove that c(t) satisfies Hamilton equations for Hµ. Proposition 3.1
implies that we can defined the level set µ = (ak, a

r
j) = (pk, pjr), then

HsR = Hµ = 1/2, which tell us that c(t) is a solution to the n-degree
of freedom for the Hamiltonian system Hµ. �

If we think G as A-principle bundle, see sub-Section 2.2, then this
Theorem is equivalent to the one proved by Richard Montgomery in [9]
pg 164, in the context of abelian charge. In our problem, we have the
extra condition that any close form in Rd1 is exact, then we can give a
Hamiltonian structure to a charged particle under the electromagnetic
field.

6. The αG-system

Here we will describe some dynamical properties of the αG-system
that will be essential for the proof of Theorem B

6.1. L-periodic curves c(t). Let us consider the case when c(t) is a
L-periodic curve. Let us study the horizontal lift of c(t). We want to
compute the change that suffers the coordinates θ’s after a period L.
This computation has been done before in a similar context. In [12] in
the context of Jk(R,R), and in [13], outside the Carnot group world in
the magnetic space R3

F .
Let us calculate the projection of γ̇(t) to the component θj, that is,

(6.1) θ̇k = dθk(γ̇)(t) = Fj,µ(t), θ̇rj = dθrj (γ̇)(t) =

n1∑
j=1

Fj,µdθ(Yj).

Proposition 6.1. Let γ(t) = (c(t), θ(t)) be a geodesic in G for µ, such
that c(t) is L-periodic in H. After one period, c(t) travels one times
around the curve C := c([0, L]), the changes ∆θk(µ) = θk(t0+L)−θk(t0)
and ∆θrj (µ) = θrj (t0 + L)− θrj (t0) undergone by θk and θ are given by

(6.2) ∆θk(µ) =

∫
C

Fk,µ, ∆θrj (µ) =

n1∑
j=1

∫
C

Fj,µdθ(Y
r
j )

Moreover, ∆θk(µ) and ∆θrj (µ) do not depend on the initial point, and
it is invariant time reflection γ(t)→ γ(−t).
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Proof. Let c(t) be a L-periodic αG-curve in H, we will estimate the
change in θj and θrj after the curve (̧t) travel one period L, that is we
will integrate equation (6.1) from a time t to time t+ L,

∆θk(µ) :=

∫ t+L

t

Fk,µ(c(t))dt =

∫
C

Fj,µ.

To prove that ∆θj(µ) and ∆θrj (µ) do not depend on the initial point,
we derivative with respect to the initial time t,

d

dt
∆θk(µ) = Fk,µ(c(t+ L))− Fk,µ(c(t)) = 0.

Let us consider the curve c1(t) := c(−t), c1(t) is a L-period αG-curve
since the Hamiltonian system is reflexible with respect the time and
c1(L) = c(−L) = c1(0), then.∫ t+L

t

Fk,µ(c1(t))dt =

∫ t+L

t

Fk,µ(c(−t))dt =

∫ −t−L
−t

Fk,µ(c(t))dt

=

∫
C

Fk,µ.

�

We define P(G) the n-dimensional sub-vector space of the polyno-
mials one-form on g1 with degree bounded by s − 1 given by spam of
{αk, αjr}, where αk :=< ek, αG > and αjr :=< erj , αG >. The Euclidean
product ( , )g1 in g1 induce a inner product in P(G) in the following
way; let α and α′ be in P(G), then the inner product is given by

(6.3) (α, α′)P(G) =

∫
C

(α, α′)g1 .

The inner product is no-degenerate

(6.4) px + αµ|c(t) :=
n∑
i=1

Fi,µdθi +

n1∑
k=1

Fk,µdθk.

Corollary 6.1.

(6.5) ∆θj =< px + αµ, α
j >P(G), ∆θrj =< px + αµ, α

j
r >P(G)

6.2. βG-systems.

(6.6) Hµ =
1

2

n∑
i=1

p2i +
1

2
φ(x).

