Midterm 1 Review Problems

1. In the circuit diagram below, switches s_{1}, s_{2} and s_{3} are randomly and independently set in the open or closed state. Let A_{i} be the event that s_{i} is open (for $i=1,2,3$), and let A be the event that there is a closed path from terminal 1 to terminal 2.

Suppose that $P\left(A_{i}\right)=p_{i}$, for $i=1,2,3$. Determine $P(A)$ in terms of p_{1}, p_{2} and p_{3}.
2. A system consists of n identical components, each of which is operational with probability p, independent of other components. The system is operational if at least m out of the n components are operational. What is the probability that the system is operational?
3. Alice and Bob have a chess match in which the first player to win a game wins the match. Each game has one of 3 possible outcomes: Bob wins, Alice wins, or the game is a draw. One game is played each day until someone wins, so the match is of potentially unlimited duration. The prize money starts at $\$ 100$ and goes up by $\$ 100$ each day a match is played. Alice wins with probability 0.4 , Bob wins with probability 0.3 , and a draw occurs with probability 0.3 .
a. What is the probability that Alice wins the match?
b. Determine the mean and standard deviation of the total prize money.
4. A 3-sided die and a coin, which are neither fair nor independent, are rolled and tossed, respectively. The die has faces $\{1,2,3\}$ and the coin has sides labeled $\{1,2\}$. Let X be the outcome of the die, and Y the outcome of the coin. The conditional PMF $p_{X \mid Y}(x \mid y)$ is given by the following table.

y	1	2/8	5/8	1/8
	2	1/8	3/8	4/8
		1	2	3

Also, the marginal PMF $p_{Y}(y)$ is given by the following table.

\[

\]

a. Fill in the following table giving the joint $\operatorname{PMF} p_{X, Y}(x, y)$.

b. Fill in the following table giving the marginal PMF $p_{X}(x)$.

1	2	3
x		

c. Fill in the following table giving the conditional PMF $p_{Y \mid X}(y \mid x)$.

d. Given that the coin flip is 2 , what is the probability that the die roll is 3 ?
5. The number X of phone calls received by a call center within a certain time period is a Poisson random variable with parameter λ. Determine the smallest positive number λ such that the probability of receiving at least one call is at least $1 / 2$.

