HW 5

Mita Banik

November 6, 2019

1) a) Let $f \in L^{2}\left(\mathbb{T}^{2}\right)$ then by Fourier series expansion:

$$
f=\sum_{p, q} a_{p, q} e^{2 \pi i p x} e^{2 \pi i q y}
$$

Let $\mathrm{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ be the matrix associated with the cat map.
Then $U e_{p, q}=e^{2 \pi i p(2 x+y)} e^{2 \pi i q(x+y)}=e^{2 \pi i(2 p+q) x} e^{2 \pi i(p+q) y}=e_{A(p, q)}$.
b) Now $U f=\sum_{p, q} a_{p, q} e_{A(p, q)}$, (by linearity of U).

Then $U f=f$ if and only if the coefficients of the basis elements match i.e. when $a_{p, q}=a_{A(p, q)}$ for all $(p, q) \in \mathbb{Z}^{2}$.
c) If $U f=f$ then $a_{p, q}=a_{A(p, q)}=a_{A^{n}(p, q)}$ for all $n \in \mathbb{N}$ i.e. the Fourier coefficients are constant on all the orbits of A.
Let us now try to understand how the orbits of A look like for $(p, q) \in \mathbb{Z}^{2} . A(p, q)$ are integer lattice points on \mathbb{R}^{2}, hence either they are bounded (in that case periodic since there are finite number of choices) or $\left\|A^{n}(p, q)\right\|$ is unbounded.
d) Let $(p, q) \in \mathbb{Z}^{2}$ such that $(p, q) \neq(0,0)$. Suppose the sequence $A^{n}(p, q)$ is bounded, then since there are finite many choices of the elements in the orbit and A^{-1} exists therefore $\exists r \in \mathbb{N}$ such that $A^{r}(p, q)=(p, q)$. So, (p, q) is an eigenvector for A^{r} for eigen-value 1 , this is impossible since all the eigen values of A are irrational and different from 1 . Therefore the only possible bounded orbit is $(0,0)$.
e) We have $\int f=\sum\left|a_{p, q}\right|^{2}<\infty$. Suppose there exists a sequence $\left(p_{k}, q_{k}\right) \rightarrow \infty$ such that $\left|a_{\left(p_{k}, q_{k}\right)}\right|>c$ for some $c>0$. Then $\sum\left|a_{p, q}\right|^{2}>k c$ for all $k \in \mathbb{N}$ hence a contradiction. Therefore $a_{p, q} \rightarrow 0$ as $(p, q) \rightarrow \infty$.
f) Suppose $U f=f$ then $a_{p, q}=a_{A^{n}(p, q)}$ for all $(p, q) \in \mathbb{Z}^{2}$. The sequence $A^{n}(p, q)$ is unbounded for non-zero (p, q), therefore since integral of f is bounded $a_{p, q}=0$ for all non-zero (p, q). Therefore $f=a_{0,0}=$ const., this proves ergodicity.
2) a) Continuing the same notation from the previous problem we have, $U^{n} f=\sum_{p, q} a_{p, q} e_{A^{n}(p, q)}$. We recall from Fourier analysis that $e_{p, q}$ forms an orthogonal basis for $L^{2}\left(\mathbb{T}^{2}\right)$ with respect to the standard inner product. Let $g=\sum_{p^{\prime}, q^{\prime}} b_{p^{\prime}, q^{\prime}} e_{p^{\prime}, q^{\prime}}$.

To prove $<U^{n} f, g>\rightarrow \int f \int g$ it is enough to show that for all basis elements $e_{p, q}, e_{p^{\prime}, q^{\prime}}$ is due to two standard arguments from Fourier analysis:
i) In order to show this equation holds for all $f, g \in L^{2}\left(\mathbb{T}^{2}\right)$, it suffices to prove it for all f, g in some dense subset $V \subset L^{2}\left(\mathbb{T}^{2}\right)$ (the limits works perfectly since U is unitary).
ii) From the computations above we observe both side are bilinear in $<f, q>$. Hence it is sufficient to show for pairs in $\left\{v_{1}, v_{2}, \ldots\right\}$ which spans V a dense subset in $L^{2}\left(\mathbb{T}^{2}\right)$.
For our situation we consider $\mathrm{V}=\operatorname{span}\left\{e_{p, q}:(p, q) \in \mathbb{Z}^{2}\right\}$ and result will follow.
b) For all non zero (p, q) we have $\int e_{p, q} d \mu=\int_{-1}^{1} \int_{-1}^{1} e^{2 \pi i p x} e^{2 \pi i q y} d x d y=\int_{-1}^{1} e^{2 \pi i p x} d x \int_{-1}^{1} e^{2 \pi i q y} d y=$ 0.
c) Let $(p, q) \neq(0,0)$ and $(r, s) \in(Z)^{2}$. Suppose there exist r_{1}, r_{2} such that $A^{r_{i}}(p, q)=(s, t)$. Since A^{-1} exists therefore (p, q) is periodic point for A which is impossible by $1(d)$, therefore for all large $\mathrm{n} A^{n}(p, q) \neq(r, s)$.
d) Let $e_{p, q}$ and $e_{p^{\prime}, q^{\prime}}$ be two basis elements such that $(p, q) \neq(0,0) . A^{n}(p, q) \neq\left(p^{\prime}, q^{\prime}\right)$ for all large n and by orthogonality of the basis elements we have $<e_{A^{n}(p, q)}, e_{p^{\prime}, q^{\prime}}>\rightarrow 0$. By 2(a) the mixing of the cat map follows.

