Phosphorus Biogeochemistry in the Everglades
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Florida’s Everglades is a region of broad, slow-moving sheets of water flowing southward
over low-lying areas from Lake Okeechobee to the Gulf of Mexico. In places this
remarkable ‘river of grass’ is 80 kilometers wide. These images from the Multi-angle
Imaging SpectroRadiometer show the Everglades region on January 16, 2002. Each image
covers an area measuring 191 kilometers x 205 kilometers.
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From: David McCally, The Everglades: An environmental Hlstory University Press of Florida. 1999
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The Everglades is unique:

1. Habitat heterogeneity (e.g., tree islands, prairies, etc);

Large spatial extent;

3. Distinctive hydrologic regime (e.g., small and graduate
elevation gradient, little external water input, wet-dry
cycle, etc.); and

4. A high degree of P-limitation for the less disturbed
areas (Limestone, little external input, peat
accumulation, etc.).
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sloughs: main routes of moving water through the Everglades.

Taylor Slough
courtesy U.S. Geological Survey
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pinelands: dominated by slash pines, this habitat has the richest diversity in the Everglades.
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The wet-dry cycle




Draining the Everglades
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From: David McCaIIy, The Everglades An environmental History. University Press of Florida. 1999
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Canals built during 1913-1928
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From: David McCally, The Everglades: An environmental History. University Press of Florida. 1999
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From: David McCally, The Everglades: An environmental History. University Press of Florida. 1999






What has happened to the Everglades after these hydrologic alterations?

Accelerated agricultural development
Establishment of urban areas

Much increased accessibility

Less water level fluctuation, reduced wet-dry
cycles

Accelerated decomposition of SOM/peat materials
Sharp decline of nesting birds, less nutrient input
from bird droppings
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Figure 6.3. Sequence of subsidence in the Everglades. Source: John C. Stephens, “Sub-
sidence of Organic Soils in the Florida Everglades—A Review and Update,” in Environ-
ments of South Florida Present and Past IT, Patrick J. Gleason, ed. (Miami: Miami Geo-

logical Society, 1984), fig. 2, p. 383. Reprinted with permission.

From: David McCally, The Everglades: An environmental History. University Press of Florida. 1999



Fixation and Mobilization of Phosphorus

Phosphorus is easily fixed by chemical reactions with Ca?+, Mg2*, Fe2* Al 3* etc.
Phosphorus fixation is pH-dependent, and is the process that removes P from
active pools. Both too high and too low of pH values can resulted in P fixation,
for example:

2P0 3+ + 3Ca?* (or Mg?*, Fe?* etc) --> Ca,(PO,),
This is solely a chemical process.

Although the total P content of soils is large, in most soils only a small fraction is
available to biota, primarily because of chemical fixation.

Microbes play a crucial role in the transforming process from organic P to
Inorganic P, and in mobilizing chemically-fixed P (mycorrhizal roots and other
rhizosphere activities).



Chemical P fixation is pH-dependent.
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Phosphorus enrichnment near EAA
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Figure 1. Location of WCA-2A within the remnant Everglades (shaded area). System of canals and levees is shown as a network of solid black lines.
Diagram of WCA-2A shows inflow structures and the sampling area within the marsh (hatched area).
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Figure 5. Changes in annual TP load entering the study area as canal inflows during the period of
record. Load is presented for three structures (labeled A, C and D) and the total of the three (T). Lines
show the smoothed fit. (Smith and McCormick 2001. Environ. Monitoring & Assessmnt

68:153-176)
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Figure 6. Changes in annual mean water-column TP during the period of record considered in this
study. The line shows the best-fit quadratic regression model (R2 =0.70, F = 20.18, p = 0.0001 for
log-transformed TP); the linear model was not statistically significant. (Smith and McCormick
2001. Environ. Monitoring & Assessmnt 68:153-176)
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Figure 7. Variation in annual mean log water-column TP concentration in relation to annual mean
depth. Lines show best-fit linear (R2 = 0.37, F = 11.75, p = 0.0032 for log-transformed TP) and

quadratic (R2 = 0.49, F = 7.74, p = 0.0045, for log-transformed TP regression models. (Smith and
McCormick 2001. Environ. Monitoring & Assessmnt 68:153-176)
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Figure 9. Estimated distance from canal inflows where water-column TP is20 g L-1 on
each sampling date. Curves are plotted for the best-fit linear and quadratic regression and
for the smoothed fit. (Smith and McCormick 2001. Environ. Monitoring & Assessmnt
68:153-176)



What cause the P-enrichment in the Everglades?



