# MATH 235-HW \# 1 

Nathan Marianovsky

October 3, 2019
[1] For $P(x) \in \mathbb{R}[x]$ we are interested in the differential equation $\dot{x}=P(x)$, an autonomous equation. In order to determine for which polynomials the flow is complete we first observe the linear case:

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =a x+b \\
\frac{\mathrm{~d} x}{a x+b} & =\mathrm{d} t \\
\int \frac{\mathrm{~d} x}{a x+b} & =\int \mathrm{d} t \\
\frac{1}{a} \ln |a x+b| & =t+C_{1} \\
a x+b & =C_{2} e^{a t} \\
x & =\frac{C_{2}}{a} e^{a t}-\frac{b}{a}
\end{aligned}
$$

With the explicit solution solution above we know that $x(t)$ does not blow up for any finite time, hence the flow is complete. Now for all higher order polynomials we first mention the Racetrack Principle: Given two functions $f(x)$ and $g(x)$ s.t. $f(a)=g(a)$ and $f^{\prime}(x) \geq g^{\prime}(x)$ then $f(x) \geq g(x)$ for $x>a$. Thus, setting $f^{\prime}(x)=P(x)$ a $n$th degree polynomial for $n>1$ we can determine a value $x=a$ s.t. $f(a)=g(a)$ for $g^{\prime}(x)=K x^{n}$, where the value of $K \in \mathbb{R}$ is picked small enough so that $f^{\prime}(x) \geq g^{\prime}(x)$. It follows that for $\dot{x}=g^{\prime}(x)$ :

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =K x^{n} \\
\frac{\mathrm{~d} x}{x^{n}} & =K \mathrm{~d} t \\
\frac{1}{1-n} x^{1-n} & =K t+C \\
x^{1-n} & =K(1-n) t+C(1-n) \\
x & =\frac{1}{(K(1-n) t+C(1-n))^{\frac{1}{n-1}}}
\end{aligned}
$$

there is a blow up in finite time. By the setup of the racetrack principle we know that the flow corresponding to $P(x)$ is greater than the flow above, thus this flow will also blow up in finite time. Hence, for $n>1$ the flow is not complete.
[2] We are given a $n$th degree polynomial $P(x)$ with distinct roots in the domain $[-1,1]$ and the associated differential equation $\dot{\theta}=P(\cos (\theta))$ on $\mathbb{S}^{1}$.
(a) We begin with the explicit form $P(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ where we may assume without loss of generality that $x_{i}<x_{j}$ for $i<j$. The replacement of $x$ with $\cos (\theta)$ will provide two solutions of $\theta$ for each root, with the exceptions of $x_{1}=-1$ and $x_{n}=1$ giving only one value of $\theta$. Thus, the number of equilibrium points is given by:

$$
\text { \# of equilibrium points }=\left\{\begin{array}{ll}
2 n & x_{1} \neq-1, x_{n} \neq 1 \\
2 n-1 & x_{1} \neq-1, x_{n}=1 \\
2 n-2 & x_{1}=-1, x_{n}=1
\end{array} \text { or } x_{1}=-1, x_{n} \neq 1\right.
$$

Let us now consider a couple of base cases:

* If $n=3$ with $x_{1} \neq-1$ and $x_{n} \neq 1$ we have the phase portrait:

* If $n=4$ with $x_{1} \neq-1$ and $x_{n}=1$ we have the phase portrait:

* If $n=4$ with $x_{1}=-1$ and $x_{n} \neq 1$ we have the phase portrait:

* If $n=5$ with $x_{1}=-1$ and $x_{n}=1$ we have the phase portrait:

(b) Notice from the above phase portraits that between equilibrium points the direction changes in the arrows. This is obviously not a coincidence because it occurs whenever some factor $\left(x-x_{i}\right)$ flips sign as we pass by $x=x_{i}$. Furthermore, if $x_{n} \neq 1$ then the arrow between the two values of $\theta$ that give us $\cos (\theta)=x_{n}$ is always pointing in the positive direction. On the other hand, if $x_{n}=1$ then the arrows between $\cos (\theta)=x_{n-1}$ and $\cos (\theta)=x_{n}$ are always pointing in the negative direction. Using these two possibilities as a starting point we generate the rest of the phase portrait by alternating the direction of the arrow as we move towards $\theta=\pi$ from $\theta=0$ along the upper semicircle and similarly for $\theta=-\pi$ from $\theta=0$ along the lower semicircle.

With the general pattern determined we can see that given some initial condition $\theta_{*} \in\left(x_{i}, x_{i+1}\right)$ we will have $\theta(t) \rightarrow \theta_{\infty}$ where $\cos \left(\theta_{\infty}\right)=x_{i}$ or $\cos \left(\theta_{\infty}\right)=x_{i+1}$. To know whether the cosine of the angle tends to $x_{i}$ or $x_{i+1}$ we draw the associated phase portrait and follow the direction of the arrow.

