CSE 107

Midterm 2 Review Problems

1. Bob throws a dart at a circular target of radius r. He hits the target with certainty, but is equally likely to hit any point within the target. Let Z be the distance from Bob's dart to the center of the target.
a. Find the $\operatorname{CDF} F_{Z}(z)$ and the $\operatorname{PDF} f_{Z}(z)$.
b. Find the mean $E[Z]$.
c. Find the variance $\operatorname{Var}(Z)$.
2. A city's temperature in degrees Celsius is modeled as a normal random variable X with mean 10 and standard deviation 10. Let Y be its temperature in Fahrenheit, where X and Y are related by

$$
X=\frac{5(Y-32)}{9} .
$$

What is the probability that the temperature is above 77 degrees Fahrenheit?
3. Let X and Y be jointly continuous random variables, and suppose

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{y} & \text { if } 0<y \leq 1 \text { and } 1-y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{Y}(y)=\left\{\begin{array}{ll}
2 y & \text { if } 0<y \leq 1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Hint: Before you do the following problems, draw a picture of the region defined by the inequalities $0<y \leq 1$ and $1-y \leq x \leq 1$.
a. Determine the joint $\operatorname{PDF} f_{X, Y}(x, y)$.
b. Determine the marginal PDF $f_{X}(x)$.
c. Determine the expected value $E[X]$.
d. Determine the conditional expectation $E[X \mid Y=y]$.
4. Let X be an exponential random variable with parameter λ, and let $Y=X+1$. Determine the PDF $f_{Y}(y)$.
5. Alice is at the casino again, with a choice of two games. The first returns winnings (positive or negative) that are normally distributed with parameters $\mu=1$ and $\sigma=2$. The second is uniformly distributed with winnings in the range -1 to 2 . (All amounts are in dollars.) She flips a coin with P (head) $=p$ to decide which game to play. If heads, she plays the first game, and if tails, she plays the second. Determine her expected winnings, in terms of p.
6. Let Y be a normal random variable with variance 1, and with mean another random variable X. Suppose X is continuous uniform on the interval $[1,3]$.
a. Find the $\operatorname{PDF} f_{Y}(y)$.
b. Find the conditional PDF $f_{X \mid Y}(x \mid y)$.
c. Suppose we sample Y and get $Y=3$. What is the probability that $X \leq 2$?
d. Find $E[Y]$.
7. Let X and Y be independent, jointly continuous random variables, where X is uniform on $[a, b]$ and Y is uniform on $[c, d]$.
a. Write the PDFs $f_{X}(x)$ and $f_{Y}(y)$.
b. Write the CDFs $F_{X}(x)$ and $F_{Y}(y)$.
c. Let $Z=\max (X, Y)$. Determine the $\operatorname{PDF} f_{Z}(z)$. (Assume $a \leq d$ and $c \leq b$, so that the two intervals overlap.)
d. Let $Z=X+Y$. Determe the $\operatorname{PDF} f_{Z}(z)$.

