The MIU approximation (chapter 2, 3rd ed.)

Carl E. Walsh
miu_dynamics_3e.tex

November 18, 2008

1 Introduction

This note provides more details on the derivation of the linear approximation
used in Chapter 2 (3rd ed.) to study dynamics in the basic money-in-the-utility

function (MIU) model and on solving linear, rational expectations models.

2 The MIU model

The basic equilibrium conditions of the MIU model of Chapter 2 are given by
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3 The linear approximation

The next step is to derive first-order linear approximations to the model’s equi-
librium conditions.

3.1 Functional forms

The utility function:

1o
[aC’tl_b +(1- a)m},_b] =0
1-®

u(cp,me, 1 —mny) =

+ U {(1 _1 Ti}ln} .

The production function:

- We 11—«
yr = ek ny

3.2 Production function

2t L.« 11—«
yr = €7k ny

v () = () B (TR ) (009! (i)'
Since .
yss — (kss)fl (nss) —017
(L4g) = (4z) (1T+ko) 1+a) ™
~ 1+ak_q+ (1—a)ng + 2
yt = Oé]%t_l —+ (1 — O[)’flt + Zt (11)
3.3 Goods market clearing

ke =1 —=0)ki—1+y: —

oo (1 + l%t) — (11— 8k (1 + /%H) oy (14 Gr)
(14 &)

N N S8 . CSS .
ke = (L= 0)ke—1 + (i“) Yt — (kSS) Ct

SSs . CSS R N N

2 (1+ dy) = k* (1 + lét) — (1 - 8)k* (1 + l%t_l)

or

In addition,
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3.4 Labor hours choice
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3.5 DMarginal utility of consumption
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3.6 Marginal product, real return condition
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3.7 Money holdings
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3.8 Euler condition
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3.9 Fisher equation
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3.10 Real money growth
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3.11 Collecting all equations

Unknowns: ¢y, l%t, Mg, Ty, Ct, S\t, 7, 14, Ty, My — 10 variables.
Ten equations, (11) - (20) plus the specification of the processes governing
the exogenous productivity and money growth disturbances.
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4 Solving Linear Rational Expectations Models
with Forward-Looking Variables

This sections provides a brief overview of the approach used to solve linear ratio-
nal expectations models numerically. The basic reference is Blanchard and Kahn
(1980). This discussion follows Uhlig (1999), to which the reader is referred for
more details. General discussions can be found in Farmer (1993, chapter 3)
or the user’s guide in Hoover, Hartley, and Salyer (1998). See also Turnovsky
(1995), Wickens (2008, Appendex 15.8), and Cochrane (2007). Further details
can be found in Uhlig (1999), who also provides the software tools to solve linear
rational expectations models in Matlab. Standard solution methods require that
the model be written in state-space form. Dynare is a popular matlab-based
program for solving models that allows the models to be written in a more
natural form. Dynare is also popular for and estimating rational expectations
models and for obtaining second-order approximations to non-linear models.
The focus in these notes is on first-order linear approximations to non-linear
structural equations.

Remark 1 Work by King, et al and more recently Christiano?

Let X, denote variables predetermined at time t, while x; denote non-
predetermined variables; z; are forward-looking variables, also called jump vari-
ables. By predetermined, we mean that X; is known at time ¢ and not jointly
determined with x;, while x; are endogenously determined at time ¢. Let n;
denote the number of predetermined variables and ny the number of forward-
looking variables. We assume the model can be written in the state-spate form
given by
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where A; is non-singular. (See King, XXX (XXXX) for a treatment of the case
in which A; is singular.) Pre-multiplying by A;l yields
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The general solution to systems such as (21) under rational expectations was
derived by Blanchard and Kahn (1980).

We can write A as Q'AQ, where A is a diagonal matrix of the eigenvalues
of A and @ is the corresponding matrix of eigenvectors. Order A so that A; is
the smallest and Ay, 4n, is the largest eigenvalue. If we premultiply (21) by @,
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where A; consists of the 77 eigenvalues on or inside the unit circle and Ao
consists of the fi5 eigenvalues outside the unit circle.
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EiPiiiv1 = NoEyPryi + Qo1 Evtpy iy

Eigenvalues and determinacy
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Since this set of equations is explosive (the elements of Ay are outside the
unit circle), it must be the case in any non-explosive equilibrium that
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Eigenvalues and determinacy

X =QuY: + Q2P (22)

e If 17 < my, or g = (ny + ng) — Ay > na, more roots outside unit circle
that there are forward looking variables. Eq. (22) must satisfy
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for the initial conditions on Xy. But this imposes more that 7; conditions
on Yy and so there will generally be no solution.

e If 7 > nq, or g = (n1 + n2) — N1 < ng, fewer roots outside unit circle
that there are forward looking variables. Eq. (22) is underdetermined.
Generally will ahve multiple solutions.

e If Ny = nq, or Ny = N9, unique solution.