Shark River
Slough

Gl of Mexioo

From: Noe et al. 2000. Ecosystem 4:603-624




40 —
20 - i
® ®
0 | ™ I | T
0 2 4 6 8 10 12

Distance from input structures (km) for WCA-2A

From: Vaithiyanathan & Richardson 1997. The Sci. of Total Environ. 205:81-95
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From: Vaithiyanathan & Richardson 1997. The Sci. of Total Environ. 205:81-95



250
@ 8691

WCA-2A M- 9395

200

50 - ‘.
...’.:::::"". ------- il [
0 ' ] ‘ i I
0 2 4 ° 8 ’ !

Distance from input structures (km)
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PO4-P 74.7%

PARTICULATE-P. 2.4%

DOP 22.9 %

Figure 4. Average proportion of particulate, dissolved organic, and dissolved
inorganic P (PO4-P) in surface water in three plots in the un-enriched (southern
areas) of Water Conservation Area 2A over the sampling period. Total P
concentration was 30 g L' (£ 16 SD). (Qualls & Richardson 2002.
Biogeochemistry 62(2):197-229)



Phosphorus enrichment, drainage, agricultural activities, and
urban development has resulted in:

1. Saw grass (Cladium jamaicense) being replaced by cattails (Typha spp. );

2. Periphyton mats (a community of cyanobacteria/algae, bacteria, microfauna) being
reduced by the shading of Typha, which may form a positive feedback on P-
enrichment because periphyton is more effective in removing P from the water;

3. P-enrichment also change the composition of periphyton mats from original
cyanobacteria-dominated production to green algae-based production;

4.  An increase in secondary production (e.g., fish);

5.  But the number of nesting birds has declined by 90% or more since 1930s;

Therefore, human development has changed the Everglades
ecosystem to a very different one.



Cladium jamaicense Crantz Typha latifolia
Saw Grass
Cyperaceae: Sedge Family

Family: Typhaceae

Typha domingensis — (Cattail family) Typha angustifolia




Table 2. Meta-analysis of Published Data for the Everglades and Other Wetlands

Everglades

Bedford and
Component Others 1999 Typha Typha/Cladium Cladium Slough/Wet Prairie
Water TP — 76.1 + 38.8 (5)2 423 + 36.2 (5)° 10.8 + 4.8 (5)° 10.4 + 2.5 (8)?
Water N:P — 94.1 + 52.6 (4)®  228.0 = 221.1 (4)°°  542.0 = 774.8 (3) 377.6 * 164.0 (7)°
Periphyton TP — 2885.0 = 3049.4 (2)* 898.0 = 2884.3 (2)® 242.8 = 337.1 (3)¢ 242.8 = 120.1 (6)°
Periphyton N:P —_ —_ 86.0 165.0 151.7 £ 50.2 (4)
Soil TP 900 = 590 (109) 1402.9 = 165.6 (15)* 947.3 + 230.5 (10)® 533.2 + 94.0 (20)° 467.1 = 116.1 (10)¢
Soil TP load — 0.60 = 0.31 (4)° 0.38 + 0.98 (2)2 0.09 + 0.04 (10)® —
Soil N:P 47.1 = 1.3 (109) 49.0 = 10.3 (10)® 77.6 £ 20.5 (6)° 144.6 = 30.2 (12)® 213.0 = 80.1 (4)°
Macrophyte TP 1400 = 200 (65)  1509.3 * 214.6 (3)°  515.0 = 346.7 (4)®  193.3 = 32.7(7)  396.5 * 2268.0 (2)"°
Macrophyte N:P 32,9 + 3.8 (48) 16.7 = 9.0 (3)° 40.2 * 21.8 (4)° 76.7 + 26.2 (7)¢  62.2 + 53.3 (3)b¢

Mean *+ 95% confidence interval (CI) is presented with the sample size (number of studies) in parentheses for TP concentration (mg L™ or pg g~ '), molar N:P ratio, and
annal seil TP load (g m™= y=1).

Different letters indicate that a significant differerice (o << 0.03) exists among Everglades habitats, as determined by Tukey's post hoc tests.

Summary statistics are calculated from the analysis by Bedford and others (1999) of nutrient concentrations in temperate North American wetlands. Macrophyte N:P data from
Bedford and others (1999) only include values from peat-based wetlands.

The mean is presented when n = 1; — dashes indicate that data was not found in the literature.

Bolded cells indicate that the 95% CI of a parameter in the Everglades and in temperate North American wetlands (Bedford and others 1999) do not overlap.

From: Noe et al. 2000. Ecosystem 4:603-624



The ultimate question:

How can we balance the need for development with
the need of maintaining healthy natural ecosystems?
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