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Physical processes of weathering:
Fragmentation and breakdown of rocks and other particles

without any chemical changes.

1. Temperature: mediate the breakdown of rocks and particles;
2. Motion by water, ice and wind,;
3. Activities of plant roots and animals.

Note: the rate of physical weathering is often difficult to be determined
separately because many other kinds of weathering are intimately coupled with
physical weathering.



Chemical processes of weathering:
Weathering from chemical reactions.

1. H,CO, and other acid volatiles
2. Hydration

3. Hydrolysis

4. Dissolution

5. Oxidation-reduction (e.g., S, Fe)
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Figure 1.4 The interaction between the carbonate and the silicate cycles at the surface of the Earth. Long-term control of atmospheric CO, is achieved by
dissolution of CO; in surface waters and its participation in the weathering of rocks. This carbon is carried to the sea as bicarbonate (HCO3), and it is eventually
buried as part of carbonate sediments in the oceanic crust. CO, is released back to the atmosphere when these rocks undergo metamorphism at high temperature

and pressures deep in the Earth. Modified from Kasting et al. (1988).



Biological processes of weathering:
Weathering caused by biological activities.

1. Breaking force of root growth

2. CO, production
3. Organic acids from roots and litter

4. Activities of soil animals
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et al. (1983).



Weathering rates

1. Types of minerals,
2. climate

3. Diota,

4. topography

5. time
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Figure 4.2 Loss of silicon (SiO,) in runoff as a function of mean annual temperature and
precipitation in various areas of the world. Modified from White and Blum (1995).
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Figure 4.15 The depth to the peak content of clay in the soil profile, an index of weathering
and soil development, decreases from east to west across the Great Plains of the United States
as a function of the decrease in mean annual precipitation. From Honeycutt et al. (1990).
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Table 4.2 Chemical Composition of Precipitation, Soil Solutions, and Groundwater in a
175-yr-old Abies amabilis Stand in Northern Washington®

Total
Total Soluble ions (mg/liter) (mg/liter)
cations
Solution pH (mEq/liter) Fe Si Al N P
Precipitation
Above canopy 5.8 0.03 <0.01 0.09 0.03 0.60 0.01
Below canopy 5.0 0.10 0.02 0.09 0.06 0.40 0.05
Forest floor 4.7 0.14 0.04 3.50 0.79 0.54 0.04
Soil
15 cm E 4.6 0.12 0.04 3.55 0.50 0.41 0.02
30 ¢cm B, 5.0 0.08 0.01 3.87 0.27 0.20 0.02
60 cm B3 5.6 0.25 0.02 2.90 0.58 0.37 0.03
Groundwater 6.2 0.26 0.01 4.29 0.02 0.14 0.01

“Data from Ugolini et al. (1977), Soil Sci. 124, 291-302. Copyright (1977) Williams &
Wilkins.



Table 4.5 Inputs and Outputs of Elements from the Hubbard Brook
Experimental Forest, New Hampshire*

Inputs (%)

Atmosphere Weathering Output as a percent of mput
Ca 9 91 59
Mg 15 85 78
K 11 89 24
Fe 0 100 25
B 1 99 1
5 96 -+ 90
N 100 0 19
Na 22 78 98
il 100 0 74

“Data from Likens et al. (1981).



TaBLE 20. Differential Chemical Weathering at Hubbard Brook.

A B
Annual
release from Amount
Abundance bedrock by contained in Differential
in bedrock?, weathering, ® 1,500 kg of weathering ratio® =
Element % kg/ha bedrock, kg (A/B) x 100, %
Ca?r 1.4 211 21.1 100
Na* 1.6 5.8 24 1 24
Mg?* 1.1 3.5 16.5 21
K 2.9 7.1 43.6 16
ARt 8.3 1.9 124.8 2
Sitt 30.7 18.1¢ 461.7 2

“Taken from Johnson et al. (1968).

