1. **Section 11.5**

1. Prove that if M is a cyclic R-module then $\mathcal{T}(M) = \mathcal{S}(M)$, i.e., the tensor algebra $\mathcal{T}(M)$ is commutative.

Let m be a generator for M, and let $m_1, \ldots, m_k, m'_1, \ldots, m'_l \in M$. It follows that $m_1 \otimes \cdots \otimes m_k = a_1 m \otimes \cdots \otimes a_k m = a_1 a_2 \cdots a_k (m \otimes \cdots \otimes m)$ for some $a_1, \ldots, a_k \in R$, so

$$
(m_1 \otimes \cdots \otimes m_k) \cdot (m'_1 \otimes \cdots \otimes m'_l) = (a_1 \cdots a_k) (m_1 \otimes \cdots \otimes m) (a'_1 \cdots a'_l) (m'_1 \otimes \cdots \otimes m) \\
= (a_1 \cdots a_k) (a'_1 \cdots a'_l) (m \otimes \cdots \otimes m) \\
= (a'_1 \cdots a'_l) (m_1 \otimes \cdots \otimes m) (a_1 \cdots a_k) (m'_1 \otimes \cdots \otimes m) \\
= (m'_1 \otimes \cdots \otimes m'_l) \cdot (m_1 \otimes \cdots \otimes m_k).
$$

Therefore, single tensors commute, and thus all elements of $\mathcal{T}(M)$ commute and $\mathcal{T}(M) = \mathcal{S}(M)$.

6. If A is any R-algebra in which $a^2 = 0$ for all $a \in A$ and $\varphi : M \to A$ is an R-module homomorphism, prove there is a unique R-algebra homomorphism $\Phi : \wedge(M) \to A$ such that $\Phi|_M = \varphi$.

Define $\tilde{\Phi}_k : M \times \cdots \times M \to A$ such that $\tilde{\Phi}_k(m_1, \ldots, m_k) = \varphi(m_1) \cdots \varphi(m_k)$. This is clearly bilinear, and it is alternating since if $m_i = m_{i+1}$, then $\varphi(m_i) = \varphi(m_{i+1})$ and $\varphi(m_i)^2 = 0$, so $\varphi(m_1) \cdots \varphi(m_k) = 0$. By the universal property, it extends to a map $\Phi_k : \wedge^k(M) \to A$ which is unique with the property that $\Phi_k|_M = \varphi$. It follows that any R-module morphism $\Phi : \wedge(M) \to A$ exists as the direct sum of Φ_k’s with the property that $\Phi|_M = \varphi$. Furthermore Φ is easily seen to be an R-algebra homomorphism. Note that Φ restricted to $\wedge^k M$ is determined by $\Phi|_M = \varphi$. Since Φ is an R-algebra homomorphism Φ is unique.

8. Let R be an integral domain and let F be its field of fractions.

(a) Considering F as an R-module, prove that $\wedge^2 F = 0$.

Let $\frac{a_1}{b_1}, \frac{a_2}{b_2} \in F$. It follows that

$$
\frac{a_1}{b_1} \wedge \frac{a_2}{b_2} = a_1 a_2 \left(\frac{1}{b_1} \wedge \frac{1}{b_2} \right) = a_1 a_2 b_1 b_2 \left(\frac{1}{b_1 b_2} \wedge \frac{1}{b_1 b_2} \right) = 0.
$$

So, $\wedge^2(F) = 0$.

(b) Let I be an R-submodule of F (for example, any ideal in R). Prove that $\wedge^i I$ is a torsion R-module for $i \geq 2$ (i.e., for every $x \in \wedge^i I$ there is some nonzero $r \in R$ such that $r x = 0$).

