Proposition. Let K be the splitting field of the separable polynomial $(x^2 - 2)(x^2 - 3)(x^2 - 5) \in \mathbb{Q}[x]$. Then $\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and the set of all of subfields of K containing \mathbb{Q} is

$$S = \{1, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}(\sqrt{2}, \sqrt{5}), \mathbb{Q}(\sqrt{3}, \sqrt{5}), K\}.$$

Proof. It follows that $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})(\sqrt{5})$. The field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ has degree 4 over \mathbb{Q} by Example 4 of §14.1 in [1]; since $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\sqrt{5}$ is a root of $x^2 - 5$, the degree of $\mathbb{Q}(\sqrt{2}, \sqrt{3})(\sqrt{5})$ over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is equal to 2; therefore

$$[K : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3})(\sqrt{5}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3})(\sqrt{5}) : \mathbb{Q}(\sqrt{2}, \sqrt{3})][\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = (2)(4) = 8.$$

Hence, by Theorem 14 of §14.2 in [1], $\# \text{Gal}(K/\mathbb{Q}) = 8$.

Any automorphism $\sigma \in \text{Gal}(K/\mathbb{Q})$ must map the generators $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{5}$ to a root of their respective minimal polynomials. Thus, because σ is defined by where it maps the generators $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{5}$, we may characterize σ by

$$\sigma : \begin{cases}
\sqrt{2} \mapsto \pm \sqrt{2} \\
\sqrt{3} \mapsto \pm \sqrt{3} \\
\sqrt{5} \mapsto \pm \sqrt{5}.
\end{cases}$$

Since $\# \text{Gal}(K/\mathbb{Q}) = 8$, these eight distinct possibilities must be elements of $\text{Gal}(K/\mathbb{Q})$. Furthermore, for $\sigma_1, \sigma_2, \sigma_3 \in \text{Gal}(K/\mathbb{Q})$ such that

$$\sigma_1 : \begin{cases}
\sqrt{2} \mapsto -\sqrt{2} \\
\sqrt{3} \mapsto \sqrt{3} \\
\sqrt{5} \mapsto \sqrt{5}
\end{cases}, \quad \sigma_2 : \begin{cases}
\sqrt{2} \mapsto \sqrt{2} \\
\sqrt{3} \mapsto -\sqrt{3} \\
\sqrt{5} \mapsto \sqrt{5}
\end{cases} \quad \text{and} \quad \sigma_3 : \begin{cases}
\sqrt{2} \mapsto \sqrt{2} \\
\sqrt{3} \mapsto \sqrt{3} \\
\sqrt{5} \mapsto -\sqrt{5}
\end{cases},$$

it follows that

$$\text{Gal}(K/\mathbb{Q}) \cong \langle \sigma_1 \rangle \times \langle \sigma_2 \rangle \times \langle \sigma_3 \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

The subgroups $\langle \sigma_1 \rangle$, $\langle \sigma_2 \rangle$ and $\langle \sigma_3 \rangle$ each fix two of the three generators of K and, so, have fixed fields $\mathbb{Q}(\sqrt{3}, \sqrt{5})$, $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\mathbb{Q}(\sqrt{2}, \sqrt{5})$, respectively. Similarly, the subgroups $\langle \sigma_1, \sigma_2 \rangle$, $\langle \sigma_2, \sigma_3 \rangle$ and $\langle \sigma_1, \sigma_3 \rangle$ fix the fields $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$, respectively. The identity element 1 $\in \text{Gal}(K/\mathbb{Q})$ fixes all of K and $\langle \sigma_1, \sigma_2, \sigma_3 \rangle$ fixes only \mathbb{Q}. These eight subfields of K exhaust the possibilities by the bijective correspondence of Theorem 14 of §14.2 in [1] to complete the proof. \qed

Date: 06/01/2011.
6.

Proposition. Let $K = \mathbb{Q}(\sqrt[8]{2}, i)$ and let $F_1 = \mathbb{Q}(i), F_2 = \mathbb{Q}(\sqrt{2})$ and $F_1 = \mathbb{Q}(\sqrt{-2})$. Then Gal($K/F_1) \cong Z_8$, Gal($K/F_2) \cong D_8$ and Gal($K/F_3) \cong Q_8$.

