
1

CSE 101

Introduction to Data Structures and Algorithms

GitLab Tutorial

All programming assignments in this class will be submitted through the UCSC GitLab server git.ucsc.edu.

If you are new to git, spend some time with the introductory material found at ITS GitLab. Follow the login

link, then click the register tab and create an account. Your username must be your cruzid, which is the

string before the @ in your @ucsc.edu email address. Creating your git.ucsc.edu account is step zero in

this tutorial.

Git is a Distributed Version Control System, which briefly put, means that multiple copies of a project are

to be maintained in different locations, then integrated and synchronized onto a single server. Git keeps

track of all changes to the project on multiple branches of development. At the enterprise level, this might

entail the work of hundreds of programmers, all seeking to manage and reconcile their different versions of

the project. In this class there is just one programmer, you. Your project consists of all of the programming

assignments that you submit for grading in this class, and only two copies of the project should be

maintained. The local repository is the one you directly control and develop. The remote repository is

stored on the server git.ucsc.edu, which is maintained by Information Technology Services (ITS). You

will synchronize these two copies by using Unix commands that begin with the word git.

If you are completely new to command line interpreters, and to Unix in particular, you have some catching

up to do. I suggest you look at lab2 (and possibly lab1) from my CSE 20 from Fall 2020. Just ignore

anything having to do with Python.

https://classes.soe.ucsc.edu/cse020/Fall20/lab1.pdf

https://classes.soe.ucsc.edu/cse020/Fall20/lab2.pdf

The remainder of this tutorial will assume that your local repository is to be located in your Unix timeshare

account space. You may, if you prefer, maintain the local repo on your personal computing device. The

instructions are largely the same as those presented here, except that you would need to first install git on

your machine. I recommend that you not maintain multiple local repositories, one on the timeshare say,

and one on your device, though it is possible. Attempt this only if you are sure you know how.

Set up ssh keys

The next step is to set up a pair of public-private ssh keys to facilitate secure communication between local

and remote repositories. Log on to the Unix timeshare unix.ucsc.edu (see the above CSE 20 links if you

don’t know how to do this), and type the following command.

$ ssh-keygen -t rsa -b 2048 -C "label"

The dollar sign $ represents the Unix command prompt, and you do not type it. Also "label" is a comment

that you choose. This comment can be anything you like, but typically it is used to identify the computing

device you are on. In this case "timeshare" would be an appropriate value. If you are setting up a

repository on your own computer, you might choose the name of your machine as the label. The result of

the above command will be

Generating public/private rsa key pair.

Enter file in which to save the key (/afs/cats.ucsc.edu/users/a/cruzid/.ssh/id_rsa):

https://its.ucsc.edu/gitlab/
https://git.ucsc.edu/users/sign_in
https://git.ucsc.edu/users/sign_in
https://classes.soe.ucsc.edu/cse020/Fall20/lab1.pdf
https://classes.soe.ucsc.edu/cse020/Fall20/lab2.pdf
https://github.com/git-guides/install-git

2

or something similar (cruzid will be your CruzID and the letter a may be something else). Press return

to select the default location cruzid/.ssh/id_rsa, (the file id_rsa, within the directory .ssh, within

your home directory cruzid.) Navigate to the directory .ssh (do cd then cd .ssh) and type

$ cat id_rsa.pub

to see the public half of the pair. The private half is in the file id_rsa. Do not share the private key with

any person or computer, and do not alter either file.

Now login to git.ucsc.edu and open the web portal. In the upper right corner of the page is a pull-down

menu containing information related to your account. Open it and select Preferences. Go to the left-hand

pane on the settings page and select SSH Keys. Copy-paste the public key in id_rsa.pub into the key box

in the web portal. Give it a title (and an optional expiration date if you like), then press add key. You

have now established a secure method of communication between your account on the timeshare and your

account on git.ucsc.edu.

Set up your local repository

Return to your home directory on the timeshare (by typing cd), then type

$ git config --global user.name "first last"

$ git config --global user.email "cruzid@ucsc.edu"

where first is your first name, last is your last name and cruzid is your CruzID. Now create a

subdirectory within your home directory called cse101, where you will keep all of your work for this class,

then cd into it.

$ cd # return to your home directory

$ mkdir cse101 # make a subdirectory called cse101

$ cd cse101 # change your working directory to cse101

Note that everything after # on a line is a comment and need not be typed. Now do

$ git clone git@git.ucsc.edu:cse101/fall23/cruzid.git

where as usual, cruzid is your CruzID. If you get an error message resembling

Cloning into 'cruzid'...

remote:

remote: ==

remote:

remote: The project you were looking for could not be found.

remote:

remote: ==

remote:

fatal: Could not read from remote repository.

Please make sure you have the correct access rights

and the repository exists.

it means that I have not yet created your repository on git.ucsc.edu. I will be running a script periodically

(once a day to start with) that creates student repositories, but I can't create a repository for you if you don't

3

have an account. This is why I run it once a day. If you have this error, you should pause and try again the

next day.

Assuming you did not get an error, the above command should produce the following output.

