Dynamical Systems HW 1

Matthew Salinger

September 2019

Problem 1

Let $P(x)$ be a polynomial with real coefficients. Determine the conditions for the vector field

$$
X=P(x) \frac{\partial}{\partial x}
$$

on the real line to be complete.

Solution

First we show that it is sufficient for $\operatorname{deg}(P(x)) \leq 1$. When the degree is 0 we have a constant vector field so that the flow is linear, existing for all time. So then let $P(x)=a x+b, a \neq 0$. Then

$$
\dot{x}=a x+b .
$$

We can easily see that $x=-\frac{b}{a}$ is the unique equilibrium solution. Now after separation of variables we get

$$
\begin{equation*}
x(t)=C e^{a t}-\frac{b}{a} . \tag{1}
\end{equation*}
$$

When $a<0$ the solution curves converge to the equilibrium $-\frac{b}{a}$ and when $a>0$ diverge away. Either way, $x(t)$ is defined for all $t \in \mathbb{R}$.

We start running into problems when $\operatorname{deg} P(x)>1$. For example, let $P(x)=$ $x(x-1)$. That is,

$$
\dot{x}=x(x-1) .
$$

After separation of variables we obtain the relation

$$
\begin{equation*}
\frac{x-1}{x}=C e^{t} \tag{2}
\end{equation*}
$$

where C is an arbitrary constant. The equilibria are located at $x=0$ (stable) and $x=1$ (unstable). In the limit as $t \rightarrow \infty$, the right hand side approaches $\pm \infty$ (depending on C) which implies that $x(t) \rightarrow 0$ from the right when the limit is
$-\infty$ and from the left when the limit is $+\infty$. Of course this tells us no more than we already know about solution curves with initial condition $x(0)<1$ (drawing the phase plot makes this easy to see). However, we made no assumption about the initial condition in equation (2) when taking the limit $t \rightarrow \infty$. Consequently, this shows that all the solution curves with initial condition $x(0)>1$ blowup in finite time, since if $\lim _{t \rightarrow \infty} x(t)$ existed, then such a solution curve would have to converge to 0 which requires passing through the equilibrium $x=1$, which is impossible.
We will see that $\operatorname{deg}(P(x))=0,1$ is also necessary for completeness.
Proposition 1 The vector field $X=x^{n+1} \frac{\partial}{\partial x}, n \geq-1$ is complete if and only if n is -1 or 0 .

Proof
We already proved that $n=-1,0$ is sufficient. To prove it is necessary we will prove a slightly modified statement: suppose that $n \geq 1$ and suppose that

$$
\dot{x} \geq x^{n+1}
$$

Since this holds for all t,

$$
\int_{0}^{t} \frac{\dot{x}}{x^{n+1}} d t \geq t
$$

or

$$
-\frac{1}{n} x^{-n}+\frac{1}{n} x_{0}^{-n} \geq t
$$

where $x_{0}:=x(0)$.
After some rearrangement we get

$$
\begin{equation*}
x^{n} \geq \frac{x_{0}^{n}}{1-n x_{0}^{n} t} \tag{3}
\end{equation*}
$$

The right hand side blows up at $t=\frac{1}{n x_{0}^{n}}$, so $x(t)$ cannot be defined for all t. Note that the larger x_{0} is, the quicker the blowup.

This is almost enough to show that $\operatorname{deg}(P(x))>1$ has finite time blowups. To see why, suppose that $P(x)$ has degree $n>1$ and with positive leading coefficient. Then for some $c \in(0,1)$ and sufficiently large positive integer N, $x>N$ implies that $P(x)>c x^{n}$. Therefore if the initial condition is taken to be large enough, e.g. $x_{0}>N$, it follows that for $t \geq 0$,

$$
\dot{x}(t)>c x(t)^{n}
$$

and apply the method in the proof of proposition 1. If the leading coefficient is negative, then an analogous argument holds with negative initial conditions.

Problem 2

Suppose $P(x)$ is a polynomial of degree n all of whose roots lie in $[-1,1]$ (Legendre polynomials, for example).

1. Sketch a phase portrait of the system $\dot{\theta}=P(\cos \theta)$ on the standard unit circle, parameterized by $\theta \in[0,2 \pi]$.
2. Suppose you start off with $\theta(0)=\theta_{*}$ such that $\cos \left(\theta_{*}\right)$ lies between consecutive zeroes of $P(x)$, say $x_{i}<\cos \left(\theta_{*}\right)<x_{i+1}$. Show that, as $t \rightarrow \infty$, we have $\theta(t) \rightarrow \theta_{\infty}$, where $\cos \left(\theta_{\infty}\right)$ equals either x_{i} or x_{i+1}. How can you know which angle $\theta(t)$ tends to, the angle corresponding to x_{i} or x_{i+1}.
Solution
Suppose $P(x)=\frac{1}{2}\left(3 x^{2}-1\right)$. The phase portrait looks like

where the points A and B are the roots of $P(x)$ on the real line, $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$, respectively; the points $A^{\prime}, B^{\prime}, A^{\prime \prime}, B^{\prime \prime}$ correspond to the zeros of $P(\cos \theta)$. To determine the direction of the arrows, one can use local stability criterion: let $Q(\theta)=P(\cos \theta)$. Then the differential equation can be written as

$$
\dot{\theta}=Q(\theta)
$$

By local stability criterion, a critical point θ is stable if $\frac{d}{d \theta} Q(\theta)<0$ and unstable if $\frac{d}{d \theta} Q(\theta)>0$. Now

$$
\begin{equation*}
\frac{d}{d \theta} Q(\cos \theta)=-\sin \theta P^{\prime}(\cos \theta)=-3 \sin \theta \cos \theta \tag{4}
\end{equation*}
$$

The sign of $-3 \sin \theta \cos \theta$ alternates with the quadrants in the order -+-+ . That is, going clockwise starting at $\theta=0, B^{\prime}$ is stable, A^{\prime} unstable, $A^{\prime \prime}$ stable, and B^{\prime} unstable. Doing so tells us the direction of the flow off of the critical points. This gives a general procedure. And, the flows exist for all time since $\dot{\theta}$ is bounded above and below by a constant (in our example $-5 / 2 \leq \theta \leq 5 / 2)$. This answers 2 .