The geodesics associated with the constant polynomial φ(x) are called
line geodesics since their projection to g1 ' Rd1 is a line. Let us
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assume φ(x) is not constant. So, exist a compact set K ⊂ H where the
dynamics takes place, that is, if x is in int K, then 0 ≤ φ(x) < 1 and
if x is in ∂K, then φ(x) = 1, the second condition implies that px = 0,
so we say that c(t) bounces at boundary of K.

6.3. AG-systems.

(6.7) Hµ =
1

2

n∑
i=1

(pi +Ai,µ)2.

If c(t) is A-system, then Hµ = HsR = 1
2
, so ||ċ(t)|| = 1.

6.3.1. 2-abelian extension. The reduced Hamiltonian Hµ is given by

Hµ =
1

2
p2x +

1

2
(py + Aµ(x, y))2.

Let c(t) be a αG-curve for µ, since Hµ = HsR = 1/2, a simple compu-
tation shows that the curvature κ(t) of c(t) is given by

κ(t) = −∂Aµ
∂x

.

6.4. G as [G,G]-principle bunlde and the intermediate Hamil-
tonian Hµ. We will introduce G as [G,G]-principle bundle and de-
scribe the

Let Φ̃ be the action of [G,G] on G given by the left multiplication.

6.4.1. G as [g, g]-principle bundle. We can thing of π : G → Rd1 as a
principle [G,G]-bundle, where ϕ̃ is the action of [G,G] on G.

The action ϕ̃ defines the map σ̃ := [g, g]→ g, which also we can see
ϕ̃ as the restriction of σ to [g, g], then σ̃ provides a frame of Killing
vector field and its co-frame. The connection form is given by

ω̃(g) = ω|[g,g](g) =

nr,s∑
j=1,r=2

ωrj ⊗ ejr.

Definition 6.1. The [g, g] value one-form ηG on Rd1 is given by

ηG := ΠRd1 (ω̃)(g).

Let ηµ be We write ηµ := α( , µ) in terms of the base dx’s in T ∗Rd1 ,
in the following way

(6.8) αµ =
n∑
i=1

Ai,µdxi +

n1∑
k=1

βk,µdθk.
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6.4.2. The intermediate Hamiltonian Hµ. Let T ∗Rd1 be the cotangent
bundle of Rd1 ' g, with the canonical symplectic structure and the
traditional coordinates (px, pθ, x, θ). Let ηG be the [g, g] value one-form

on Rd1 given by AG + β̃G, if τ is in [g, g]∗ then ητ
(6.9)

Hτ :=
1

2
||pxdx+pθdθ+ητ ||2Rd1 =

1

2

n∑
i=1

(pi+Ai,µ(x))2+

n1∑
k=1

(pk+βk,µ(x))2.

The Hamiltonian Hτ does not depend on the coordinates θj’s, so the
coordinates θj are cycle, and the pj’s are constant of motion. This
consequence of the action of A in Rd1 by translations, where if we
grade a = a1⊕ · · · ⊕ as and a1 = v. Then g acts on Rd1 by translations
and the action of a2 ⊕ · · · ⊕ as is trivial.

Let J̃ be the momentum map J̃(px, pθ, x, θ) = µ1. We say that that
c̃(t) is ηG-curve for τ and with momentum µ1, if c̃(t) is the projection
of the Hamiltonian flow for Hτ with energy 1/2 and with momentum
µ1 := J̃(px(t), pθ(t), x(t), θ(t)), we call the Hamiltonian system given
by Hτ an ηG-system. The horizontal lift of ηG-curve c̃(t) in Rd1 to G is
given by equation (2.3). The last main Theorem of this work.

Theorem D. Let G be a meta-abelian Carnot group and τ be in [g, g]∗,
then exist [g, g] value polynomial one-form ηG such that if c̃(t) is a
ηG-curve for τ and with level µ1, then its horizontal-lift is a normal
subRiemannian geodesic in G with momentum µ = µ1×τ . Conversely,
if γ(t) is a normal geodesic in G with momentum µ = µ1× τ , then the
curve c̃(t) = π(γ(t)) is ηG-curve for τ and with level µ1.

6.4.3. Eng as 2-abelian extension. The [g, g]∗ value one-form ηEng is
given by

ηEng = dθ0 ⊗ (xe2 +
x2

2
e3).

