Structures and Cytotoxic Properties of Sponge-Derived Bisannulated Acridines

Zia Thale, ^a Tyler Johnson, ^a Karen Tenney, ^a Philip J. Wenzel, ^a Emil Lobkovsky, ^b Jon Clardy, ^b Joe Media, ^c Halina Pietraszkewicz, ^c Frederick A. Valeriote, ^c and Phillip Crews^{*,a}

^aDepartment of Chemistry and Biochemistry and Institute for Marine Sciences, University of California, Santa Cruz, California 95064.

^bDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 41853-1301.

^cJosephine Ford Cancer Center, Henry Ford Health Systems, Detroit, Michigan 48202 file name: SI_joc0264590_r2

Supporting Information

Table S1. Zone units in the disk diffusion soft agar colony formation assay.

Table S2. Summary of sponge-derived bisannulated acridines.

Table S3. Crystal data and structure refinement for aplkinidine (7).

Table S4. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2 x 10^3)$

for aplkinidine (7). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S5. Bond lengths [Å] and angles [°] for alpkinidine (7).

Table S6. Anisotropic displacement parameters (Å²x10³) for aplkinidine (7). The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U^{11}+...+2hka^{*}b^{*}U^{12}]$.

Table S7. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for aplkinidine (7).

Figure S1. ¹H NMR spectrum of 5-methoxy neoamphimedine (4), DMSO, 500MHz.

Figure S2. ¹³C NMR spectrum of 5-methoxy neoamphimedine (4), DMSO, 125MHz.

Figure S3. ¹H NMR spectrum of neoamphimedine Y (**5**), CDCl₃:MeOH-d₄ 2:1, 500MHz.

Figure S4. ¹³C NMR spectrum of neoamphimedine Y (5), CDCl₃:MeOH-d₄ 2:1, 125MHz.

Figure S5. ¹H NMR spectrum of neoamphimedine Z (6), DMSO, 500MHz.

Figure S6. ¹³C NMR spectrum of neoamphimedine Z (6), DMSO, 125MHz.

Figure S7. ¹H-¹H gCOSY NMR spectrum of neoamphimedine Z (6), DMSO, 500MHz.

Figure S8. gHMQC NMR spectrum of neoamphimedine Z (6), DMSO, 500MHz.

Figure S9. gHMBC NMR spectrum of neoamphimedine Z (6), DMSO, 500MHz.

Figure S10. Long range gHMBC NMR spectrum of neoamphimedine Z (6), DMSO, 500MHz.

Figure S11. ¹H NMR spectrum of aplkinidine (**7**), CDCl₃, 500MHz.

Figure S12. ¹H-¹H COSY NMR spectrum of aplkinidine (7), CDCl₃, 500MHz.

Figure S13. ACD calculated spectrum of 5-methoxy neoamphimedine.

Figure S14. ACD calculated spectrum of 6-methoxy neoamphimedine.

Chart S1. Bioassay guided isolation of 2 and 4 from *Xestospongia* cf. *exigua* (91608)

Chart S2. Bioassay guided isolation of 2, 4, 5, 6, and 7 from *Xestospongia* cf. *carbonaria* (94634).

Chart S3. Semi-empirical and ab initio quantum mechanical energy calculations for tautomers. **Scheme S1.** Computer-generated perspective drawing (all hydrogens shown) of alpkinidine (7) based on the X-ray results.

Scheme S2. Extending the Original biosynthetic pathway for shermilamine B (14) to rationalize the formation of neoamphimedine (2) and alpkinidine (7).

