1. Section 14.3

4. Construct the finite field of 16 elements and find a generator for the multiplicative group. How many generators are there?

To construct the finite field of 16 elements, we begin with \mathbb{F}_2 and adjoin a root with a minimum polynomial of degree four. One such degree four irreducible polynomial is $x^4 + x + 1$ (0 and 1 are not roots, and the only irreducible polynomial of degree 2, namely $x^2 + x + 1$, does not divide it). As such, the field

$$\mathbb{F}_{24} = \mathbb{F}_2[x]/(x^4 + x + 1)$$

is a field with 16 elements, and has a basis over \mathbb{F}_2 given by $1, x, x^2, x^3$.

It follows by Lagrange’s Theorem and the observation $\#\mathbb{F}_{24} = 15$ that x generates the unit group. Indeed, $x^3 \neq 1$ and $x^5 = x \cdot x^4 = x \cdot (x + 1) = x^2 + x \neq 1$.

There are $\varphi(15) = \varphi(3)\varphi(5) = 2 \cdot 4 = 8$ generators.

6. Suppose $K = \mathbb{Q}(\theta) = \mathbb{Q}(\sqrt{D_1}, \sqrt{D_2})$ with $D_1, D_2 \in \mathbb{Z}$, is a biquadratic extension and that $\theta = a + b\sqrt{D_1} + c\sqrt{D_2} + d\sqrt{D_1D_2}$ where $a, b, c, d \in \mathbb{Z}$ are integers, and at least two of b, c, d are nonzero. Prove that the minimum polynomial $m_\theta(x)$ for θ over \mathbb{Q} is irreducible of degree 4 over \mathbb{Q} but is reducible modulo every prime p. In particular, show that the polynomial $x^4 - 10x^2 + 1$ is irreducible in $\mathbb{Z}[x]$ but is reducible modulo every prime.

Proof: The problem as stated in the book is missing a condition that we have included above: we need that at least two of b, c, d are nonzero, so let us suppose that this is the case.

The minimal polynomial of θ is of course irreducible; we must show it has degree 4. If not, then since $[K : \mathbb{Q}] = 4$, we would have $\theta \in \mathbb{Q}$ or $[\mathbb{Q}(\theta) : \mathbb{Q}] = 2$. Since $1, \sqrt{D_1}, \sqrt{D_2}, \sqrt{D_1D_2}$ form a basis of K over \mathbb{Q}, we have $\theta \not\in \mathbb{Q}$ as long as at least one of b, c, d and d is nonzero. If $[\mathbb{Q}(\theta) : \mathbb{Q}] = 2$, then θ is fixed by a nontrivial element of $\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The elements of $\text{Gal}(K/\mathbb{Q})$ are the automorphisms given by

$$\sqrt{D_1} \mapsto \pm \sqrt{D_1}, \quad \sqrt{D_2} \mapsto \pm \sqrt{D_2}$$

for all 4 possible choices of \pm. For each of the nontrivial automorphisms σ, we find that $\sigma(\theta) = \theta$ implies that at least two of b, c, d are zero. For example, if $\sigma : \sqrt{D_1} \mapsto \sqrt{D_1}, \sqrt{D_2} \mapsto -\sqrt{D_2}$, then $\sigma(\theta) = \theta$ implies

$$a + b\sqrt{D_1} - c\sqrt{D_2} - d\sqrt{D_1D_2} = a + b\sqrt{D_1} + c\sqrt{D_2} + d\sqrt{D_1D_2},$$

which implies that $c = d = 0$. The other two cases are similar. Therefore, we see $K = \mathbb{Q}(\theta)$ and hence that $m_\theta(x)$ has degree 4.

Suppose that $m_\theta(x)$ is irreducible modulo a prime p. Let α be a root of $m_\theta(x)$ in $\overline{\mathbb{F}}_p$, so $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = 4$. Yet clearly $\alpha \in \mathbb{F}_p(\sqrt{D_1}, \sqrt{D_2})$. Since $\mathbb{F}_p(\sqrt{D_1}, \sqrt{D_2})^2$ has size 2, it follows that at least one of D_1, D_2, or D_1D_2 is a square (possibly zero). Thus $[\mathbb{F}_p(\sqrt{D_1}, \sqrt{D_2}) : \mathbb{F}_p] \leq 2$, giving a contradiction.