If τ = (a2, a3) is in [g, g]∗, then the reduced Hamiltonian is given by

Hτ (px, py, x, y) =
p2x
2

+
1

2
(py + a1x+ a2

x2

2
)2.

Let c̃(t) be a βEng-curve for τ , since Hτ = HsR = 1/2, a simple com-
putation shows that the curvature κ(t) of c̃(t) is given by

κ(x(t)) = a1 + a2x(t).

The ηEng-curves are the solution to the Euler-Elastica problem, which
one way to state the problem is like the curves in R2 such that is cur-
vature is proportional to the distance to a given line called ”directrix.”
In this case, the directrix is the line given by the solution κ = 0. see
[14] or See for the relation of Euler-Elastica and Elliptic functions [15].
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7. Proof Theorem B

7.1. Non-periodic geodesics. One necessary condition for a periodic
geodesic in a meta-abelian Carnot group to be periodic is that c(t) is
periodic. Let γ(t) be a geodesic in G such that c(t) is L-periodic. We
compute the changes that suffer the coordinates θ’s after a period L.

Proof. We will proceed by contradiction. Let us assume γ(t) is a pe-
riodic geodesic on Jk corresponding to the pair µ, where β(x) is not
constant one form, then ∆θ`(µ) = 0 with 1 ≤ ` ≤ m.

In the context of the space of polynomial one-forms P(G) with inner
product <,>P , the conditions ∆θ`(µ) = 0 is equivalent to β(x) being
perpendicular to α` (0 = ∆θ`(µ) =< β, α` >P), so β(x) being perpen-
dicular to α` for 1 ≤ ` ≤ n. However, the set {α`} with 1 ≤ ` ≤ n is
a base for P(G). Then β is perpendicular to any one form on P(G),
so β is zero since the inner product is non-degenerate. Being β equals
zero contradicts the assumption that β is not a constant one-form. �

The above result is a particular case of the conjecture ”Carnot groups
do not have periodic geodesic” by Enrico Le Donne. In [12], we proved
the particular case G = Jk(R,R).

7.2. Cut time. The upper bound L does not depend on the initial
point. The proof given here is the same as the one from [13] in the
context of jet-space Jk(R,R); we will repeat the proof in this new
language. The difference between the techniques using in the proof
arises from the following dichotomy, ċ(t0) is zero or not.

Definition 7.1. Let γ : R→ G be a subRiemannian geodesic parame-
terized by arc-length. The cut time of γ is

tcut(γ) := sup{t > 0 : γ|[0,t] is length-minimizing}.

The cut time might depend on the initial point γ(0), and some au-
thors use the notation tcut(γ, γ(0)) to specify the initial point. We will
prove that the upper bound L for cut time does not depend on the
initial point, then we do not need to specify it. We will consider two
cases; the first case is ċ(0) = 0, while, in the second case is ċ(0) = 0.

Proposition 7.1. Let γ(t) be a geodesic in G corresponding to L-
periodic curve c(t) such that ċ(0) = 0, then γ(L) is conjugate to γ(0)
along γ, so γ(t) fails to fails to minimize beyond L.

Proof. After a translation, we can assume that the periodic geodesic
bounce on the origin, that is, c(kL) = 0, ẋ(kL) = px(kL) = L and
W (kL) = 1 for all k = 0, 1, 2, 3, . . . . Let yj = Fj(0), where Fj(x) =
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βµ(ej), then W (kL) = ||(y1, · · · , yn)|| = 1 for all k = 0, 1, 2, 3, . . . . Let
us consider the Jacobi vector fields

W1(t) =
n∑
i=1

Fi,µ(t)X i|c(t)+
n1∑
k=1

Fk,µ(t)Y k|c(t), W2(t) =

n1∑
k=1

ykσ
k|c(t) ∈ v.

Therefore, the periodicity of c(t) implies W1(jL) =
∑n1

k=1 ykY
k|0 and

W2(jL) =
∑n1

k=1 ykσ
k|0. By construction Yk|0 = σk|0, so W1(jL) =

W2(jL). The space of Jacobi vector fields is a vector space, then J :=
W1(t) − W2(t) is a Jacobi vector field such that J(kL) = 0 for all
k = 0, 1, 2, 3.

