CSE 107 Midterm 2 Review Problems

- 1. Bob throws a dart at a circular target of radius r. He hits the target with certainty, but is equally likely to hit any point within the target. Let Z be the distance from Bob's dart to the center of the target.
 - a. Find the CDF $F_Z(z)$ and the PDF $f_Z(z)$.
 - b. Find the mean E[Z].
 - c. Find the variance Var(Z).
- 2. A city's temperature in degrees Celsius is modeled as a normal random variable X with mean 10 and standard deviation 10. Let Y be its temperature in Fahrenheit, where X and Y are related by

$$X = \frac{5(Y-32)}{9}.$$

What is the probability that the temperature is above 77 degrees Fahrenheit?

3. Let *X* and *Y* be jointly continuous random variables, and suppose

$$f_{X|Y}(x|y) = \begin{cases} \frac{1}{y} & \text{if } 0 < y \le 1 \text{ and } 1 - y \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

and

$$f_Y(y) = \begin{cases} 2y & \text{if } 0 < y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Hint: Before you do the following problems, draw a picture of the region defined by the inequalities $0 < y \le 1$ and $1 - y \le x \le 1$.

- a. Determine the joint PDF $f_{X,Y}(x, y)$.
- b. Determine the marginal PDF $f_X(x)$.
- c. Determine the expected value E[X].
- d. Determine the conditional expectation E[X|Y = y].
- 4. Let X be an exponential random variable with parameter λ , and let Y = X + 1. Determine the PDF $f_Y(y)$.
- 5. Alice is at the casino again, with a choice of two games. The first returns winnings (positive or negative) that are normally distributed with parameters $\mu = 1$ and $\sigma = 2$. The second is uniformly distributed with winnings in the range -1 to 2. (All amounts are in dollars.) She flips a coin with P(head) = p to decide which game to play. If heads, she plays the first game, and if tails, she plays the second. Determine her expected winnings, in terms of p.

- 6. Let *Y* be a normal random variable with variance 1, and with mean another random variable *X*. Suppose *X* is continuous uniform on the interval [1, 3].
 - a. Find the PDF $f_Y(y)$.
 - b. Find the conditional PDF $f_{X|Y}(x|y)$.
 - c. Suppose we sample *Y* and get Y = 3. What is the probability that $X \le 2$?
 - d. Find E[Y].
- 7. Let X and Y be independent, jointly continuous random variables, where X is uniform on [a, b] and Y is uniform on [c, d].
 - a. Write the PDFs $f_X(x)$ and $f_Y(y)$.
 - b. Write the CDFs $F_X(x)$ and $F_Y(y)$.
 - c. Let $Z = \max(X, Y)$. Determine the PDF $f_Z(z)$. (Assume $a \le d$ and $c \le b$, so that the two intervals overlap.)
 - d. Let Z = X + Y. Determe the PDF $f_Z(z)$.