Cloning into 'cruzid'...

remote: Enumerating objects: 10, done.

remote: Counting objects: 100% (10/10), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 10 (delta 0), reused 0 (delta 0), pack-reused 0

Receiving objects: 100% (10/10), done.

Once this is done, a new subdirectory within cse101 called cruzid has been created.

$ ls # list the contents of the current directory

cruzid

This subdirectory is your local repository. Make cruzid your current directory, and just in case you have

become confused as to your location, type pwd to see the full path name of the repository.

$ cd cruzid # change directory to cruzid

$ pwd # print working directory

/afs/cats.ucsc.edu/users/a/cruzid/cse101/cruzid

 root of the file system your home local repository

 directory

 may be some other letter

Currently, this directory contains several files placed there when your repository was created. To see the

full contents do

$ ls -a # same as ls, but include files that begin with dot .

You can ignore the contents of this directory at the moment.

Git maintains multiple branches of your repository. Branches allow developers to make changes in a self-

contained environment, isolated from the rest of the repository. Think of different branches as being

separate copies of the whole repo. Changes made on one branch do not affect the other branches. When

your repo is created, it has exactly one branch, called main. You will create a separate branch for each

programming assignment in this course. Our automated grading systems will use these branches to apply

separate testing environments for each assignment.

The command for changing to a new branch is git checkout. The command

$ git checkout -b pa1

4

Creates a new branch called pa1 and switches you from main to pa1. Any alterations you now make to

the repo will affect only the pa1 branch. To switch back to main, one would do git checkout main,

but don’t do this now.

Create a subdirectory for programming assignment 1, called pa1 and cd into it.

$ mkdir pa1

$ cd pa1

The new directory pa1 is within the directory cruzid, but is not yet a part of the repository. However, we

cannot add an empty directory to a repository, so we must first insert some files. Eventually you will place

all of your files for pa1 here, but for now a couple of empty files will suffice.

$ touch file1

$ touch file2

The Unix command touch blah will create a new empty file called blah, if blah does not exist. View

the manual pages for touch (do man touch) to see what it does if file blah already exists. Now we have

a directory within the pa1 directory containing two empty files. To add it to the repository, do

$ git add .

$ git commit -m "initial commit on pa1"

The dot . in this context means your current working directory, which you'll recall is pa1. The command

git add . places the directory pa1, with its contents file1 and file2, into a staging area called the

index. The command git commit changes the local repository so that it now includes the new items. The

option -m "message" attaches a comment to this commit, so users will be able to follow the history of

changes. At this point, all that has been changed is the local repository. To synchronize with the remote

repository, do

$ git push -u origin pa1

This command performs the initial synchronization between your local repo and the remote repo on

git.ucsc.edu. Subsequent synchronizations can be done by doing just git push.

Note that there are two things here called pa1. One is a directory in your account space on the timeshare,

constituting part of your local repository. The other is a branch of your local repo. All of this is

synchronized with the remote repo by the push command. In general, it is not necessary that directory

names match branch names, but you must maintain this convention to insure our grading scripts do not get

confused.

Observe that add has no terminal output, but commit and push do, which was not included above. To

verify that the remote repository has changed, go the web portal on git.ucsc.edu again, go to projects in

the upper left corner, then your projects. You can see the full contents of cse101/fall23/cruzid by

navigation in your browser.

This combination of git commands: add, commit and push will be your main tools for doing subsequent

submissions to pa1. For instance, to add a third file, do

5

$ touch file3

$ git add file3 # git add . would be fine here too

$ git commit -m "add file3"

$ git push

and observe the changes to the web portal. Now try deleting a file using git rm, then commit and push,

as before. Intersperse the command git status between the others to see a readout of changes to the

repository.

$ git rm file1 # remove file1

$ git status

$ git commit -m "delete file1"

$ git status

$ git push

$ git status

Let's add some content to one of the remaining files, and use git diff to display the difference. A

simple way to append text to a file is echo with output redirect >.

$ echo "some content for file2" > file2

$ cat file2

some content for file2

$ git diff

diff --git a/pa1/file2 b/pa1/file2

index e69de29..877005d 100644

--- a/pa1/file2

+++ b/pa1/file2

@@ -0,0 +1 @@

+some content for file2

The output of git diff is a little bit cryptic, but this article may help explain it somewhat. Ordinarily we

won’t run git diff often, but it’s good to remember that all git does, at the most base level, is to track

changes to files and directories. The same combination of add, commit and push will synchronize the

local repository with the remote.

$ git add .

$ git commit -m "content for file2"

$ git push

At this point, you can add your source files for pa1 (and also remove file1 and file2), then perform the

now familiar add, commit, push combination.

When it is time to start working on pa2, you will create a new branch with

$ git checkout -b pa2

then

$ mkdir pa2

$ cd pa2

https://blog.gumshoe.dev/understanding-git-diff-output

6

Then use the add, commit and push commands to place new work in the local repo, and synchronize with

the remote. Repeat the whole process for pa3, … , pa8.

Attend the TA/tutor/instructor office hours to get help with this tutorial if anything is unclear. Git has a

rich command set giving a fine level of control over your projects, which we've only glimpsed. The Git

Book is one place to continue learning. Another resource on Unix is the git tutorial.

$ man -7 gittutorial

There are many others.

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2