Table S1. Cytotoxicity in zone units from the disk diffusion soft agar colony formation assay.^a

		Murine			Human			
	Extracts	L1210	C38	CFU-GM	H116	H125	CEM	CFU-GM
X. cf. exigua								
(91608)	FD	550	700	300	550	600	300	300
	FM	350	400	250	600	700	500	
	WB	300	550	300	250	350	300	
	DMM	300	650	200	400	500	300	
X. cf. cabonaria								
(94634)	FD	350	500	350	400	650	250	600
	FM	100	150	0	150	300	700	
	WB	150	200	50	150	400	200	
	DMM	550	650	350	650	750	350	500
	DMM HP1	0	100		0	0	ND*	
	DMM HP2	400	650	100	300	600	0	
	DMM HP3	700	1050	500	600	800	299	
	DMM HP4	300	700	250	300	550	0	
Amphimedine (1)		50	350	0	150	200	ND*	
Neoamphimedine (2)		350	350	100	350	450	100	100
5-methoxy-neoamphimedine (4)		550	>1000	400	660	800		-00
Alpkinidine (7)		100	400	100	100	150	ND*	

^adose: extracts = $50 \mu g/disk$, pure compounds = $5 \mu g/disk$; 200 zone units = 6mm. Murine cell lines: L1210 (lymphocytic leukemia), C38 (colon adenocarcinoma), CFU-GM (colony-forming unit granulocyte macrophage; normal hematopoietic); Human cell lines: H116 (colon), H125 (lung), CEM (leukemia), CFU-GM (colony-forming unit-granulocyte macrophage; normal hematopoietic).

*Not determined: zone units for H116 or H123 <250 at 50 µg/disk.

Ring System	Name	Taxonomic ID	Collection site	Ref (s)
I-A	Amphimedine (1)	Amphimedon sp.	Guam Island	a, b, c
		Xestospongia cf. carbonaria	Indonesia	
			Philippines	
	Neoamphimedine (3)	Xestospongia cf. carbonaria	Palau	b, c
			Philippines	
	Deoxyamphimedine	Xestospongia cf. carbonaria	Philippines	b, c
	Petrosamine	Petrosia sp.	Belize	d
I-B	Meridine [*]	Corticum sp.	Bahamas	e, f, g
I-C	11-Hydroxyascididemin [*]	Biemna sp.	Japan	g, h, i
	(=cystodamine)			
	8,9-dihydro-11-hydroxyascididemin		Japan	i
		Biemna sp.		
I-D	Kuanoniamines C^*		Bahamas, Micronesia	j, k, l, m
	(=dercitamide)	Stelletta sp.	Palau	
		Oceanapia sp.		
		Oceanapia sagittaria		
	Kuanoniamines D [*]		Micronesia	j, l
		Oceanapia sp.		
	N-Deacteylkuanoniamine C		Micronesia	1
		<i>Oceanapia</i> sp.		
	Nordercitin	Stelleta sp.	Bahamas	n
	Dercitamine	Dercitus sp.	Bahamas	n, k
		Stelleta sp.		
	Dercitin	Dercitus sp.	Bahamas	0
	Sagitol		Palau	m
		Oceanapia sp.		
II-E	Plakinidine A $(2)^{\#}$		Vanuatu	р
			Fiji	
		Plakortis sp.		
	Plakinidine B		Vanuatu	q
			Fiji	
		Plakortis sp.		
	Plakinidine C	_	Fiji	r
		Plakotis sp.	-	

Table S2. Summary of sponge-derived bisannulated acridines.

*The compound has also been isolated from a tunicate.

[#]Other members of the series have been reported from a tunicate.