The polynomial $x^4 - 10x^2 + 1$ is the special case of $\theta = \sqrt{2} + \sqrt{3}$. \qed
8. Determine the splitting field of \(x^p - x + a \) over \(\mathbb{F}_p \), where \(a \neq 0, a \in \mathbb{F}_p \). Show explicitly that the Galois group is cyclic. Such an extension is called an Artin-Schreier extension.

\[\text{Proof.} \] Let \(K \) be the splitting field of \(x^p - x + a \) over \(\mathbb{F}_p \). We have seen already in problem 13.5.5 (assignment 6) that \(x^p - x + a \) is irreducible and separable over \(\mathbb{F}_p \). Notice that if \(\alpha \) is a root of \(x^p - x + a \) and \(k \in \mathbb{F}_p \), then

\[(\alpha + k)^p - (\alpha + k) = \alpha^p + k^p - \alpha - k + a = \alpha^p - \alpha + a = 0, \]

since \(k^p = k \). Therefore, the roots of \(x^p - x + a \) in \(K \) are precisely \(\alpha + k \) for \(k \in \mathbb{F}_p \), and \(K = \mathbb{F}_p(\alpha) = \mathbb{F}_{p^m} \).

Since the Galois group is transitive on the roots, we furthermore have a bijection

\[\text{Gal}(K/\mathbb{F}_p) \cong \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \]

given by \(\sigma \mapsto k \) such that \(\sigma(\alpha) = \alpha + k \). It is easy to verify that this bijection is in fact a group homomorphism, hence a group isomorphism:

\[\sigma(\alpha) = \alpha + k_1, \quad \tau(\alpha) = \alpha + k_2 \]

implies

\[\sigma \tau(\alpha) = \sigma(\alpha + k_2) = \sigma(\alpha) + \sigma(k_2) = \alpha + k_1 + k_2. \]

\[\square \]

9. (a) If \(x \in \mathbb{F}_q \), then \(\sigma_q(x) = x^q = x \), so \(\sigma_q \) fixes \(\mathbb{F}_q \).

(b) Let \(L \) be a finite extension of \(\mathbb{F}_q \) of degree \(n \). Then \(L \) has \(q^n \) elements, so by Lagrange’s theorem \(a^{q^n-1} = 1 \) for all \(a \in L^* \), and hence \(a^{q^n} = a \) for all \(a \in L \). The polynomial \(x^{q^n} - x \in \mathbb{F}_q[x] \) can have at most \(q^n \) roots in any extension field, and we’ve demonstrated this many in \(L \) already, namely the \(q^n \) distinct elements of \(L \). Therefore \(x^{q^n} - x \) splits completely into linear factors over \(L \), and not over any subfield (since every element of \(L \) is a root). Since splitting fields are unique up to isomorphism, we see that any two field extensions of \(\mathbb{F}_q \) of degree \(n \) are isomorphic via an isomorphism fixing \(\mathbb{F}_q \).

(c) We saw in (a) that the automorphism \(\sigma_q \) fixes \(\mathbb{F}_q \) and hence is an element of \(\text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \). Furthermore, if \(\sigma_q^m \) is the identity, then \(a^{q^n} - a = 0 \) for all \(a \in \mathbb{F}_{q^n} \). Since the polynomial \(x^{q^n} - x \) can have at most \(q^n \) roots, we must therefore have \(m \geq n \). Furthermore, every element \(a \in \mathbb{F}_{q^n} \) does satisfy \(a^{q^n} - a = 0 \) as noted above, so \(\sigma_q^n = 1 \) in \(\text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \). Therefore, the order of \(\sigma_q \) in \(\text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \) is \(n \); since this is the size of the Galois group, we see that \(\text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \) is the cyclic group of size \(n \) generated by \(\sigma_q \).

(d) If \(\mathbb{F}_{q^d} \subset \mathbb{F}_{q^n} \), then \(\mathbb{F}_{q^d} \) is vector space over \(\mathbb{F}_{q^d} \). By counting sizes, we see that \(q^n \) is a power of \(q^d \); in other words, \(d \) divides \(n \). Conversely, if \(d \) divides \(n \) then \(x^{q^d} - x \) divides \(x^{q^n} - x \), and hence the splitting field of \(x^{q^d} - x \) is contained in the splitting field of \(x^{q^n} - x \), i.e. \(\mathbb{F}_q^{d} \subset \mathbb{F}_q^{n} \).