Proof. Let ζ be a primitive eighth root of unity. By the discussion in §14.2 of [1],

Gal($\mathbb{Q}(\sqrt[8]{2}, i)/\mathbb{Q}$) = $\langle \sigma, \tau : \sigma^8 = \tau^2 = 1, \sigma \tau = \tau \sigma^3 \rangle$

for the automorphisms σ and τ of K such that

$$
\sigma : \begin{cases}
\sqrt[8]{2} \mapsto \zeta \sqrt[8]{2} \\
i \mapsto i \\
\zeta \mapsto \zeta^5
\end{cases}
$$

and

$$
\tau : \begin{cases}
\sqrt[8]{2} \mapsto -\sqrt[8]{2} \\
i \mapsto -i \\
\zeta \mapsto \zeta^7
\end{cases}
$$

From these relations, it follows that F_1 is the fixed field of $H_1 = \langle \sigma \rangle$, F_2 is the fixed field of $H_2 = \langle \sigma^2, \tau \rangle$ and F_3 is the fixed field of $H_3 = \langle \sigma^2, \tau \sigma^2 \rangle$; therefore, by Corollary 11 of §14.2 in [1], Gal($K/F_i) = H_i$ for all $i \in \{1, 2, 3\}$.

Also by the relations in (1), $\sigma^8 = 1$ and so H_1 is a group of order 8 containing an element of order 8. Thus H_1 is isomorphic to the cyclic group Z_8. Similarly, we have the equations $(\sigma^2)^4 = 1, \tau^2 = 1$ and $\sigma^2 \tau = \sigma(\sigma \tau) = \sigma(\tau \sigma^3) = \tau \sigma^{-1}$. Hence

$$H_2 = \langle \sigma^2, \tau : (\sigma^2)^4 = \tau^2 = 1, \sigma \tau = \tau \sigma^{-1} \rangle.$$

Since these generators and relations uniquely define the dihedral group of order 8, $H_2 \cong D_8$. Lastly, the relations in (1) also imply that $(\sigma^2)^4 = 1, (\tau \sigma^3)^4 = 1, \sigma^2 (\tau \sigma^3) = (\tau \sigma^3)^{-1} \sigma^2$ and $(\sigma^2)^2 = \sigma^4 = (\tau \sigma^3)^2$, we find that

$$H_3 = \langle \sigma^2, \tau \sigma^3 : (\sigma^2)^4 = (\tau \sigma^3)^4 = 1, \sigma^2 (\tau \sigma^3) = (\tau \sigma^3)^{-1} \sigma^2, (\sigma^2)^2 = (\tau \sigma^3)^2 \rangle.$$

Therefore $H_3 \cong Q_8$. \hfill \Box

10.

Proposition. Let K be the splitting field over \mathbb{Q} of $x^8 - 3 \in \mathbb{Q}[x]$ and let ζ be a primitive eighth root of unity. The Galois group Gal(K/\mathbb{Q}) is the group of automorphisms $\sigma_{a,b} : K \to K$ indexed by $(a, b) \in (\mathbb{Z}/8\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})^*$, where $\sigma_{a,b}$ fixes \mathbb{Q} and

$$\sigma_{a,b} : \begin{cases}
\sqrt[8]{3} \mapsto \zeta^a \sqrt[8]{3} \\
\zeta \mapsto \zeta^b
\end{cases}
$$

This identification yields an isomorphism

Gal(K/\mathbb{Q}) $\cong (\mathbb{Z}/8\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})^*$ (semi-direct product),

where the multiplicative group $(\mathbb{Z}/8\mathbb{Z})^*$ acts on the additive group $\mathbb{Z}/8\mathbb{Z}$ by multiplication.