®Based on net output of dissolved substances (Table 11) plus living and dead biomass accumulation, which for
Ca?, Na’, Mg?", and K" is 9.5, 0.17, 0.9, and 6.1 kg/hayr, respectively.

‘Normalized to calcium, i.e., assuming the complete extraction of calcium from 1,500 kg of bedrock.

JAssuming that dissolved silica is in the form of SiO, (Table 11), and 0.1 kg Si per hectare is exported in stream
water as organic particulate matter.



Table 4.6 Net Transport (Export Minus Atmospheric Deposition) of Major Ions, Soluble
Silica, and Suspended Solids from Various Watersheds of Forested Ecosystems”

Gambia Hubbard
Watershed Caura River, River, Catoctin Mtns., Brook,
characteristics Venezuela W. Africa Maryland New Hampshire
Size (km?) 47,500 42,000 5.5 2
Precipitation (cm) 450 94 112 130
Vegetation Tropical Savanna Temperate Temperate
forest forest forest forest
Net dissolved transport
(kg ha™! yr™)
Na 19.4 3.9 -3 5.9
K 13.6 1.4 14.1 1.5
Ca 14.2 4.0 11.9 11.7
Mg 5.7 2.0 15.6 g7
HCOs35 124.0 20.3 78.1 7.7
CI- - 1.4 0.6 16.6 -1
SO; 1.5 0.4 21.2 14.8
S10, 195.7 15.0 56.1 37.7
Total transport 8372.7 47.6 220.9 80.4
(kg ha™' yr™')

“Modified from Lewis et al. (1987).



TABLE 4.9 Sources of Major Elements in World River Waters (in percent of actual concentraticns)

Atmospheric iz, -
Element cyclic salt Carbonates Silicates Evaporites Pollution
Ca** 0.1 65 18 8 9
HCO, <1 61 37 0 2
Na™ 8 0 22 42 28
I 13 0 0 57 30
SO 2 0 u 22 43
Mg** 2 36 54 <1 8
K™ 1 )] R7 A 7
H,4SiO, <1 0 99+ 0 J

“ SOF” is also derived from the weathering of pyrite.
Source: From Berner and Berner (1987). Used with permission a_f Prentice Hall.



TABLE 4.8 Chemical and Mechanical Denudation of the Continents

Chemical denudation” ] Mechanical denudation”
Total Per unit area Total Per unit area Ratio mechanical/
Continent (10" g/yr) (kgha "yr ") (10" g/yr) (kg ha "yr ) chemical
N. America 7.0 330 4.6 840 2.1
S. America 5.5 280 17.9 1000 3.3
Asia 14.9 320 94.3 3040 6.3
Africa 7.1 240 53 350 0.7
FEurope 4.6 42(0) 2.3 500 0.5
Australia 0.2 20 0.6 280 3.0
Total 39.3 267 135.0 918 3.4

4 SQource: From Garrels and MacKenzie (1971).
® Source: From Milliman and Meade (1982).
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Why are these weathering rates important to be known?
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Soil formation processes

What is soil formation? Most soils are mineral
soils formed by the weathering of solid rock masses into
unconsolidated materials, except for organic soils that
mostly develop from plant residues.

Soil formation consists of two inter-connected parts: (1)
the production and accumulation of unconsolidated
materials by weathering and subseqguent movements;
and (2) horizon development involving changes within
the loose material over time.



ADDITIONS

Precipitation (including
ions and solid particles);

organic matter
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Soil forming factors
Parent materials (rocks, loess, glacial till, alluvium, etc)

Climate (precipitation, temperature, wind, etc )

Biota (organic and living)

Topography (or relief, modify water and temperature)
Time (without time, nothing changes)

Interactions of all
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dunes in New Zealand. Modified from Walker and Syers (1976).



Types of soils

In general, soils and vegetation are co-evolving through time.
They are entangled parts of terrestrial ecosystems often with
distinctive features associated with each particular coupling
between the two. Understanding and discussion of the relationship
between soils and vegetation are inevitably imbedded in their
climate and other environmental conditions.