It suffices to prove the result for simple tensors in $\wedge^i I$ since these generate the R-module $\wedge^i I$ and the set of torsion elements is an R-module.
since \(R \) is an integral domain (Midterm \#1). Let \(\frac{a_1}{b_1} \wedge \frac{a_2}{b_2} \wedge \cdots \wedge \frac{a_k}{b_k} \) be a \(k \)-tensor in \(\bigwedge^k I \) and let \(r = a_1 a_2 b_1 b_2 \). However,

\[
r \cdot \left(\frac{a_1}{b_1} \wedge \frac{a_2}{b_2} \wedge \cdots \wedge \frac{a_k}{b_k} \right) = a_1 a_2 b_1 b_2 \cdot \left(a_1 \frac{a_2}{b_2} \wedge \cdots \wedge \frac{a_k}{b_k} \right)
= a_1 a_2 \wedge a_1 a_2 \wedge \cdots \wedge \frac{a_k}{b_k} = 0,
\]

so every element of \(\bigwedge^k I \) is torsion.

(c) Give an example of an integral domain \(R \) and an \(R \)-module \(I \) in \(F \) with \(\bigwedge^k I \neq 0 \) for every \(k \geq 0 \).

Consider \(\mathbb{C}[x_1, x_2, \ldots] \), the polynomial ring over \(\mathbb{C} \) in a countably infinite number of variables. The ideal \((x_1, x_2, \ldots) \) of rank 1 has the desired property that \(\bigwedge^k I \neq 0 \) for any \(k \in \mathbb{N} \).

12. (a) Prove that if \(f(x, y) \) is an alternating bilinear map on \(V \) (i.e., \(f(x, x) = 0 \) for all \(x \in V \)) then \(f(x, y) = -f(y, x) \) for all \(x, y \in V \).

Let \(x, y \in V \). \(f(x + y, x + y) = f(x, x) + f(x, y) + f(y, x) + f(y, y) = 0 \) since \(f \) is alternating, but \(f(x, x) = f(y, y) = 0 \), so \(f(x, y) = -f(y, x) \).

(b) Suppose that \(-1 \neq 1 \) in \(F \). Prove that \(f(x, y) \) is an alternating bilinear map on \(V \) (i.e., \(f(x, x) = 0 \) for all \(x \in V \)) if and only if \(f(x, y) = -f(y, x) \) for all \(x, y \in V \).

The forward direction is done by part (a). To see the reverse direction, assume \(f(x, y) = -f(y, x) \), then \(f(x, x) = -f(x, x) \) and \(2f(x, y) = 0 \). Because \(F \) has characteristic not equal to 2, and \(F \) is a field, \(f(x, x) = 0 \) and \(f \) is therefore alternating.

(c) Suppose that \(-1 = 1 \) in \(F \). Prove that every alternating bilinear map on \(V \) is symmetric (i.e., \(f(x, y) = f(y, x) \) for all \(x, y \in V \)). Prove that there is a symmetric bilinear map on \(V \) that is not alternating.

By part (a), \(f(x, y) = -f(y, x) = f(y, x) \), so every alternating form is symmetric. To find a symmetric form that is not alternating, let \((x_1, \ldots, x_n) \) and \((y_1, \ldots, y_n)\) be elements of \(V \) after choosing a basis, and define \(f : V \times V \to F \) such that \(f((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = x_1 y_1 + \cdots + x_n y_n \). It is easy to verify that this is a symmetric bilinear form that is not alternating.

14. Prove that if \(M \) is an \(R \)-module direct factor of the \(R \)-module \(N \) then \(T(M) \) (respectively, \(S(M) \) and \(\bigwedge(M) \)) is an \(R \)-subalgebra of \(T(N) \) (respectively, \(S(M) \) and \(\bigwedge(M) \)).

Let \(N = M \oplus P \). Tensor products distribute across direct sums so we have \(N \otimes N = (M \oplus P) \otimes (M \oplus P) = (M \otimes M) \oplus (M \otimes P) \oplus (P \otimes M) \oplus (P \otimes P) \). It is then clear that \(M \otimes M \subseteq N \otimes N \). This generalizes easily for any \(k \), i.e., \(\otimes^k M \subseteq \otimes^k N \), and it is straightforward to show that \(T(M) \subseteq T(N) \) as a subalgebra. The argument is similar for \(S(M) \) and \(\bigwedge(M) \).