Proof. The eight distinct roots of $x^8 - 3$ are given by $\zeta^a \sqrt[8]{3}$ for $a \in \{0, 1, \ldots, 7\}$. Thus $K = \mathbb{Q}(\zeta, \sqrt[8]{3})$. Note that by the discussion in §14.2 of [1], $Q(\zeta) = Q(\sqrt[8]{2}, i)$. We claim that $\sqrt[8]{2} \not\in Q(\sqrt[8]{3})$. Granting this, we see that

$$|Q(\sqrt[8]{2}, \sqrt[8]{3}) : \mathbb{Q}| = 2 \cdot |Q(\sqrt[8]{3}) : \mathbb{Q}| = 16.$$

Then since i cannot be embedded in \mathbb{R}, we have that K is the degree 2 extension of $Q(\sqrt[8]{2}, \sqrt[8]{3})$ obtained by adjoining i, and hence $|K : \mathbb{Q}| = 2 \cdot 16 = 32$.

There are various ways to prove the claim that $\sqrt[8]{2} \not\in Q(\sqrt[8]{3})$; perhaps simplest is to use Eisenstein’s criterion with the polynomial $x^8 - 3$ over the ring $\mathbb{Z}[\sqrt[8]{2}]$ with the maximal ideal (3); this shows that the polynomial is irreducible over the UPD $\mathbb{Z}[\sqrt[8]{2}]$, hence irreducible over $Q(\sqrt[8]{2})$ by Gauss’s Lemma, and hence $|Q(\sqrt[8]{2}, \sqrt[8]{3}) : \mathbb{Q}| = 16$, proving the claim.

For any $\sigma \in$ Gal(K/\mathbb{Q}), the generators $\sqrt[8]{3}$ and ζ must be sent to roots of their respective minimal polynomials. That is, σ is of the form $\sigma_{a,b}$ as in (2). Since there are exactly 32 pairs (a, b) and $|K : \mathbb{Q}| = 32$, we see that each $\sigma_{a,b}$ does indeed yield an element of Gal(K/\mathbb{Q}).
It remains to determine the group structure of \(\text{Gal}(K/\mathbb{Q}) \). We calculate that
\[
\sigma_{a,b} \circ \sigma_{c,d}(\sqrt[3]{3}) = \sigma_{a,b}(\zeta \sqrt[3]{3}) = \zeta^{a+bc} \sqrt[3]{3},
\]
\[
\sigma_{a,b} \circ \sigma_{c,d}(\zeta) = \sigma_{a,b}(\zeta^d) = \zeta^{bd}.
\]
Therefore \(\sigma_{a,b} \circ \sigma_{c,d} = \sigma_{a+bc,bd} \), which gives the semi-direct product as desired:
\[
\text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/8\mathbb{Z}) \rtimes (\mathbb{Z}/8\mathbb{Z}).
\]
\[\square\]

12. **Proposition.** Let \(K \) be the splitting field over \(\mathbb{Q} \) of \(x^4 - 14x^2 + 9 \in \mathbb{Q}[x] \) and let \(\alpha_1 = \sqrt{7 + 2\sqrt{10}} \). Then \(K = \mathbb{Q}(\alpha_1) \), and \(\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), the Klein 4-group.

Proof. Let \(\alpha_2 = \sqrt{7 - 2\sqrt{10}} \). A straightforward computation using the quadratic formula shows that \(\pm \alpha_1 \) and \(\pm \alpha_2 \) are the distinct roots of \(x^4 - 14x^2 + 9 \). So \(K = \mathbb{Q}(\alpha_1, \alpha_2) \). Since \(\alpha_1\alpha_2 = \sqrt{49 - 40} = 3 \), we see that \(\alpha_2 \in \mathbb{Q}(\alpha_1) \); so in fact \(K = \mathbb{Q}(\alpha_1) \).