Plate 3: Aridisols
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late 9: Oxisols




Soil properties:
Physical: e.g., texture, structure and bulk density
Chemical: e.g., pH, CEC and Redox potential

Biological: e.g., respiration, fertility and food webs



Solil particle sizes
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Soil Texture Triangle

sandy
< clay loam

Sand Separate, %
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Soil Bulk Density is defined as the mass of a unit
volume of dry soil with preserved air pore space.
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What is CEC (Cation Exchange Capacity)?

Surfaces of clay minerals and humus usually have negative charges. These charges
attract or hold positively charged ions (CATIONS) in equilibrium with other cations
In solution. The replacement of adsorbed cations by other cations in solution is called
cation exchange. Cation exchange is controlled by (1) type of cations, and (2) their
concentration relative to concentrations of other cations in the solution and on the
exchangeable surfaces. All cation exchange processes are REVERSIBLE reactions,
and take place following the principle of charge equivalence.

Types of Cations:
The strength of cation adsorption increases as (1) the charge of the cation increases;
and as (2) the radius of the hydrated cation decreases:

N,* < K*=NH," < Mg?" < Ca?* < AP¥* < H*

Cation Exchange Capacity (CEC) is the total quantity of exchangeable cation sites
(mole of charge) per unit weight of dry soil, often expressed in cmol /kg.
(1 cmol /kg = 1 milliequivalent /100g).
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Soil’s role in Biogeochemistry

1. Vital compartment of biogeochemical processes

2. Vulnerable film of the planet Earth

3. The most important source of nutrients in the Biosphere

4. Soll links the atmosphere, the hydrosphere and the lithosphere.
5. Soil supports 50% of the primary production on Earth

6. More???
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Fig. 1. The distribution of large, intensive, rain-
fed dryland agricultural systems (orange shad-
ing) and irrigated wetland systems (blue shad-
ing) across the Hawaiian archipelago [updated
from (70)]. Large dryland systems mostly were
confined to the younger volcanoes on the is-
lands of Maui and Hawai'i.




Fig. 2. Rainfall in leeward
Kohala, and the location of
the Kohala field system
and the Kohala climate
transect. Solid black lines
represent 100-m elevation
contours, and red lines rep-
resent rainfall isohyets. The
field system (shaded area)
reaches uphill from the
coast on the north into the
rain shadow of Kohala
Mountain, with its lower
boundary corresponding to
a median annual precipita-
tion near 750 mm. The red
points represent soil
samples collected along
multiple transects across
the field system, and the
blue points represent the
Kohala climate transect
(29) to the south of the
field system.
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Fig. 3. Soil properties along two transects across the
leeward Kohala field system, Hawai'i. One transect
lies on 150,000-year-old Hawi substrate (O) and the
other lies on 400,000-year-old Pololu substrate (@).
Dashed and solid vertical lines represent the bound-
aries of the field system on the Hawi and Pololu
substrates, respectively. (A) Base saturation. (B) Res-
in-extractable P. (C) Total P as a percentage of the P
in basaltic parent material, calculated as described in
(27). Results from all of the sample points in Fig. 1
are summarized in table S1.
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Fig. 4. Causes of P enrichment within the Kohala
field system. (A) The percentage of P remaining in
soils along the Kohala climate transect, outside
the agricultural field system to the south (see Fig.
2). (B) The percentage of P remaining in surface
soils within the agricultural system (lines con-
necting symbols) versus that in surface soils that
were buried below field walls (unconnected sym-
bols), along the upper portions of transects on the
younger Hawi substrate (O) and on older Pololu
substrate (@).
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Figuve 9.10 Generalised model of erosional intensity and sources since Mesolithic times in southern Scania, Sweden.
Redrawn after Dearing (1991).
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Figure 4.12 Sequence of soil age and formation on alluvial material in the Chihuahuan
desert of New Mexico. From Lajtha and Schlesinger (1988).
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