2. Written Problems

1. Show that if \(R \) is an integral domain and \(M \) is an \(R \)-module, then my definition of \(\text{rank}_R(M) \) and the book’s definition agree, i.e., show that \(\text{dim}_F(F \otimes M) = \text{max} \) the maximum number of \(R \)-linearly independent elements of \(M \).
Let \(n \) be the maximum number of \(R \)-linearly independent elements of \(M \), and let such elements be \(m_1, m_2, \ldots, m_n \). Accordingly, if \(r_1 m_1 + r_2 m_2 + \cdots + r_n m_n = 0 \), then \(r_i = 0 \) for all \(i \). Now consider the collection \(1 \otimes m_1, 1 \otimes m_2, \ldots, 1 \otimes m_n \), and assume

\[
0 = r_1(1 \otimes m_1) + r_2(1 \otimes m_2) + \cdots + r_n(1 \otimes m_n)
= 1 \otimes r_1 m_1 + 1 \otimes r_2 m_2 + \cdots + 1 \otimes r_n m_n
= 1 \otimes (r_1 m_1 + r_2 m_2 + \cdots + r_n m_n).
\]

By a previous exercise, this occurs only when \(r(r_1 + \cdots + r_n m_n) = 0 \) for some nonzero \(r \in R \). However the \(m_i \) are linearly independent over \(R \) and \(R \) is an integral domain, so this implies that \(r_i = 0 \) for all \(i \). Ergo, \(1 \otimes m_1, 1 \otimes m_2, \ldots, 1 \otimes m_n \) are linearly independent, and \(\dim_F(F \otimes M) \geq n \).

Let \(\dim_F(F \otimes M) = l \) and assume \(\frac{1}{b_1} \otimes m_1, \frac{1}{b_2} \otimes m_2, \ldots, \frac{1}{b_l} \otimes m_l \) is a basis for \(F \otimes M \) as an \(F \)-vector space. Since \(F \) is a field, we can scale each element of the basis by any nonzero element of \(F \) and still have a basis. Scale the element \(\frac{1}{b_i} \otimes m_i \) by \(b_i \) for \(1 \leq i \leq l \). The new basis is then \(1 \otimes m_1, 1 \otimes m_2, \ldots, 1 \otimes m_n \). Since this is a basis, it is linearly independent. Assume that \(m_1, \ldots, m_l \) are \(R \)-linearly independent in \(M \). Then \(r_1 m_1 + \cdots + r_l m_l = 0 \) for some \(r_1, \ldots, r_l \in R \) not all zero, and

\[
0 = 1 \otimes 0
= 1 \otimes (r_1 m_1 + \cdots + r_l m_l)
= (1 \otimes r_1 m_1) + \cdots + (1 \otimes r_l m_l)
= r_1(1 \otimes m_1) + \cdots + r_l(1 \otimes m_l)
\]

which is a contradiction, as \(1 \otimes m_1, 1 \otimes m_2, \ldots, 1 \otimes m_n \) is a basis for \(F \otimes M \). Therefore, \(m_1, \ldots, m_l \) are linearly independent, and \(n \geq l = \dim_F(F \otimes M) \geq n \). So \(n = l \) which proves the definitions are equivalent.

3. Section 12.1

1. Let \(M \) be a module over the integral domain \(R \).

(a) Suppose \(x \) is a nonzero torsion element in \(M \). Show that \(x \) and 0 are “linearly dependent.” Conclude that the rank of \(M_{\text{tor}} \) is 0, so that in particular any torsion \(R \)-module has rank 0.

Since \(x \) is torsion, there exists some nonzero \(r \in R \) such that \(rx = 0 \). Let \(r' \in R \) be nonzero. \(rx + r'0 = 0 \), so \(x \) and 0 are “linearly dependent.”

(b) Show that the rank of \(M \) is the same as the rank of the (torsion free) quotient \(M/M_{\text{tor}} \).