We claim that \([K : \mathbb{Q}] = 4 \), i.e. that \(x^4 - 14x^2 + 9 \) is irreducible. One can prove this directly by exploring the possible factorizations (the factorizations will be of the form \((x^2 + ax \pm 3)(x^2 - ax \pm 3) \) or the same with \((3, 3) \) replaced by \((1, 9) \); now solve for \(a \) and show that \(a \) is not rational). Here is an alternate method. Since we know how the polynomial factors in \(K \), and neither \(\alpha_1 \) nor \(\alpha_2 \) is rational, a factorization occurs only if \((x + \alpha_1)(x \pm \alpha_2) \) has rational coefficients. The constant term is indeed rational (namely, \(\pm 3 \)), but the \(x \) coefficient is \(\alpha_1 \pm \alpha_2 \), and we calculate
\[
(\alpha_1 + \alpha_2)^2 = 20, \quad (\alpha_1 - \alpha_2)^2 = 8,
\]
so in particular neither of \(\alpha_1 \pm \alpha_2 \) is rational.

In any case, regardless of which method we chose, we see that the polynomial is irreducible and \([K : \mathbb{Q}] = 4 \). To figure out the structure of the Galois group, one method is to note that by our calculations above, we see that \(K \) contains \(\sqrt{20} = 2\sqrt{5} \) and \(\sqrt{8} = 2\sqrt{2} \), and also it clearly contains \(\alpha_1^2 = 7 + 2\sqrt{10} \). Hence \(K = \mathbb{Q}(\sqrt{2}, \sqrt{5}) \) is a biquadratic extension with Galois group \((\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \).

Another way to see this if we did not do the calculation above with \((\alpha_1 \pm \alpha_2)^2 \) is to directly write down the automorphisms. We know that \(\text{Gal}(K/\mathbb{Q}) \) acts transitively on the roots, so the Galois elements are determined by the possible images of \(\alpha_1 \); we have the identity and the elements:
\[
\sigma_1(\alpha_1) = \alpha_2; \quad \sigma_2(\alpha_1) = -\alpha_1; \quad \sigma_3(\alpha_1) = -\alpha_2.
\]
Since \(\alpha_2 = 3/\alpha_1 \), it is easy to compute the action of these automorphisms on \(\alpha_2 \):
\[
\sigma_1(\alpha_2) = \alpha_1; \quad \sigma_2(\alpha_2) = -\alpha_2; \quad \sigma_3(\alpha_2) = -\alpha_1.
\]
With these formulas it is easy to check that \(\sigma_i^2 = 1 \) for each \(i = 1, 2, 3 \). Hence \(\text{Gal}(K/\mathbb{Q}) \) is the Klein 4-group.
\[\square\]

17. This is similar to the proof of the next exercise.

18. **With notation as in the previous problem define the trace of \(\alpha \) from \(K \) to \(F \) to be**
\[
T_{\text{Tr}_{K/F}}(\alpha) = \sum_{\sigma} \sigma(\alpha),
\]
a sum of Galois conjugates of \(\alpha \).

(a) **Prove that** \(T_{\text{Tr}_{K/F}}(\alpha) \in F \).

Proof. The sum here is taken as follows. Let \(L \) be a Galois extension of \(F \) containing \(K \), and write \(G = \text{Gal}(L/F) \). Let \(H \subset G \) be the subgroup corresponding to \(K \). Then the sum runs over representatives \(\sigma \) for the left cosets of \(H \) in \(G \). These \(\sigma \) are the embeddings of \(K \) in \(L \) (equivalently, of \(K \) in \(F \)) by the Fundamental Theorem of Galois Theory.

To begin, note that the trace is well-defined, i.e. \(\sigma(\alpha) \) depends only on the left \(H \)-coset of \(\sigma \). Since \(H \) fixes \(K \) we see that if \(\sigma H = \tau H \), then \(\tau^{-1} \sigma(\alpha) = \h(\alpha) = \alpha \) for some \(h \in H \). Therefore, \(\sigma(\alpha) = \tau(\alpha) \).
To see that $\text{Tr}_{K/F}(\alpha) \in F$, let S be a set of coset representatives for H, and notice that if $\tau \in \text{Gal}(L/F)$ then τS is still a set of coset representatives for H. In other words, the action of G by left multiplication simply permutes the left H-cosets. It follows that $\tau(\text{Tr}_{K/F}(\alpha)) = \text{Tr}_{K/F}(\alpha)$ for all $\tau \in \text{Gal}(L/F)$, and since the only elements fixed by all the automorphisms of L/F are those in F, we have $\text{Tr}_{K/F}(\alpha) \in F$. \hfill \Box

(b) Prove that $\text{Tr}_{K/F}(\alpha + \beta) = \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta)$, so that the trace is an additive map from K to F.