a) Schmitz, F.J.; Agarwal, S.K.; Gunasekera, S.P.; Schmidt, P.G.; Shoolery, J.N. J. Am. Chem. Soc. 1983, 105, 4835-4836.; b) De Guzman, F.S.; Carte, B.; Troupe, N.; Faulkner, D.J.; Harper, M.K.; Concepción, G.P.; Mangalindan, G.C.; Matsumoto, S.S.; Barrows, L.R.; Ireland, C. M. J. Org. Chem. 1999, 64, 1400-1402.; c) Tasdemir, D.; Marshall, K.M.; Mangalindan, G.C.; Concepción, G.P.; Barrows, L.R.; Harper, M.K.; Ireland, C.M. J. Org. Chem. 2001, 66, 3246-3248; d) Molinski, T.F.; Fahy, E.; Faulkner, D.J.; Van Duyne, G.D.; Clardy, J. J. Org. Chem. 1988, 53, 1340-1341; e) McCarthy, P.J.; Pitts. T.P.; Gunawardana, G.P.; Kelly-Borges, M.; Pomponi, S.A. J. Nat. Prod. 1992, 5, 1664-1668; f) Schmitz, F.J.; De Guzman, F.S.; Choi, Y.-H.; Hossain, M.B.; Rizvi, S.K.; Van der Helm, D. Pure Appl. Chem. 1990, 62, 1393-1396; g) Schmitz, F.J.; De Guzman, F.S.; Hossain, M.B.; Van der Helm, D. J. Org. Chem. 1991, 56, 804-808; h) Bontemps, N.; Bonnard, I.; Banaigs, B.; Combaut, G.; Francisco, C. Tetradedron Lett. 1994, 35, 7023-7026; i) Zeng, C.M.; Ishibashi, M; Matsumoto, K.; Nakaike, S.; Kobayashi, J. Tetrahedron 1993, 49, 8337-8342; j) Carroll, A.R.; Scheuer, P.J. J. Org. Chem. 1990, 55, 4426-4431; k) Gunawardana, G.P.; Koehn, F.E.; Lee, A.Y.; Clardy, J.; He, H.-Y.; Faulkner, D.J. J. Org. Chem. 1992, 57, 1523-1526; l) Eder, C.; Schupp, P.; Proksch, P.; Wray, V.; Steube, K.; Miller, C.E.; Frobenius, W.; Herderich, M.; van Soest, R.W.M. J. Nat. Prod. 1998, 61, 301-305; m) Salomon, C.E.; Faulkner, D.J. Tetrahedron Lett. 1996, 37, 9147-9148; n) Gunawardana, G.P.; Kohmoto, S.; Burres, N.S.; Tetradedron Lett. 1989, 30, 4359-4362; o) Gunawardana, G.P.; Kohmotoa, S.; Gunasekera, S.P.; McConnell, O.J.; Koehn, F.E. J. Am. Chem. Soc. 1988, 110, 4856-4858; p) Inman, W.D.; O'Neill-Johnson, M.; Crews, P. J. Am. Chem. Soc. 1990, 112, 1-4; q) West, R.R.; Maybe, C.L.; Ireland, C.M.; Brinen, L.S.; Clardy, J. Tetrahedron Lett. 1990, 31, 3271-3274; r) Ford, P.W.; Davidson, B.S. J. Nat. Prod. 1997, 60, 1051-1053.

Table S3. Crystal data and structure refine	ment for aplkinidine (7).	
Identification code	PC#700	
Empirical formula	C19 H13 N3 O3	
Formula weight	331.32	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 7.4529(6) Å	<i>α</i> = 90°.
	b = 8.8995(7) Å	$\beta = 91.739(2)^{\circ}$.
	c = 21.6764(18) Å	$\gamma = 90^{\circ}$.
Volume	1437.1(2) Å ³	
Z	4	
Density (calculated)	1.531 Mg/m ³	
Absorption coefficient	0.107 mm ⁻¹	
F(000)	688	
Crystal size	0.80 x 0.10 x 0.05 mm ³	
Theta range for data collection	2.47 to 24.71°.	
Index ranges	-8<=h<=8, -10<=k<=10, -	-25<=l<=24
Reflections collected	10377	
Independent reflections	2454 [R(int) = 0.0644]	
Completeness to theta = 24.71°	99.9 %	
Absorption correction	SADABS	
Max. and min. transmission	0.9947 and 0.554724	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	2454 / 0 / 278	
Goodness-of-fit on F ²	0.930	
Final R indices [I>2sigma(I)]	R1 = 0.0491, $wR2 = 0.12$	15
R indices (all data)	R1 = 0.0710, $wR2 = 0.13$	56
Largest diff. peak and hole	0.233 and -0.332 e.Å ⁻³	

 Table S3. Crystal data and structure refinement for aplkinidine (7).