Let \(F \) be the field of fractions for \(R \). We show that \(F \otimes M \) and \(F \otimes M/M_{\text{tor}} \) are isomorphic as \(F \)-vector spaces, and conclude that the rank of \(M \) is equal to that of \(M/M_{\text{tor}} \). Define \(f : F \otimes_R M \rightarrow F \otimes_R M/M_{\text{tor}} \) such that \(f\left(\frac{a}{b} \otimes m\right) = f\left(\frac{a}{b} \otimes \bar{m}\right) \) for \(\frac{a}{b} \in F \) and \(m \in M \). It is easy to verify that \(f \) is linear and surjective. To check injectivity, recall that every element of \(F \otimes_R M \) can be written as \(\frac{1}{r} \otimes m \) for some nonzero \(r \in R \). Then \(f\left(\frac{1}{r} \otimes m\right) = \frac{1}{r} \otimes \bar{m} \). Recall that from a previous homework problem that this is zero only if \(\bar{m} \) is torsion in \(M/M_{\text{tor}} \). If there exists a nonzero \(s \in R \) such that \(sm = 0 \) in \(M/M_{\text{tor}} \), then \(sm \in M_{\text{tor}} \) which means \(s'(sm) = 0 \) for some nonzero \(s' \in R \). This implies that \(m \in M_{\text{tor}} \) since \(R \) is an integral
domain. Accordingly $\frac{1}{r} \otimes m = 0$ in $F \otimes_R M$, so f is injective and therefore an isomorphism of vector spaces. As such, the dimensions are equal, and so are the ranks.

3. Let R be an integral domain and A and B be R-modules of ranks m and n respectively. Prove that the rank of $A \oplus B$ is $m + n$.

Let F be the field of fractions of R, and consider $F \otimes (A \oplus B)$ as an F-vector space. By vector space theory,

$$F \otimes (A \oplus B) = (F \otimes A) \oplus (F \otimes B),$$

from which it follows that

$$\dim_F(F \otimes (A \oplus B)) = \dim_F(F \otimes A) + \dim_F(F \otimes B).$$

The rank of $A \oplus B$ is therefore $m + n$.

4. Let R be an integral domain, let M be an R-module, and let N be a submodule of M. Suppose M has a rank of n, N has a rank r, and the quotient M/N has rank s. Prove that $n = r + s$.

It is simple to verify that the following is a short exact sequence of R-modules with the canonical injection and projection mappings:

$$0 \to N \to M \to M/N \to 0.$$

Let F be the field of fractions of R. Since F is a flat R-module,

$$0 \to F \otimes N \to F \otimes M \to F \otimes M/N \to 0$$

is short exact, and since it is a short exact sequence of F-vector spaces, it splits. Therefore, $F \otimes M = (F \otimes N) \oplus (F \otimes M/N)$. It follows that $n = r + s$ after taking the dimension of both sides, and distributing across the direct sum.

13. If M is a finitely generated module over the P.I.D. R, describe the structure of M/M_{tor}.

By problem 1, part (b), M/M_{tor} is a module of the same rank as M, but with no torsion elements. By the fundamental theorem, M/M_{tor} is a free module of rank n where n is the rank of M, i.e. $M/M_{\text{tor}} \cong R^n$.

15. Prove that if R is a Noetherian ring then R^n is a Noetherian R-module.

This proof proceeds by induction on n.

The case where $n = 1$ is trivial, as the definitions of a Noetherian ring and a Noetherian R-module coincide when viewing R as an R-module.

For $n > 1$, assume that e_1, e_2, \ldots, e_n is a basis for R^n and let $N \subseteq R^n$ be a submodule. Let $L = Re_1$, the cyclic R-submodule generated by e_1, and consider $R^n/L \cong R^{n-1}$. By induction, the image \bar{N} of N in R^n/L is finitely generated. Let $n_1, \ldots, n_m \in N$ be elements such that their image in R^n/L generates \bar{N}. Also by induction, $N \cap L \subseteq L$ is finitely generated as a submodule, so let l_1, \ldots, l_p be generators for $N \cap L$. If $n \in N$, then $\bar{n} = r_1 \bar{n}_1 + \cdots + r_m \bar{n}_m$ for $r_i \in R$. Subtracting $r_1 n_1 + \cdots + r_m n_m$ from n yields an element of $N \cap L$ which can be written as a linear combination of l_1, \ldots, l_p. Therefore, every element of N can be written as a linear combination of $n_1, \ldots, n_m, l_1, \ldots, l_p$, and N is finitely generated. It follows that R^n is Noetherian as an R-module.