To see that the field J is not zero in the interior of the interval (0, L),
we consider the case again when x(t), with t in (0, L), is inside K or in
∂K. On one side, if x(t) is inside K, then ċ(t) 6= 0 and J has non-zero
component in H. On the other side, if x(t) is in ∂K then ċ(t) = 0, but
Yj|c(t) is tangent to v if and only if c(t) = 0.
J contributes 1 to the nullity of the Hessian of the action, thus estab-

lishing that kL is a conjugate time to s = 0 along γ. The classic theory
of calculus of variation tells that the geodesic γ(t) fails to minimize
beyond L. �

Proposition 7.2. Let γ(t) be a geodesic in G corresponding to L-
periodic curve c(t) such that ċ(0) 6= 0, then exist γ1(t) 6= γ(t) such that
γ(0) = γ1(0) and γ(L) = γ1(L), so γ(t) fails to minimize beyond L.

It is well-known that a geodesic γ1(t) fail to minimize beyond a time
L if exist another geodesic γ2(t) 6= γ1(t) with γ1(0) = γ2(0) such that
γ1(L) = γ2(L).

Proof. Let c(t) be a αG-curve for µ corresponding to γ(t), such that is
L-periodic and ċ(0) 6= 0. Then, there are exactly two geodesic passing
through γ(0) and with value µ, namely, the given one γ1(t) and γ2(t)
characterized by ċ2(0) = −ċ1(0). Then c1(t) = c2(−t) for all t. By
L-periodic c1(L) = c1(0). Moreover, c1(t) defines the same curve C :=
c1[0, L] = c[0, L], thus Proposition 6.1 tell us that γ1(t) and γ2(t) have
same period ∆θ`. Thus,

γ1(L) = γ1(0) + (0,∆θ`(µ)) = γ2(L).

So γ(t) fail to minimize beyond a time L �

7.3. Integrability.

Proof. Let Hµ be integrable for all µ in a∗, that is, exist n − 1 lineal
independent constant of motion Ik(px, x) : T ∗H → R in involution with
HsR. Let Ĩk(x) be the lift of Ik(px, x), then set of constant of motion



SUB-RIEMANNIAN GEODESIC FLOW ON META-ABELIAN CARNOT GROUPS25

{Ĩk(px, x), p`.HsR = Hµ} are (n + m)-lineal independent functions in
involution, so HsR is integrable. �

7.4. The sub-Riemannian Schrodinger equation on G. Let us
review the formal definition of both operator.

7.4.1. The quantum Hamiltonian Ĥµ. Let us use the second line of
equation (1.2) as a definition of Hµ, that is,

Hµ =
1

2
||px −Aµ(x)||2H +

1

2
φµ(x) =

1

2

n∑
i=1

(px −Aµ(x))2 +
1

2
φµ(x).

(7.1)

Therefore the quantum Hamiltonian Ĥµ is given by

Ĥµ = −1

2

n∑
i=1

(~
∂

∂xi
−Ai,µ(x))2 − 1

2
φµ(x).(7.2)

Let us consider a Ψ(x) such that ĤµΨ(x) = λµΨ(x), then since the
Hamiltonian Hµ is autonomous system, then Ψ(x, t) = Ψ(x) exp(iλµt)

is a solution the Schrodinger equation ĤµΨ(x, t) = λ ∂
∂t

Ψ(x, t).

7.4.2. The sub-Riemannian Schrodinger equation on G. Since the Hamil-
tonian is purely kinetic the sub-Riemannian Schrodinger ĤsR is minus
the subRiemannian Laplacian, for more deatils about the subRieman-
nian Laplacian see [9] or [16]. The subRiemannian Laplacian G in a
meta-abelian Carnot group is given by

(7.3) ∆sR = (
n∑
i=1

X2
i +

n1∑
k=1

Y 2
k ).