	Х	у	Z	U(eq)	
O(1)	4663(2)	7107(2)	696(1)	29(1)	
O(2)	4935(2)	8218(2)	1766(1)	31(1)	
O(3)	2299(2)	7963(2)	-1646(1)	34(1)	
C (1)	3806(3)	8368(2)	509(1)	22(1)	
C(2)	3495(3)	9591(2)	947(1)	22(1)	
C(3)	4087(3)	9357(2)	1579(1)	24(1)	
N(4)	3683(2)	10451(2)	2000(1)	26(1)	
C(5)	2840(3)	11763(2)	1831(1)	28(1)	
C(6)	2327(3)	12034(2)	1240(1)	26(1)	
C(7)	2637(3)	10939(2)	781(1)	22(1)	
C(8)	2053(3)	11155(2)	141(1)	22(1)	
N(9)	1252(2)	12397(2)	-73(1)	24(1)	
C(10)	753(3)	12433(2)	-686(1)	24(1)	
C (11)	-125(3)	13748(3)	-911(1)	31(1)	
C(12)	-673(3)	13856(3)	-1513(1)	35(1)	
C(13)	-403(3)	12666(3)	-1935(1)	33(1)	
C(14)	444(3)	11391(3)	-1741(1)	28(1)	
C(15)	1043(3)	11222(2)	-1116(1)	24(1)	
C(16)	1893(3)	9939(2)	-869(1)	23(1)	
C(17)	2442(3)	8455(2)	-1119(1)	24(1)	
N(18)	3195(2)	7681(2)	-617(1)	24(1)	
C(19)	3184(3)	8570(2)	-82(1)	22(1)	
C(20)	2363(3)	9932(2)	-252(1)	21(1)	
C(21)	4173(4)	10162(3)	2650(1)	38(1)	
C(22)	3858(4)	6146(2)	-655(1)	32(1)	

Table S4. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for alpkinidine (7). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.347(2)
O(2)-C(3)	1.255(3)
O(3)-C(17)	1.226(3)
C(1)-C(19)	1.362(3)
C(1)-C(2)	1.466(3)
C(2)-C(7)	1.401(3)
C(2)-C(3)	1.441(3)
C(3)-N(4)	1.375(3)
N(4)-C(5)	1.370(3)
N(4)-C(21)	1.467(3)
C(5)-C(6)	1.347(3)
C(6)-C(7)	1.416(3)
C(7)-C(8)	1.456(3)
C(8)-N(9)	1.333(3)
C(8)-C(20)	1.405(3)
N(9)-C(10)	1.368(3)
C(10)-C(11)	1.420(3)
C(10)-C(15)	1.446(3)
C(11)-C(12)	1.358(3)
C(12)-C(13)	1.418(4)
C(13)-C(14)	1.359(3)
C(14)-C(15)	1.421(3)
C(15)-C(16)	1.404(3)
C(16)-C(20)	1.373(3)
C(16)-C(17)	1.489(3)
C(17)-N(18)	1.390(3)
N(18)-C(19)	1.404(3)
N(18)-C(22)	1.456(3)
C(19)-C(20)	1.402(3)
O(1)-C(1)-C(10)	122 53(19)
O(1)-C(1)-C(2)	122.33(19) 120.4(2)
C(1)-C(1)-C(2)	120.4(2) 117 05(18)
C(19) - C(1) - C(2)	117.03(10) 110.38(10)
U(1) - U(2) - U(3)	119.30(19)

Table S5. Bond lengths [Å] and angles [°] for alpkinidine (7).

