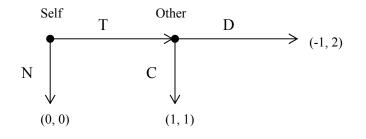
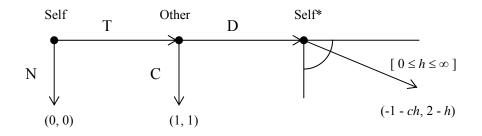


A. Basic Trust Game

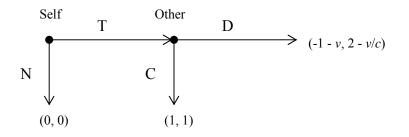


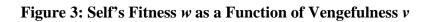
B. Extended Trust Game

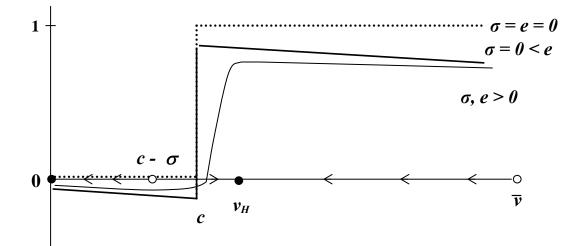


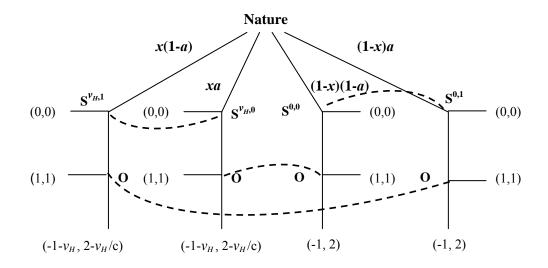
*Utility payoff to Self is $-1 - ch + \ln h$

C. Reduced Trust with a vengeance









<u>Note</u>: O denotes Other; S^{ij} denotes Self with vengeance level *i* and perception *j*, as determined by Nature's move. The four branch labels are Nature's move probabilities.

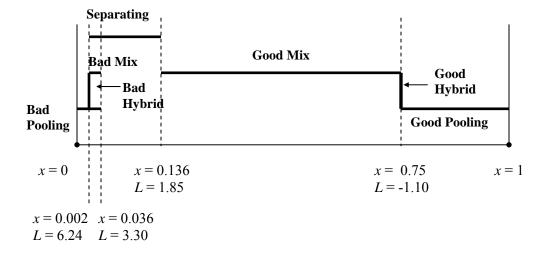
Table 1: PBE Probabilities

		Fitness Payoff	Equilibrium Probability			
	Choice	Self, Other	(NT, DC) Separating	(TT, DC) Good Pooling	(NN, DD) Bad Pooling	
$v = v_{\rm H}$	(N, .) (T, C) (T, D)	0, 0 1, 1 -(1+v), 2-v/c	$e \\ (1-e)(1-\alpha) \\ (1-e)\alpha$	$e \\ (1-e)^2 \\ (1-e)e$	$1 - e$ e^{2} $e(1 - e)$	
<i>v</i> = 0	(N, .) (T, C) (T, D)	0, 0 1, 1 -1, 2	$1 - e \\ e \alpha \\ e(1 - \alpha)$	$e \\ (1-e)^2 \\ (1-e)e$	$1 - e \\ e^2 \\ e(1 - e)$	

<u>Note</u>: Other observes s = 1 with probability a in $(0, \frac{1}{2})$ when v = 0, and observes s = 0 with probability a when $v = v_{H}$. Other chooses his less preferred action with probability $\alpha = a(1 - e) + e(1 - a) = e + a - 2ae$.

Figure 5: PBE Example

Parameter Values: a = 0.1, e = 0.05, c = 0.5, $v_H = 2$



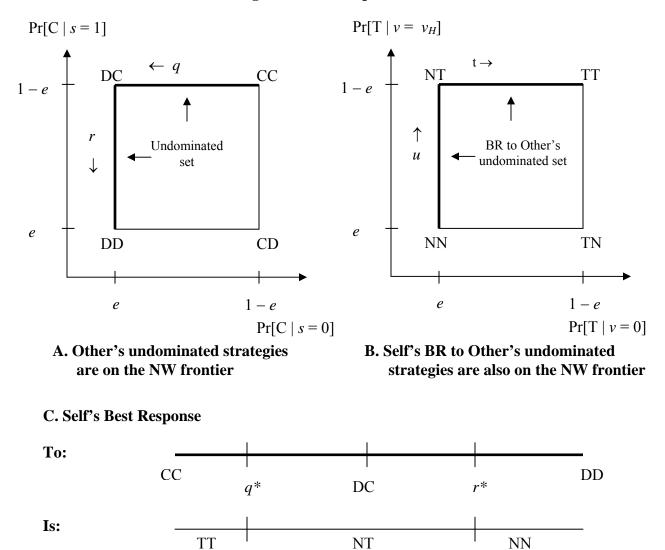
<u>Note</u>: The vertical axis conflates q and r and so has no meaningful scale, but the vertical segments reflect the fact that the GH equilibrium coincides with GP at q=0 and with GM at q=q*, while the BH equilibrium coincides with BP at r=1 and with BM at r=r*.

	Fitness	Value in example		
	Non-vengeful type v = 0	Vengeful type $v = v_H$	Non-vengeful type $v = 0$	Vengeful type $v = v_H$
Separating	$e(2\alpha-1)$	$(1-e)(1-(2+v_H)\alpha)$	- 0.036	0.418
Good Pooling	(1-e)(1-2e)	$(1-e)(1-(2+v_H)e)$	0.855	0.760
Bad Pooling	-e(1-2e)	$-e(1+v_H-(2+v_H)e)$	- 0.045	-0.140
Good Mix	$(1-e)[1-2e-2q(1-e-\alpha)]$	$(1-e)[1-(2+v_H)e-q\alpha (2+v_H) (1-2e)]$	0	0.608
Bad Mix	$e[-(1-2e)+2(1-r)(1-\alpha-e)]$	$(1-e)[1-(2+v_H)\alpha - r((2+v_H)(1-\alpha-2e)+2e)]$	-0.646	-2.242

Table 2: PBE Calculations

<u>Notes:</u> Example parameter values are a = 0.1, e = 0.05, c = 0.5, $v_H = 2$. The hybrid equilibria will involve the fitness functions indicated for the corresponding mixed equilibria, with q and r varying within their ranges rather than fixed at particular numerical values.

Figure 6: Best Responses and PBE



D. Other's Best Response depends on L(x)

