1. In the circuit diagram below, switches s_1, s_2 and s_3 are randomly and independently set in the open or closed state. Let A_i be the event that s_i is open (for $i = 1, 2, 3$), and let A be the event that there is a closed path from terminal 1 to terminal 2.

Suppose that $P(A_i) = p_i$, for $i = 1, 2, 3$. Determine $P(A)$ in terms of p_1, p_2 and p_3.

Solution:
There is a closed path from terminal 1 to terminal 2 if and only if either s_1 and s_2 are closed, or s_3 is closed. Therefore by independence

$$P(A) = P((A_1^c \cap A_2^c) \cup A_3^c)$$
$$= P(A_1^c \cap A_2^c) + P(A_3^c) - P(A_1^c \cap A_2^c \cap A_3^c)$$
$$= (1 - p_1)(1 - p_2) + (1 - p_3) - (1 - p_1)(1 - p_2)(1 - p_3).$$

Alternate Solution:
There is no closed path from terminal 1 to terminal 2 if and only if both s_3 is open, and either s_1 or s_2 are open. Thus, again by independence,

$$P(A) = 1 - P(A^c) = 1 - P((A_1 \cup A_2) \cap A_3)$$
$$= 1 - P(A_1 \cup A_2)P(A_3)$$
$$= 1 - (P(A_1) + P(A_2) - P(A_1 \cap A_2))P(A_3)$$
$$= 1 - (p_1 + p_2 - p_1p_2)p_3$$
$$= 1 - p_1p_3 - p_2p_3 + p_1p_2p_3.$$
2. A system consists of \(n \) identical components, each of which is operational with probability \(p \), independent of other components. The system is operational if at least \(m \) out of the \(n \) components are operational. What is the probability that the system is operational?

Solution:
Let \(X \) be the number of components that are operational. Then \(X \) is a Binomial random variable with parameters \(n \) and \(p \), and its PMF is

\[
p_X(k) = \binom{n}{k} p^k (1 - p)^{n-k} \quad \text{for } k = 0, 1, 2, ..., n.
\]

The probability that \(m \) or more of the \(n \) components are operational is therefore

\[
P(X \geq m) = \sum_{k=m}^{n} p_X(k) = \sum_{k=m}^{n} \binom{n}{k} p^k (1 - p)^{n-k}.
\]

3. Alice and Bob have a chess match in which the first player to win a game wins the match. Each game has one of 3 possible outcomes: Bob wins, Alice wins, or the game is a draw. One game is played each day until someone wins, so the match is of potentially unlimited duration. The prize money starts at $100 on the first day, and goes up by $100 every subsequent day a match is played. Alice wins with probability 0.4, Bob wins with probability 0.3, and a draw occurs with probability 0.3.

a. What is the probability that Alice wins the match?

Solution:
Let \(A_k \) be the event that Alice wins the match on the \(k \)th game, and let \(A \) be the event that Alice wins the match. Then \(P(A_k) = (0.3)^{k-1} \cdot 0.4 \), and hence

\[
P(A) = \sum_{k=1}^{\infty} (0.3)^{k-1} \cdot 0.4 = 0.4 \cdot \sum_{k=1}^{\infty} (0.3)^{k-1} = (0.4) \cdot \sum_{k=0}^{\infty} (0.3)^k = \frac{0.4}{1 - 0.3} = \frac{4}{7}
\]

b. Determine the mean and standard deviation of the total prize money.

Solution:
Let \(X \) be the duration of the match, in days. The probability that a particular game is won by somebody is 0.3 + 0.4 = 0.7, so that \(X \) is a Geometric random variable with parameter 0.7. The total prize money is 100\(X \), which has mean, variance and standard deviation

\[
E[100X] = 100 \cdot E[X] = \frac{100}{0.7} = 142.86,
\]

\[
\text{Var}(100X) = 100^2 \cdot \text{Var}(X) = 100^2 \cdot \frac{1 - (0.7)}{(0.7)^2} = 100^2 \cdot (0.612244)
\]

\[
\sigma_{100X} = \sqrt{\text{Var}(100X)} = 100 \cdot (0.78246) = 78.25
\]
4. A 3-sided die and a coin, which are neither fair nor independent, are rolled and tossed, respectively. The die has faces \{1, 2, 3\} and the coin has sides labeled \{1, 2\}. Let \(X\) be the outcome of the die, and \(Y\) the outcome of the coin. The \textit{conditional} PMF \(p_{X|Y}(x|y)\) is given by the following table.

\[
\begin{array}{c|ccc}
 y & 1 & 2/8 & 5/8 \\
 & 2 & 1/8 & 3/8 \\
 & 1 & 2 & 3 \\
\end{array}
\]

Also, the \textit{marginal} PMF \(p_Y(y)\) is given by the following table.

\[
\begin{array}{c|c}
 y & 1/3 \\
 & 2/3 \\
\end{array}
\]

a. Fill in the following table giving the \textit{joint} PMF \(p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x|y)\)

\[
\begin{array}{c|ccc}
 y & 1 & 2/24 & 5/24 \\
 & 2 & 2/24 & 6/24 \\
 & 1 & 2 & 3 \\
\end{array}
\]

b. Fill in the following table giving the \textit{marginal} PMF \(p_X(x) = \sum_y p_{X,Y}(x,y)\)

\[
\begin{array}{c|ccc}
 x & 4/24 & 11/24 & 9/24 \\
 & 1 & 2 & 3 \\
\end{array}
\]

c. Fill in the following table giving the \textit{conditional} PMF \(p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_X(x)}\)

\[
\begin{array}{c|ccc}
 y & 1/2 & 5/11 & 1/9 \\
 & 1/2 & 6/11 & 8/9 \\
 & 1 & 2 & 3 \\
\end{array}
\]

d. Given that the coin flip is 2, what is the probability that the die roll is 3?

\[
p_{X|Y}(3|2) = \frac{4/8}{1/2} = 1/2
\]
5. The number \(X \) of phone calls received by a call center within a certain time period is a Poisson random variable with parameter \(\lambda \). Determine the smallest positive number \(\lambda \) such that the probability of receiving at least one call is at least \(1/2 \).

Solution:
We require that \(P(X \geq 1) \geq 1/2 \). Hence

\[
1 - P(X = 0) \geq \frac{1}{2} \quad \Rightarrow \quad 1 - \frac{1}{2} \geq P(X = 0) \quad \Rightarrow \quad p_X(0) \leq \frac{1}{2},
\]

and therefore

\[
e^{-\lambda} \cdot \frac{\lambda^0}{0!} = e^{-\lambda} \leq \frac{1}{2}
\]

\[
\therefore \quad -\lambda \leq \ln(1/2) = -\ln(2)
\]

\[
\therefore \quad \lambda \geq \ln(2)
\]

The smallest such \(\lambda \) is \(\lambda = \ln(2) = 0.6931 \). \(\blacksquare \)