C(7)-C(2)-C(1)	123.4(2)
C(3)-C(2)-C(1)	117.26(18)
O(2)-C(3)-N(4)	118.4(2)
O(2)-C(3)-C(2)	124.06(19)
N(4)-C(3)-C(2)	117.56(18)
C(5)-N(4)-C(3)	122.22(19)
C(5)-N(4)-C(21)	120.35(19)
C(3)-N(4)-C(21)	117.43(19)
C(6)-C(5)-N(4)	121.4(2)
C(5)-C(6)-C(7)	119.8(2)
C(2)-C(7)-C(6)	119.5(2)
C(2)-C(7)-C(8)	118.57(19)
C(6)-C(7)-C(8)	121.92(19)
N(9)-C(8)-C(20)	120.8(2)
N(9)-C(8)-C(7)	124.01(19)
C(20)-C(8)-C(7)	115.21(18)
C(8)-N(9)-C(10)	117.55(18)
N(9)-C(10)-C(11)	117.5(2)
N(9)-C(10)-C(15)	124.56(19)
C(11)-C(10)-C(15)	117.9(2)
C(12)-C(11)-C(10)	120.7(2)
C(11)-C(12)-C(13)	121.5(2)
C(14)-C(13)-C(12)	119.8(3)
C(13)-C(14)-C(15)	120.9(2)
C(16)-C(15)-C(14)	125.1(2)
C(16)-C(15)-C(10)	115.8(2)
C(14)-C(15)-C(10)	119.2(2)
C(20)-C(16)-C(15)	118.30(19)
C(20)-C(16)-C(17)	106.57(18)
C(15)-C(16)-C(17)	135.1(2)
O(3)-C(17)-N(18)	125.00(19)
O(3)-C(17)-C(16)	129.7(2)
N(18)-C(17)-C(16)	105.31(18)
C(17)-N(18)-C(19)	110.75(17)
C(17)-N(18)-C(22)	123.43(19)
C(19)-N(18)-C(22)	125.8(2)

133.84(19)
119.65(18)
106.49(19)
110.87(18)
123.05(19)
126.1(2)

Symmetry transformations used to generate equivalent atoms

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}	
O(1)	36(1)	24(1)	27(1)	2(1)	1(1)	6(1)	
O(2)	37(1)	29(1)	27(1)	3(1)	1(1)	4(1)	
O(3)	41(1)	36(1)	26(1)	-8(1)	-2(1)	3(1)	
C(1)	20(1)	21(1)	25(1)	2(1)	4(1)	0(1)	
C(2)	19(1)	23(1)	24(1)	2(1)	6(1)	-5(1)	
C(3)	23(1)	24(1)	24(1)	4(1)	5(1)	-4(1)	
N(4)	33(1)	25(1)	20(1)	0(1)	3(1)	-4(1)	
C(5)	35(1)	25(1)	26(1)	-2(1)	6(1)	-2(1)	
C(6)	28(1)	24(1)	26(1)	1(1)	6(1)	2(1)	
C(7)	18(1)	23(1)	26(1)	0(1)	6(1)	-2(1)	
C(8)	17(1)	23(1)	26(1)	2(1)	6(1)	-1(1)	
N(9)	20(1)	24(1)	27(1)	1(1)	4(1)	-1(1)	
C(10)	20(1)	27(1)	24(1)	2(1)	3(1)	-3(1)	
C(11)	30(1)	29(1)	32(2)	-1(1)	0(1)	2(1)	
C(12)	37(1)	33(1)	34(2)	7(1)	-2(1)	7(1)	
C(13)	30(1)	42(1)	27(2)	6(1)	-2(1)	-1(1)	
C(14)	26(1)	31(1)	25(1)	1(1)	-1(1)	-3(1)	
C(15)	19(1)	28(1)	25(1)	2(1)	5(1)	-4(1)	
C(16)	19(1)	26(1)	24(1)	-1(1)	4(1)	-5(1)	
C(17)	22(1)	27(1)	23(1)	-3(1)	2(1)	-2(1)	
N(18)	27(1)	20(1)	24(1)	-3(1)	4(1)	1(1)	
C(19)	20(1)	21(1)	25(1)	-4(1)	5(1)	-2(1)	
C(20)	17(1)	23(1)	24(1)	-1(1)	4(1)	-4(1)	
C(21)	61(2)	29(1)	25(2)	-1(1)	-3(1)	-2(1)	
C(22)	42(2)	22(1)	31(2)	-4(1)	4(1)	4(1)	

Table S6. Anisotropic displacement parameters (Å²x 10³) for alpkinidine (7). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(1O)	4970(40)	7300(40)	1113(17)	73(11)
H(5)	2650(30)	12490(30)	2179(12)	37(7)
H(6)	1710(30)	12910(30)	1123(11)	30(6)
H(11)	-330(30)	14550(30)	-620(10)	27(6)
H(12)	-1260(30)	14750(30)	-1665(12)	41(7)
H(13)	-850(30)	12770(30)	-2365(13)	35(7)
H(14)	670(30)	10560(20)	-2034(11)	28(6)
H(21C)	3770(30)	9200(30)	2743(12)	49(8)
H(21B)	3570(40)	10950(30)	2901(13)	54(8)
H(21A)	5490(50)	10220(30)	2713(14)	66(9)
H(22C)	5150(40)	6070(30)	-515(13)	57(8)
H(22B)	3210(40)	5510(30)	-368(13)	54(8)
H(22A)	3670(40)	5820(30)	-1097(16)	67(9)

Table S7. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for alpkinidine (7).