2. \textbf{Section 14.4}

1. The minimal polynomial of the element \(\alpha = \sqrt{1 + \sqrt{2}} \) is \(f(x) = (x^2 - 1)^2 - 2 \), which has degree 4. The roots of this polynomial are \(\pm \alpha \) and \(\pm \beta \), where \(\beta = \sqrt{1 - \sqrt{2}} \). So the Galois closure of \(K = \mathbb{Q}(\alpha) \) over \(\mathbb{Q} \) is \(\mathbb{Q}(\alpha, \beta) \), which has degree 2 over \(K \) and degree 8 over \(\mathbb{Q} \).

3. By the Theorem of Primitive Element, \(F = \mathbb{Q}(\alpha) \) for some \(\alpha \in F \). To prove that \([F : \mathbb{Q}] \leq n \), it suffices to prove that the minimal polynomial of \(\alpha \) over \(\mathbb{Q} \) has degree at most \(n \). By the Cayley-Hamilton Theorem, \(\alpha \) satisfies its characteristic polynomial, which has degree \(n \). Therefore the minimal polynomial of \(\alpha \) has degree at most \(n \), as desired.

6. Let \(K = \mathbb{F}_p(x, y) \) and \(F = \mathbb{F}_p(x^p, y^p) \). For each \(c \in F \), let \(L_c = \mathbb{F}_p(x + cy) \). Since \((x + cy)^p = x^p + c^py^p \in F \), we have \([L_c : F] \leq p \). However since clearly \(K = L_c(y) \) and \(y \) has degree \(p \) over \(F \), we have \([K : L_c] \leq p \).

Since \([K : F] = p^2 \), we must therefore have \([K : L_c] = [L_c : F] = p \).

Suppose now that \(L_c = L_{c'} \) for distinct \(c, c' \in F \). Let \(L = L_c = L_{c'} \). Since \(x + cy, x + c' y \in L \), we obtain by subtracting that \((c - c')y \in L \), so \(y \in L \) since \(c, c' \in F \subset L \). Then clearly \(x \in L \) as well, so \(L = K \), a contradiction to the calculation above. Therefore the fields \(L_c \) are distinct, and there are infinitely many since they are indexed by \(c \in F \), and \(F \) is infinite.
3. Section 14.5

4. Since ζ_n is a primitive nth root of unity, any primitive nth root of unity can be written $\zeta = \zeta_n^b$ for some integer b. Then

$$\sigma_a(\zeta) = \sigma_a(\zeta_n^b) = \sigma_a(\zeta_n)^b = (\zeta_n^b)^b = \zeta_n = (\zeta_n^b)^a = \zeta^a$$

as desired.

5. Recall that $\Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + 1 = \prod_{i=1}^{p-1}(x - \zeta_i)$. By comparing the coefficients of x^{p-2}, we see that $\sum_{i=1}^{p-1} \zeta_i = -1$. Suppose first that $p \not| n$. Let σ_n denote the element of $\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ such that $\sigma_n(\zeta) = \zeta^n$ for all $\zeta \in \mu_p$. Then $\sigma_n(\sum_{i=1}^{p-1} \zeta_i) = \sum_{i=1}^{p-1} \zeta_i^n$. But the left hand side is $\sigma_n(-1) = -1$, giving the desired result. Finally, if $p \mid n$, then of course $\zeta^n = 1$, so $\sum_{i=1}^{p-1} \zeta_i^n = p - 1$.

7. In \mathbb{C}, any nth root of unity has the form $\zeta = e^{2\pi i a/n}$, and so

$$\zeta = e^{2\pi i a/n} = e^{−2\pi i a/n} = \zeta^{-1}.$$

Therefore complex conjugation restricts to the automorphism $\sigma_{−1}$ on $\mathbb{Q}(\zeta)$. The subfield of real elements of $\mathbb{Q}(\zeta)$, denoted $\mathbb{Q}(\zeta)^+$, is therefore the fixed field of $\sigma_{−1}$. Since $\sigma_{−1}$ has order 2, we see that $[\mathbb{Q}(\zeta) : \mathbb{Q}(\zeta)^+] = 2$.