5 Numerically solving the MIU model

The first step is to write the model in state space form:

Ziy1 Zy Ut+1
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where Z; is an ny X 1 vector of predetermined variables, z; is an no X 1 vector
of non-predetermined variables, w41 is an nq X 1 vector of exogenous stochastic
innovations, and A and B are conformal matrices (i.e., they are both n; +
ng X np + ny). The elements of z are often also called the forward-looking
variables. By predetermined, we mean that Z; is known at time ¢ and not

jointly determined with z;, while z; are endogenously determined at time t.
Assuming A is nonsingular, premultiply by the inverse of A to obtain
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Blanchard and Kahn (Econometrica 1980) show that a unique, stationary, ra-
tional expectations solution exists if and only if the number of eigenvalues of M

outside the unit circle is equal to ns, the number of non-predetermined variables.
We will write the model in the form
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where X is a vector of predetermined variables, x is the vector of forward-
looking or non-predetermined variables, and 1 is a vector of exogenous, serially

uncorrelated disturbances. To write the MIU model in this form, it will be
convenient to first eliminate Fyy;y1 from the equation defining the real return.
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We can do so by utilizing the production function and the AR(1) process for
the productivity shock, which implies

Etgi41 = ak; + (1—-a)Ei1 +p, 2.

From the first-order condition for the household’s supply of labor and the Euler
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5.1 Putting the model in matrix form
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6 Other approaches
6.1 Uhlig’s toolkit (Uhlig 1999)

Let z1: = (kt,mt)" be the vector of endogenous state variables, and let xo; =
(yt, ct,my T, 0,7, At)” be the vector of other endogenous variables. The equilib-
rium conditions of the MIU model can be written in the form

Az + Baig—1 + Cxor + Dp, =0

FEtfljltJrl + Gl’lt + Hxlt,1 + JEtx2t+1 + K.’Egt + M’Q/Jt =0
Vg1 = Ny + €41,

where 9, = (z,ut)’. It is assumed that C is of full column rank and that the
eigenvalues of N are all within the unit circle.

Then if an equilibrium solution to this system of equations exists, it takes
the form of stable laws of motion

1t = Prii—1 + QY

Tor = Rxyp—1 + S,

for z1; and x9;. When C is a square invertible matrix, Uhlig proves that P
satisfies the quadratic matrix equation

(F—JC'A)P*—(JC'B-G+KC'A)P-KC'B+H=0

and the equilibrium is stable if and only if all the eigenvalues of P are less than
unity in absolute value. The matrix R is given by

R=—-C Y(AP + B),
while @ and S are given by

(N'@(F—JC'A)+ I, (JR+ FP + G_KC ™' A)) vec(Q)
= wvec((JCT'D—-L)N+KC™'D— M)

and
S=-C"! (AQ + D).

Uhlig provides a fuller discussion and treats the case in which C' is [ x n with
Il >n.

6.1.1 More on eigenvalues

Consider general model of form

Y1 = Ay + Cergr. (23)
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Suppose y; is n x 1. Write A as QAQ ' where A is a diagonal matrix of the
eigenvalues of A and (@ is the corresponding matrix of eigenvectors. Then pre-
multiple (23) by Q~!, obtaining

Q 'yrr1 = AQ 'y + Q' Ceyy,

or
Zer1 = Azp + &5 (24)

where 211 = Q 'y1 and & = Q7 Ceyya.
Denote the diagonal elements of the matrix A by ;. Then (24) consists of
n equations of the form

Zig+1 = NiZit + & 441

For all [|\;|| > 1, rewrite the equation as z;; = A} "By (2,41 — &.141) and solve
forward:

1
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1 1)
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- () e
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For [|Ai]| < 1, solve z; 441 = Nizi¢ + &4 backward:

Aizit—1 4 & = Ni (Niziv—2 + E1) + Aily
> A
=0

Choose the unique locally-bounded equilibrium be setting the variables and
shocks associated with the forward-looking variables to zero. Write the variables
associated with the eigenvalues less than 1 as

Zit

=Nz, +& (25)

Let Q* be the columns of @) corresponding to the eigenvalues less than 1.
Then the solution is (25) and

Yt = Q*Z:

6.2 The optimal linear regulator approach

Gerali and Lippi (2XXX) discuss an approach to solving linear rational expec-
tations models that build on the optimal linear regulator approach of Sargent
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(XXXX). Consider a system of equations that can be written in the following

state-space form:
aal Xeev | Cap| X ] Ve |
Etxt+1 Tt 0

where X consists of the ny predetermined variables, = the no forward looking
variables, and v the stochastic innovation.
The system can be re-written as

Xttt A Ap Xy €41
= 26
[ Eixiqq } { Axp Ap Ty * 0 (26)
where A A
11 A —1
=A=(AA AB.
{ A1 Ago ] (44)

and AH is ny Xny, A12 is n1 X ng, A21 is ng X Ny, and A22 is No X Na.
In equilibrium,
Ti41 = Gt+1Xt+1~
Since (26) implies
Xip1 = Ann Xy + A1ax + €441

and
Eixi 1 = A1 Xy + Agoxy,

it follows that
By = Ann Xy + Azoxy = G X1 = Gy (An Xy + Arzay) -
Solving for z,
2 = (Azs — Gry1 A1) " (GrrrAn — Aar) X,
where we assume Ags — Gyy1 A1 is non-singular. Hence,
mp = G Xy = (Ao — Gry1 A1) ' (Gry1Ain — Az1) Xy
The solution is given by the fixed point G of

Gy = (Azs — Gry1A12) " (Gr1An — An). (27)
Given the solution G to (27), the equilibrium is
ry = GX4
and
Xiv1 = AnXi+ Apxri e = A Xe + AGXy + e
= (A +A1G) X, + e

= HXt + €41,

where H = A11 + A12G.
The model is solved by iterating on (27) to obtain G. Given G, H can be
easily calculated.
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