Figure S1. ¹H NMR Spectrum of 5-methoxy neoamphimidine (4), DMSO, 500 MHz.

S12

Figure S3. ¹H NMR Spectrum of neoamphimidine Y (**5**), CDCl₃:MeOH-d₄ 2:1, 500 MHz.

Figure S4. ¹³C NMR spectrum of neoamphimidine Y (**5**), CDCl₃:MeOH-d₄ 2:1, 125 MHz.

Figure S5. ¹H NMR Spectrum of neoamphimidine Z (6), DMSO, 500 MHz.

S15

Figure S6. ¹³C NMR Spectrum of neoamphimidine Z (6), DMSO, 125 MHz.

Figure S7. ¹H-¹H gCOSY NMR spectrum of neoamphimidine Z (6), DMSO, 500 MHz.

Figure S8. gHMQC NMR spectrum of neoamphimidine Z (6), DMSO, 500 MHz.

Figure S9. gHMBC NMR Spectrum of neoamphimidine Z (6), DMSO, 500 MHz.

Figure S10. Long range gHMBC NMR Spectrum of neoamphimidine Z (6), DMSO, 500 MHz.

Figure S12. ¹H-¹H COSY NMR spectrum of alpkinidine (7), CDCl₃, 500 MHz.

Figure S13. ACD calculated spectrum of 5-methoxy neoamphimedine.

Figure S14. ACD calculated spectrum of 6-methoxy neoamphimedine.

Chart S1. Soft agar disk diffusion assay guided isolation of pyridoacridines from the sponge *Xestospongia* cf. *exigua* (91608). Zone unit differentials to assess murine tumor selectivity as shown in Table 1.

Chart S2. Soft agar disk diffusion assay guided isolation of pyrido- and pyrroloacridines from the sponge *Xestospongia* cf. *carbonaria* (94634). Zone unit differentials to assess murine tumor selectivity as shown in Table 1 and Table S1.

Chart S3. Comparison between the tautomeric equilibria of pyrido[2,3,4-kl]acridine and pyrido[4,3,2-kl]acridine.

In each case the more stable tautomer demonstrates a more converged geometry, the bond lengths vary more greatly in the less stable tautomer. The symmetry about the A, B, and C rings of the 8H tautomers conveys the stabilization of the NH group to the π -system.

Scheme S1. Computer-generated perspective drawing (all hydrogens shown) of alpkinidine (7) based on the X-ray results.

Scheme S2. Extending the original biosynthetic pathway, proposed by Steffan, for shermilamine B $(14)^{25}$ to rationalize the formation of neoamphimedine (2), and alpkinidine (7). There are common starter units: Trp (blue), DOPA (red), or Cys (purple); new bonds in green; and atoms lost or acquired in black.

An *o*-quinone of dopamine is also putatively formed prior to condensation and finally incorporation of cysteine leads to the thiazinone ring. Building on these ideas we propose neoamphimedine (**2**) may be formed by a process wherein its A, B, D rings arise from tryptophan (cleavage points "b") while the C and E rings may be shaped from the ring and side chain of dopamine *o*-quinone. Although, the creation of a pyrrolo-ring in alpkinidine (**7**) seems less straightforward it could be rationalized as arising by a different cleavage of the tryptophan ring (break point "a") leading to structure **i**. Rotation of the side chain could line up the precursor (see structure **ii**) to generate the aromatic amine **iii** which could allow closure to generate the A, B, D rings. Analogous to the steps proposed above, a dopamine *o*-quinone could supply the structural elements to form the C and E rings.