It is clear that $\zeta + \zeta^{-1}$ is fixed by $\sigma_{−1}$, since $\sigma_{−1}$ swaps ζ and ζ^{-1}. Therefore $\mathbb{Q}(\zeta + \zeta^{-1}) \subset \mathbb{Q}(\zeta)^+$. On the other hand, the element ζ satisfies the polynomial

$$(x − \zeta)(x − \zeta^{-1}) = x^2 − (\zeta + \zeta^{-1})x + 1 \in \mathbb{Q}(\zeta + \zeta^{-1})[x].$$

Therefore $[\mathbb{Q}(\zeta) : \mathbb{Q}(\zeta + \zeta^{-1})] \leq 2$, so we must have equality and we must have $\mathbb{Q}(\zeta)^+ = \mathbb{Q}(\zeta + \zeta^{-1})$.

13. (a) The fact that $\sigma_a(\zeta_{p^i}^n) = \zeta_{p^i}^a$, follows from #4. Since $\zeta_{p^i}^n$ is a p^nth root of unity, clearly $\sigma_a(\zeta_{p^i}^n) = \zeta_{p^i}^{na}$, depends only on a modulo p^i.

(b) The map $\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong \prod_i \text{Gal}(\mathbb{Q}(\zeta_{p^i}^n)/\mathbb{Q})$ is just the restriction map $\sigma_a \mapsto (\sigma_a \mod p_i^i)$, discussed in part (a). In the Chinese Remainder Theorem, the isomorphism $(\mathbb{Z}/n\mathbb{Z})^* \cong \prod_i (\mathbb{Z}/p_i^i \mathbb{Z})^*$ is simply given by reduction modulo p_i^n for each i, i.e. $a \mapsto (a \mod p_i^n)^i$. The result follows.

4. Section 14.6

2. (a) Factors as $x^3 − x^2 − 4 = (x − 2)(x^2 + x + 2)$. Galois group is $\mathbb{Z}/2\mathbb{Z}$.
(b) Factors as $x^3 − 2x + 4 = (x^2 + 2x + 2)$ (x^2 + 2x + 2). Galois group is $\mathbb{Z}/2\mathbb{Z}$.
(c) Irreducible. (Rational root theorem implies only possible roots are ±1, easy to check these aren’t roots.) By equation (14.18),

$$\text{Discriminant} = -4(-1)^3 - 27(1)^2 = -23.$$

This is not a square, so the Galois group is S_3.
(d) Irreducible using same method as in (c). Calculate

$$p = (−6−1)/3 = −7/3, \quad q = (2 + 18 − 27)/27 = 20/27.$$

$$\text{Discriminant} = -4(-7/3)^3 - 27(20/27)^2 = 36.$$

This is a square, so Galois group is $\mathbb{Z}/3\mathbb{Z}$.

9. First we show that the polynomial $x^4 + 4x − 1$ is irreducible. There are many ways to do this; here is one. It is easy to check that ±1 are not roots, so the only possible factorization is into two quadratics. From the constant term, such a factorization would necessarily have the form $x^4 + 4x − 1 = (x^2 + ax + 1)(x^2 + bx − 1)$. From the x coefficient we see that $b − a = 4$ and from the x^3 coefficient we see that $a + b = 0$. Hence $b = 2$ and $a = −2$. But then the x^2 coefficient on the right is −4 rather than 4, so there is no such factorization. Therefore $x^4 + 4x − 1$ is irreducible.

From the formulas on page 614, the resolvent cubic is $h(x) = x^3 + 4x + 16$ and the discriminant is $D = −27(4)^4 + 256(−1)^3 = −531697$. Now $h(x)$ factors as $h(x) = (x + 2)(x^2 − 2x + 8)$. We therefore have $G ≅ D_8$ or $G ≅ \mathbb{Z}/4\mathbb{Z}$. By #19(c), we see that $G ≅ \mathbb{Z}/4\mathbb{Z}$ is not possible since $D < 0$, so $G ≅ D_8$.