Let us consider a Ψ(x) such that ĤµΨ(x) = λµΨ(x), then we need
to prove that Ψ(x, θ, t) = Ψ(x)Ψ(θ, t) where

Ψ(θ, t) = exp(i(
−λµt

2~
+

m∑
`=1

a`θ`
~

))

= exp(i(
−λµt

2~
+

n1∑
k=1

akθk +
s∑
r=2

dr∑
j=1

a`rθ
r
`

~
)).

(7.4)

is a solution to the sub-Riemannian Schrodinger equation on G.

(7.5) H̄sRΨ(x, θ, t) = −~2

2
∆sRΨ(x, θ, t) = i~

∂

∂t
Ψ(x, θ, t).
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Proof. Let us calculate ∆sRΨ(x, θ) by parts, first let us calculateXiΨ(x, θ, t)

X2
i Ψ(x, θ, t) = (

∂

∂xi
+

s∑
r=2

dr∑
j=1

Ari,j(x)
∂

∂θrj
)2Ψ(x, θ, t)

= −Ψ(θ, t)(
∂

∂xi
− 1

~2
Ai,µ(x))2Ψ(x),

Y 2
k Ψ(x, θ, t) =

1

~2
Ψ(θ, t)βk,µ(x)Ψ(x).

So

ĤsRΨ(x, θ, t) =
1

2
Ψ(θ, t)(

n∑
i=1

(~
∂

∂xi
− Ai,µ(x))2 +

n1∑
k=1

βk,µ(x))Ψ(x)

=
1

2
Ψ(θ, t)ĤµΨ(x) =

λµ
2

Ψ(x, θ, t)

On the other side

i~
∂

∂t
Ψ(x, θ, t) =

λµ
2

Ψ(x, θ, t).

�

In case of the h is abelian, (
∑n

i=1X
2
i ) is just the Laplace operator

∆H on H.

8. 2-abelian extensions

In this section, we propose the method to make the complete clas-
sification of integrable subRiemannian geodesic flow on meta-abelian
Carnot group. We recall the history of the classification of the Hamil-
tonian system has 100 years of history. In particular, we will use the
theory of integrable systems in magnetic space; see [17] or [4]. Also, we
will use the theory of a conservative system with polynomial potential,
see [18].

In the case of 2-abelian extensions, we need to find one new constant
of motion depending on the variables (px, py, x, y) in involution with
HsR or prove that the constant of motion does not exist.

8.1. AG-systems. We remark that the general form of the reduced
Hamiltonian Hµ is given by

Hµ =
1

2
p2x +

1

2
(py + Aµ(x, y))2.



SUB-RIEMANNIAN GEODESIC FLOW ON META-ABELIAN CARNOT GROUPS27

8.1.1. F23 or Cartan group as 2-abelian extension. Let F23 be the free-
nilpotent Lie algebra with 2 generators of step 3 and growth vector
(2, 3, 5), also called Cartan group. The first layer g1 is framed by
{X1, X2}, and the following relationships give its Lie algebra.

AbelianY 1
2 := [X1, X2], Y 1

3 := [X1, Y 1
2 ], Y 2

3 := [X2, Y 1
2 ]

Otherwise, zero. The biggest algebra a is given by Y 1
1 , Y 2

1 and Y 2
2 . So

in this case Car ' R2 × [G,G], also

αF23 = dy ⊗ (xe1 +
x2

2
e2 + xye3),

Notice that: the step s = 3 and the polynomial are degree two. If
µ = (a1, a2, a3) is in a∗ then the reduce Hamiltonian is

Hµ(px, x) =
1

2
(p2x + (py + a1x+ a2

x2

2
+ a3xy)2).

The system is Arnold-Liouville integrable; indeed, the Poisson struc-
ture has a Casimir functions C given by

C := P5P1 − P2P4 −
1

2
P 2
3 = a3px − a2py + a1a3y +

a23
2
y2.

Another way to make this integration is using the Noether theorem.
The constants of motion given by the left action are p1, p2, p2 and

I1 = px + yp1 + θ1p2 +
y2

2
p3, I2 = py + θ1p3.

We can see that I1 and I2 are not in involution with p1, p2 and p3,
however, the lineal combination I := p5I1− p4I2 = C, so p1, p2, p3 and
I are in involution with HsR.

