# Dynamical Systems HW 1

### Matthew Salinger

## September 2019

#### Problem 1

Let P(x) be a polynomial with real coefficients. Determine the conditions for the vector field

$$X = P(x)\frac{\partial}{\partial x}$$

on the real line to be complete.

#### Solution

First we show that it is sufficient for  $\deg(P(x)) \leq 1$ . When the degree is 0 we have a constant vector field so that the flow is linear, existing for all time. So then let P(x) = ax + b,  $a \neq 0$ . Then

 $\dot{x} = ax + b.$ 

We can easily see that  $x = -\frac{b}{a}$  is the unique equilibrium solution. Now after separation of variables we get

$$x(t) = Ce^{at} - \frac{b}{a}.$$
(1)

When a < 0 the solution curves converge to the equilibrium  $-\frac{b}{a}$  and when a > 0 diverge away. Either way, x(t) is defined for all  $t \in \mathbb{R}$ .

We start running into problems when deg P(x) > 1. For example, let P(x) = x(x-1). That is,

$$\dot{x} = x(x-1).$$

After separation of variables we obtain the relation

$$\frac{x-1}{x} = Ce^t \tag{2}$$

where C is an arbitrary constant. The equilibria are located at x = 0 (stable) and x = 1 (unstable). In the limit as  $t \to \infty$ , the right hand side approaches  $\pm \infty$ (depending on C) which implies that  $x(t) \to 0$  from the right when the limit is  $-\infty$  and from the left when the limit is  $+\infty$ . Of course this tells us no more than we already know about solution curves with initial condition x(0) < 1 (drawing the phase plot makes this easy to see). However, we made no assumption about the initial condition in equation (2) when taking the limit  $t \to \infty$ . Consequently, this shows that *all* the solution curves with initial condition x(0) > 1 blowup in finite time, since if  $\lim_{t\to\infty} x(t)$  existed, then such a solution curve would have to converge to 0 which requires passing through the equilibrium x = 1, which is impossible.

We will see that  $\deg(P(x)) = 0, 1$  is also necessary for completeness.

**Proposition 1** The vector field  $X = x^{n+1} \frac{\partial}{\partial x}$ ,  $n \ge -1$  is complete if and only if n is -1 or 0.

### Proof

We already proved that n = -1, 0 is sufficient. To prove it is necessary we will prove a slightly modified statement: suppose that  $n \ge 1$  and suppose that

$$\dot{x} \ge x^{n+1}.$$

Since this holds for all t,

$$\int_0^t \frac{\dot{x}}{x^{n+1}} \, dt \ge t,$$

or

$$-\frac{1}{n}x^{-n} + \frac{1}{n}x_0^{-n} \ge t$$

where  $x_0 := x(0)$ .

After some rearrangement we get

$$x^{n} \ge \frac{x_{0}^{n}}{1 - nx_{0}^{n}t}.$$
(3)

The right hand side blows up at  $t = \frac{1}{nx_0^n}$ , so x(t) cannot be defined for all t. Note that the larger  $x_0$  is, the quicker the blowup.

This is almost enough to show that  $\deg(P(x)) > 1$  has finite time blowups. To see why, suppose that P(x) has degree n > 1 and with positive leading coefficient. Then for some  $c \in (0, 1)$  and sufficiently large positive integer N, x > N implies that  $P(x) > cx^n$ . Therefore if the initial condition is taken to be large enough, e.g.  $x_0 > N$ , it follows that for  $t \ge 0$ ,

$$\dot{x}(t) > cx(t)^r$$

and apply the method in the proof of proposition 1. If the leading coefficient is negative, then an analogous argument holds with negative initial conditions.

## Problem 2

Suppose P(x) is a polynomial of degree n all of whose roots lie in [-1, 1] (Legendre polynomials, for example).

- 1. Sketch a phase portrait of the system  $\dot{\theta} = P(\cos \theta)$  on the standard unit circle, parameterized by  $\theta \in [0, 2\pi]$ .
- 2. Suppose you start off with  $\theta(0) = \theta_*$  such that  $\cos(\theta_*)$  lies between consecutive zeroes of P(x), say  $x_i < \cos(\theta_*) < x_{i+1}$ . Show that, as  $t \to \infty$ , we have  $\theta(t) \to \theta_{\infty}$ , where  $\cos(\theta_{\infty})$  equals either  $x_i$  or  $x_{i+1}$ . How can you know which angle  $\theta(t)$  tends to, the angle corresponding to  $x_i$  or  $x_{i+1}$ .

Solution

Suppose  $P(x) = \frac{1}{2}(3x^2 - 1)$ . The phase portrait looks like



where the points A and B are the roots of P(x) on the real line,  $-\frac{1}{\sqrt{3}}$ and  $\frac{1}{\sqrt{3}}$ , respectively; the points A', B', A'', B'' correspond to the zeros of  $P(\cos \theta)$ . To determine the direction of the arrows, one can use local stability criterion: let  $Q(\theta) = P(\cos \theta)$ . Then the differential equation can be written as

$$\dot{\theta} = Q(\theta).$$

By local stability criterion, a critical point  $\theta$  is stable if  $\frac{d}{d\theta}Q(\theta) < 0$  and unstable if  $\frac{d}{d\theta}Q(\theta) > 0$ . Now

$$\frac{d}{d\theta}Q(\cos\theta) = -\sin\theta P'(\cos\theta) = -3\sin\theta\cos\theta.$$
(4)

The sign of  $-3\sin\theta\cos\theta$  alternates with the quadrants in the order -+-+. That is, going clockwise starting at  $\theta = 0$ , B' is stable, A' unstable, A''stable, and B' unstable. Doing so tells us the direction of the flow off of the critical points. This gives a general procedure. And, the flows exist for all time since  $\dot{\theta}$  is bounded above and below by a constant (in our example  $-5/2 \le \theta \le 5/2$ ). This answers 2.