18. Let \(\theta \) be a root of \(f(x) = x^3 - 3x + 1 \). The discriminant is \(D = -4(-3)^3 - 27(1)^2 = 81 \), which is a square, so the splitting field is \(\mathbb{Q}(\theta) \) and the Galois group is isomorphic to \(\mathbb{Z}/3\mathbb{Z} \).

Suppose our polynomial factors as \(f(x) = (x - \theta)(x - \alpha)(x - \beta) \). From the \(x^2 \) coefficient, we see that \(\alpha + \beta = -\theta \). Furthermore, the discriminant \(D \) satisfies
\[
\sqrt{D} = 9 = (\theta - \alpha)(\theta - \beta)(\alpha - \beta)
\]
for some ordering of \(\alpha, \beta \). Since \(f'(\theta) = (\theta - \alpha)(\theta - \beta) \), we obtain
\[
9 = (3\theta^2 - 3)(\alpha - \beta), \quad \text{hence} \quad \alpha - \beta = \frac{3}{\theta^2 - 1}.
\]

One method to calculate the inverse of \(\theta^2 - 1 \) is to use matrices. View \(\mathbb{Q}(\theta) = \mathbb{Q}(\theta, \theta^2) \) as a 3-dimensional vector space over \(\mathbb{Q} \) with basis 1, \(\theta, \theta^2 \). The matrix for multiplication by \(\theta \), viewed as a \(\mathbb{Q} \)-linear transformation of \(\mathbb{Q}(\theta) \), is given with respect to this basis as
\[
\begin{pmatrix}
0 & 0 & -1 \\
1 & 0 & 3 \\
0 & 1 & 0
\end{pmatrix}
\]
Taking the square of this matrix and subtracting 1, we see that the matrix for multiplication by \(\theta^2 - 1 \) is
\[
\begin{pmatrix}
-1 & -1 & 0 \\
0 & 2 & -1 \\
1 & 0 & 2
\end{pmatrix}
\]
The inverse of this matrix times 3 is
\[
\begin{pmatrix}
-4 & -2 & -1 \\
1 & 2 & 1 \\
2 & 1 & 2
\end{pmatrix}
\]
From the first column of this matrix, we see that \(3/(\theta^2 - 1) = -4 + \theta + 2\theta^2 \). Now it is easy to solve the two linear equations
\[
\begin{align*}
\alpha + \beta &= -\theta \\
\alpha - \beta &= -4 + \theta + 2\theta^2.
\end{align*}
\]
We find \(\alpha = -2 + \theta^2 \) and \(\beta = 2 - \theta - \theta^2 \).

19. (a) Since \(\sqrt{D} \) is the product of the differences of the roots of \(f(x) \), and these roots lie in \(K \), it follows that \(\sqrt{D} \in K \).

(b) The element \(\tau \) has order 2, to \(\tau_K \) has order dividing 2, i.e. order 1 or 2. Now \(\tau_K \) has order 1 if and only if it is trivial, i.e. iff \(K \) is fixed by \(\tau \), i.e. if and only if \(K \subseteq \mathbb{R} \).

(c) Suppose that \(\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z} \) and that \(D < 0 \). Since \(\mathbb{Q}(\sqrt{D}) \subseteq K \) and \(\sqrt{D} \notin \mathbb{R} \), it follows from part (b) that \(\tau_K \) has order 2. However, a cyclic group of order 4 has a unique element of order 2, so \(\tau_K \) must be this element; and the fixed field will be the unique subfield of \(K \) of index 2, so this must be \(\mathbb{Q}(\sqrt{D}) \). Therefore \(\tau_K \) fixes \(\mathbb{Q}(\sqrt{D}) \). Yet \(D < 0 \) implies that complex conjugation does not fix \(\sqrt{D} \), so this is a contradiction.

(d) This is the same argument. Let \(K \) be a cyclic quartic field, viewed as a subfield of \(\mathbb{C} \). Suppose that \(\mathbb{Q}(\sqrt{D}) \subseteq K \) with \(D < 0 \). Complex conjugation is an order 2 element of \(\text{Gal}(K/\mathbb{Q}) \) (it is nontrivial because it does not fix \(\sqrt{D} \), since \(D < 0 \)), and hence its fixed field is the unique index 2 subfield of \(K \), namely \(\mathbb{Q}(\sqrt{D}) \). This is a contradiction, since complex conjugation does not fix \(\sqrt{D} \).

References