The αF23-curves are the solution to the Euler-Elastica problem; that
is, the curvature of c(t) is

(8.1) κ(x(t), y(t)) = a2x(t) + a3y(t) + a1,

and the directrix is given by the line κ(x, y) = 0. After a rotation
in the plane R2 the Hamiltonian form equation became in (1.4). See
Agrachev [16] Exercise 7.80.

8.1.2. N6,2,5a∗. Let N6,2,5a∗ be the 6 dimensional Carnot group with
growth-vector (2, 3, 5, 6). Its first layer g1 is framed by {X1, X2}, and
the following relationships give its Lie algebra.

Y 1
2 := [X1, X2], Y 1

3 := [X1, Y 1
2 ],

Y 2
3 := [X2, Y 2

1 ], Y 4
1 := [X1, Y 1

3 ] = [X2, Y 2
3 ].
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Otherwise, zero. The biggest algebra a is [G,G], so in this case F24 '
R2 × [G,G], also

αF24 = dy ⊗ (xe21 +
x2

2
e31 + xye32 + (

x3

3!
+
xy2

2
)e41),

(8.2) I(px, py, x, y) := P1P5 − P2P4 +
1

2
P 2
3 .

E. Le Donne and F. Tripaldi used the notation N6,2,5a∗ in [19].

8.1.3. F24 as 2-abelian extension. Let F2,3 be the free-nilpotent Lie al-
gebra with two generators of step 3 and growth vector (2, 3, 5, 8). Its
first layer g1 is framed by {X1, X2}, and the following relationships
give its Lie algebra.

Y 2
1 := [X1, X2], Y 3

1 := [X1, Y
2
1 ], Y 3

2 := [X2, Y
2
1 ]

Y 4
1 := [X1, Y 3

1 ], Y 4
2 := [X1, Y 3

2 ] = [X2, Y 3
1 ], Y 3

1 := [X2, Y 3
2 ].

Otherwise, zero. The biggest algebra a is [G,G], so in this case F24 '
R2 × [G,G], also

αF24 = dy ⊗ (xe21 +
x2

2
e31 + xye32 +

x3

3!
e41 +

yx2

2
e42 +

y2x

2
e43),

8.2. βG-systems. We remark that the work done by J. Llibre, A.
Mahdi, and C. Valls, in [18], it is enough to classify βG-system, where
G is meta-abelian Carnot group with step 3.

8.2.1. Eng(2) as 2-abelian extension. Let Eng(2) be the 6-dimensional
Carnot group and with growth vector (3, 5, 6). The first layer g1 is
framed by {X1, X2, Y }, and its Lie algebra is given by the following
relationships.

Y 1
2 := [X1, Y ], Y 2

2 := [X2, Y ], Y 1
3 := [X1, Y 1

2 ] = [X2, Y 2
2 ]

Otherwise, zero. The biggest algebra a is given by Y Y 1
2 , Y 2

2 and Y 1
3 :

So in this case Eng(2) = R2 n A. αEng(2) associated with Eng(2) is
given by

αEng(2) = dθ1 ⊗ (e1 + xe2 + ye3 +
x2 + y2

2
e4),

Notice that: the step s = 3 and the polynomial are degree two. Then
if µ = (a1, a2, a3) in a∗,

Hµ(px, x) =
1

2
(p2x + p2y + (a0 + a1x+ a2y + a3

x2 + y2

2
)2).

Theorem 1. The subRiemannian geodesic flow on Eng(2) is inte-
grable.
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Proof. After a translation in the (x, y) plane, the system became in

(8.3)
1

2
(p2x + p2y + (b+ a(x2 + y2))2),

which is the radial an-harmonic oscillator, equation (8.3) is invariant
under the action of the group SO(2) and the reduced Hamiltonian Hµ

is integrable, so does Eng(2). �

E. Le Donne and F. Tripaldi used the notation N3,6,1a∗ for this group
in [19].

8.2.2. The unit-lower-triangular as 2-abelian extension. Let Ault be the
6-dimensional Carnot group and with growth vector (3, 5, 6). Its first
layer g1 is framed by {X1, X2, Y }, and its Lie algebra is given by the
following relationships.

