IP-Tube T1/E1 Bandwidth Utilization

The encapsulation of T1/E1 data into IP/UDP packets for transmission over ethernet adds overhead due to the Ethernet, IP, and UDP headers - a total of 44 bytes. This 44 byte overhead should be taken into account when considering ethernet bandwidth utilization.

NOTES:

- A DS0 is a 64 Kbps Voice/Data circuit.
- A Full T1 circuit is configured for 24 DS0s. The T1 signal is divided into frames, with one byte (8 bits) allocated for each configured DS0 and 1 framing bit for a total of 193 bits per frame $=\left(244^{*} 8\right)+1$.
- A Full E1 circuit is configured for 31 DS0s. The E1 signal is divided into frames, with one byte (8 bits) allocated for each configured DS0 and 1 framing/signaling byte (8 bits) for a total of 32 bytes or 256 bits per frame.

The Tube Frames-per-Packet (FPP) setting controls the number of T1/E1 data frames to be encapsulated in a single IP/UDP packet. Increasing FPP reduces the effect of this 44 byte overhead. The encapsulation overhead can be expressed as a ratio of (Data + Overhead)/(Data) and can be used to calculate the ethernet bandwidth utilization for a given T1/E1 configuration.
(((\#DSO's * 8) + TubeFraming) * FPP) + 352) / ((\#DSO's * 8) * FPP)
where:

- DS0's is the number of 64 Kbps channels configured on T1/E1 interface
- Tube Framing is $\mathbf{0}$ for Transparent, $\mathbf{1}$ for T1Framed, $\mathbf{8}$ for E1Framed
- FPP is the configured Frames Per packet
- 352 = number of bits in the 44 byte overhead

T1/E1	\#DSOs	T1/E1 BW (Kbps)	Tube Framing	FPP	UDP Pkt Size (Bytes)	Overhead Ratio	$\%$ Ovrhead	IP B/W
(Kbps)								

