HW 5

Mita Banik

November 6, 2019

1) a) Let $f \in L^2(\mathbb{T}^2)$ then by Fourier series expansion:

$$f = \sum_{p,q} a_{p,q} e^{2\pi i p x} e^{2\pi i q y}$$

Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ be the matrix associated with the cat map. Then $Ue_{p,q} = e^{2\pi i p(2x+y)} e^{2\pi i q(x+y)} = e^{2\pi i (2p+q)x} e^{2\pi i (p+q)y} = e_{A(p,q)}.$

b) Now $Uf = \sum_{p,q} a_{p,q} e_{A(p,q)}$, (by linearity of U). Then Uf = f if and only if the coefficients of the basis elements match i.e. when $a_{p,q} = a_{A(p,q)}$ for all $(p,q) \in \mathbb{Z}^2$.

c) If Uf = f then $a_{p,q} = a_{A(p,q)} = a_{A^n(p,q)}$ for all $n \in \mathbb{N}$ i.e. the Fourier coefficients are constant on all the orbits of A.

Let us now try to understand how the orbits of A look like for $(p,q) \in \mathbb{Z}^2$. A(p,q) are integer lattice points on \mathbb{R}^2 , hence either they are bounded (in that case periodic since there are finite number of choices) or $||A^n(p,q)||$ is unbounded.

d) Let $(p,q) \in \mathbb{Z}^2$ such that $(p,q) \neq (0,0)$. Suppose the sequence $A^n(p,q)$ is bounded, then since there are finite many choices of the elements in the orbit and A^{-1} exists therefore $\exists r \in \mathbb{N}$ such that $A^r(p,q) = (p,q)$. So, (p,q) is an eigenvector for A^r for eigen-value 1, this is impossible since all the eigen values of A are irrational and different from 1. Therefore the only possible bounded orbit is (0,0).

e) We have $\int f = \sum |a_{p,q}|^2 < \infty$. Suppose there exists a sequence $(p_k, q_k) \to \infty$ such that $|a_{(p_k,q_k)}| > c$ for some c > 0. Then $\sum |a_{p,q}|^2 > kc$ for all $k \in \mathbb{N}$ hence a contradiction. Therefore $a_{p,q} \to 0$ as $(p,q) \to \infty$.

f) Suppose Uf = f then $a_{p,q} = a_{A^n(p,q)}$ for all $(p,q) \in \mathbb{Z}^2$. The sequence $A^n(p,q)$ is unbounded for non-zero (p,q), therefore since integral of f is bounded $a_{p,q} = 0$ for all non-zero (p,q). Therefore $f = a_{0,0} = const.$, this proves ergodicity.

2) a) Continuing the same notation from the previous problem we have, $U^n f = \sum_{p,q} a_{p,q} e_{A^n(p,q)}$. We recall from Fourier analysis that $e_{p,q}$ forms an orthogonal basis for $L^2(\mathbb{T}^2)$ with respect to the standard inner product. Let $g = \sum_{p',q'} b_{p',q'} e_{p',q'}$. To prove $\langle U^n f, g \rangle \rightarrow \int f \int g$ it is enough to show that for all basis elements $e_{p,q}, e_{p',q'}$ is due to two standard arguments from Fourier analysis:

i) In order to show this equation holds for all $f, g \in L^2(\mathbb{T}^2)$, it suffices to prove it for all f, g in some dense subset $V \subset L^2(\mathbb{T}^2)$ (the limits works perfectly since U is unitary).

ii) From the computations above we observe both side are bilinear in $\langle f, q \rangle$. Hence it is sufficient to show for pairs in $\{v_1, v_2, ...\}$ which spans V a dense subset in $L^2(\mathbb{T}^2)$. For our situation we consider V= span $\{e_{p,q} : (p,q) \in \mathbb{Z}^2\}$ and result will follow.

b) For all non zero (p,q) we have $\int e_{p,q}d\mu = \int_{-1}^{1} \int_{-1}^{1} e^{2\pi i p x} e^{2\pi i q y} dx dy = \int_{-1}^{1} e^{2\pi i p x} dx \int_{-1}^{1} e^{2\pi i q y} dy = 0.$

c) Let $(p,q) \neq (0,0)$ and $(r,s) \in (Z)^2$. Suppose there exist r_1, r_2 such that $A^{r_i}(p,q) = (s,t)$. Since A^{-1} exists therefore (p,q) is periodic point for A which is impossible by 1(d), therefore for all large n $A^n(p,q) \neq (r,s)$.

d) Let $e_{p,q}$ and $e_{p',q'}$ be two basis elements such that $(p,q) \neq (0,0)$. $A^n(p,q) \neq (p',q')$ for all large n and by orthogonality of the basis elements we have $\langle e_{A^n(p,q)}, e_{p',q'} \rangle \rightarrow 0$. By 2(a) the mixing of the cat map follows.