Y 1
2 := [X1, Y ] Y 2

2 := [X2, Y ], Y 3
1 := [X2, Y 1

2 ] = [X1, Y 2
2 ],

Otherwise, zero. The biggest algebra a is given by Y Y 1
2 , Y 2

2 and Y 1
3 :

So in this case Ault = R2 nA. α associated with Ault is given by

αAult = dθ1 ⊗ (e1 + xe2 + ye3 + xye4),

Then if µ = (a1, a2, a3) in a∗,

Hµ(px, x) =
1

2
(p2x + p2y + (a0 + a1x+ a2y + a3xy)2).

Theorem 2. The subRiemannian geodesic flow on N3,6,1 is not inte-
grable by meromorphic functions.

This Proposition is a consequence of the classification of integrable
systems by meromorphic functions of the Hamiltonian with the degree
of freedom two and homogeneous potential of degree 4 in [18].

Proof. If µ = (0, 0, 0, a), then Hµ(px, x) is non-integrable by meromor-
phic functions. �

E. Le Donne and F. Tripaldi used the notation N3,6,1a∗ for this group
in [19].

8.2.3. Jk(R2,R) as 2-abelian extension. The jet space has a natural
Carnot structure, see [20, 9, 16] for the general construction, see [21]
in the context of Goursat distributions. In [22] , we prove that the
subRiemannian geodesic flow in Jk(R2,R) is not integrable if 1 < k,
using the classification from [18].
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9. General Engel’s group Eng(n) and the Radial
An-harmonic Oscillator

Let Eng(n) be the Carnot group of dimension 2n+2 and with growth
vector (n + 1, 2n + 1, 2n + 2). Its first layer g1 is framed by (n + 1)
left-invariant vector fields {X1, · · · , Xn, Y }, and its Lie algebra is given
by the following relationships.

(9.1) Y i
2 := [X i, Y ], Y 1

3 := [X i, Y i
2 ]

Otherwise, zero. The biggest algebra a is given by Y , Y 1
2 , · · · , Y n

2 and
Y 1
3 : So in this case G = Rn nA.

(9.2) αEng(n) = dθ ⊗ (e11 +
n∑
i=1

xie
i
2 +

1

2
||x||2Rne13)}

here the step s = 3, and the polynomial has degree two. µ = (a0, · · · , an+1)
in a∗, then

Hµ(px, x) =
1

2
||px||2Rn +

1

2
(a0 +

m∑
i=1

aixi + am+1
1

2
||x||2Rn)2.

Theorem 3. The geodesic flow on Eng(n) is non-commutative inte-
grable if 2 < n.

Proof. After a translation Hµ became in 1
2
||px||2Rn + 1

2
(a + b1

2
||x||2Rn)2,

Which is the an-harmonic oscillator, the group SO(n) acts in Rn and
the Hamiltonian is invariant under its action, having as a consequence.
The action of SO(n) on Eng(n) provides with n(n− 1)/2 constant of
motion. �

The subRiemannian Laplacian is given by

(9.3) ∆sR(g) :=
1

2
(∆Rn + (

∂

∂θ0
+

n∑
i=1

xi
∂

∂θi2
+
x2

2

∂

∂θ13
)2).

Let P (θ) be the quadratic polynomial such Y 2P (θ) = (a + b||x||2Rn)2,
then the antz Ψ(x, θ) = Ψ(x) + P (θ) yields us to

∆sRΨ(x, θ) =
1

2
(∆Rn + (a1 + a2

x2

2
)2),

which is the radial an-harmonic oscillator. In [23], Del Valle and Tur-
biner, solve the eingen-value problem.
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Appendix A. Open problems

A.1. Non-periodic geodesic on Carnot groups. Enrico Le Donne
made the following conjecture.

Conjecture 1. The Carnot groups do not have subRiemannian peri-
odic geodesic.

Nicola Paddeu has a proof for the normal geodesic, coming work,
and part 1 of Theorem B it is the particular case for meta-abelian
Carnot groups with βG-system. Then, the open problem concerns the
abnormal geodesic. In addition, it will be nice to give alternative proof
using the symplectic reduction, now in the context of meta-abelian
Carnot groups with βG-systems.