Proof. By the definition of trace,

$$\text{Tr}_{K/F}(\alpha + \beta) = \sum_{\sigma} \sigma(\alpha + \beta)$$

$$= \sum_{\sigma} (\sigma(\alpha) + \sigma(\beta))$$

$$= \sum_{\sigma} \sigma(\alpha) + \sum_{\sigma} \sigma(\beta)$$

$$= \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta),$$

so the trace map is additive. \hfill \Box

(c) Let $K = F(\sqrt{D})$ be a quadratic extension of F. Show that $\text{Tr}_{K/F}(a + b\sqrt{D}) = 2a$.

Proof. The quadratic extension K/F is a Galois extension with $\text{Gal}(K/F) = \{1, \sigma\}$, where $\sigma(a + b\sqrt{D}) = a - b\sqrt{D}$. As such,

$$\text{Tr}_{K/F}(a + b\sqrt{D}) = a + \sqrt{D} + \sigma(a + b\sqrt{D})$$

$$= a + b\sqrt{D} + a - b\sqrt{D}$$

$$= 2a.$$ \hfill \Box

(d) Let $m_\alpha(x)$ be as in the previous problem. Prove that $\text{Tr}_{K/F}(\alpha) = -\frac{n}{d}a_{d-1}$.

Proof. Begin by noticing that

$$\prod_{\sigma}(x - \sigma(\alpha)) = x^n - (\sum_{\sigma} \sigma(\alpha))x^{n-1} + \cdots$$

$$= x^n - \text{Tr}_{K/F}(\alpha)x^{n-1} + \cdots.$$

Also,

$$(m_\alpha(x))^\frac{1}{d} = (x^d + a_{d-1}x^{d-1} + \cdots + a_0)^\frac{1}{d}$$

$$= x^n + \frac{n}{d}a_{d-1}x^{n-1} + \cdots + a_0^\frac{1}{d}.$$

In the following problem we prove that $\prod_{\sigma}(x - \sigma(\alpha)) = (m_\alpha(x))^\frac{1}{d}$, so equating the two x^{n-1} terms gives the desired result. \hfill \Box

20. With notation as in the previous problems (beginning with 17) show more generally that $\prod_{\sigma}(x - \sigma(\alpha)) = (m_\alpha(x))^\frac{1}{d}$.

Proof. Let $f(x) = \prod_{\sigma}(x - \sigma(\alpha))$. Let $H' \subset G$ be the subgroup corresponding to $F(\alpha)$, and observe that it follows from $F \subseteq F(\alpha) \subseteq K$ that $H \subset H'$. We have the following diagram of fields, with certain extensions labelled by their Galois groups:
Now we claim that
\[m_\alpha(x) = \prod_{\tau \in H'} (x - \tau(\alpha)), \]
where the product runs over the left cosets of H' in G. Indeed, it is clear that α is a root of the product on the right (taking $\tau = 1$), and that this product is in $F[x]$ by the argument of #19 part (a). Since $\deg m_\alpha = [F(\alpha) : F] = [G : H']$, we have the desired equality.

Let’s return to the product $f(x) = \prod_\sigma (x - \sigma(\alpha))$, with the product running over all left H-cosets. We have that
\[\sigma(\alpha) = \tau(\alpha) \iff \tau^{-1} \sigma \in H' \iff \sigma H' = \tau H'. \]
Since $H \subset H'$, each left H'-coset is a disjoint union of left H-cosets. The number of H-cosets in this disjoint union is
\[[H' : H] = [G : H]/[G : H'] = n/d, \]
where $n = [K : F]$ and $d = [F(\alpha) : F] = \deg m_\alpha$.

Therefore, in the product defining $f(x)$, each distinct root $\sigma(\alpha)$ is repeated $\frac{n}{d}$ times, and hence $f(x) = (m_\alpha(x))^\frac{n}{d}$ as desired. □

References