A.2. Metric lines. Classify the relative equilibrium points in Hµ and
metric lines.

Conjecture 2. Let G be a meta-abelian abelian Carnot group with βG-
system, then the relative equilibrium points in T ∗H for Hµ are isolated.

In [13], Richard Montgomery and I classify the singular dynamics in
the context of the jet space Jk(R,R). Let us generalize the classification
thinking that Conjecture 2 is valid. Let c(t) be a β-curve for µ; the
classical dynamical system theory gives the following classification of
the singular dynamics:

• c(t) is homoclinic if c(t) → p when t → ∞ and c(t) → p when
t→ −∞.
• c(t) is heteroclinic if c(t) → p1 when t → ∞ and c(t) → p2

when t→ −∞. We add more detail to the dichotomy.
• c(t) is heteroclinic of the direct type if βk(p1)βk(p2) = 1 for all

1 ≤ k ≤ n1.
• c(t) is heteroclinic of the turn back type if βk(p1)βk(p2) = −1

for at least on k such that 1 ≤ k ≤ n1.

Definition A.1. We say that a geodesic γ(t) is homoclinic, hetero-
clinic of the direct type or heteroclinic of the turn-back type, according
to whether its c(t) α-curve is periodic, homoclinic, heteroclinic of the
direct type or heteroclinic of the turn-back type.

Definition A.2. We say that a geodesic γ : R→ G is a metric line if
|a−b| = distG(γ(a), γ(b)) for all compact set [a, b] ⊂ R, where |a−b| is
the absolute value and distG(γ(a), γ(b)) is the subRiemannian distance
in G.

Open Problem 1. Besides lines which are the metric lines in meta-
abelian groups?
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Guess: The metric lines in meta-abelian Carnot group with a βG-
system are the homoclinic geodesics and heteroclinic geodesics of the
direct type.

In [24, 25, 26], A. Ardentov and G. Shackov showed the conjecture
in the context of Engel’s group Eng, and they proved that lift of the
Euler-soliton is a metric line in Eng.

A.3. Equi-optimal.

Definition A.3. We say that the arc-length parameterized geodesic
γ : R → G is equi-optimal if its cut lengths are independent of where
we start on the geodesic. In other words, for any real s, let γs(t) =
γ(t− s) be the time translated version of γ, having new starting point
γs(0) = γ(s). Then γ is equi-optimal if tcut(γs) is independent of s.

We say that a length space is equi-optimal if all the geodesics are
equi-optimal.

Open Problem 2. Are the meta-abelian Carnot groups equi-optimal?

A.4. An equivalent definition of a. In all the above examples, a the
maximal abelian ideal containing [g, g] is equal to the maximal abelian
ideal containing gs.

Open Problem 3. Let G be a meta-abelian Carnot group, under which
condition is valid that a is equal to the maximal abelian ideal containing
gs.

Guess: G 6= G1 ×G2.

Appendix B. Proof

Appendix C. Integrability

C.1. Arnold-Liouville integrability. We say that a n-degree of free-
dom Hamiltonian system in T ∗M is Arnold-Liouville integrable if exist
n constant of motion F := (F1, , Fn) : T ∗M → Rn such that:

(1) (independence) the rank of the Jacobian matrix of F is rank n.
(2) (first integral) {Fi, H} = 0 for all i.
(3) (involution) {Fi, Fj} = 0 for all i and j.

C.2. Non-commutative integrability. We say that a n-degree of
freedom Hamiltonian system in T ∗M is non-commutative integrable if
exist ` > n constant of motion F := (F1, , Fn) : T ∗M → Rn such that:

(1) (independence) the rank of the Jacobian matrix of F is rank `.
(2) (first integral) {Fi, H} = 0 for all i.
(3) (isotropy) the matrix {Fi, Fj} has a kernel of dimension 2n`.
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(4) (closure) for each i, j there exist a function Pij : ImF ⊂`→ R
such that {Fi, Fj} = Pij ◦ (F1, · · · , F`).
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