
Math 235 - Assignment 2

John Gabriel P. Pelias

1. Let Σ and Σ1 be two Poincaré sections to the same periodic orbit c and passing

through the same point p “ cp0q of c. Let Ψ : pΣ, pq ÝÑ pΣ, pq and Ψ1 : pΣ1, pq ÝÑ

pΣ1, pq be the correspoding Poincaré maps respectively. Then the two maps are

locally conjugate, i.e. there exists a smooth map Φ : pΣ, pq ÝÑ pΣ1, pq which is a local

diffeomorphism at p and satisfies

Φ ˝Ψ “ Ψ1 ˝ Φ.

Proof. Let V : M ÝÑ TM be the vector field having the above periodic orbit c and

tϕtutPI Ă DiffpMq be its associated flow. For each q P Σ and q1 P Σ1 sufficiently close

to p, put

T pqq :“ mintt ą 0 : ϕtpqq P Σu

T 1pq1q :“ mintt ą 0 : ϕtpq
1q P Σ1u

so that

Ψpqq “ ϕT pqqpqq and Ψ1pq1q “ ϕT 1pq1qpq
1q.

Note that Vppq “ 9cp0q ‰ 0 (in fact 9c is nonvanishing, since c is an orbit (that is an

actual curve) and so cannot contain a critical point), and so by the Straightening

Lemma, there exist local coordinates px1, . . . , xnq for M about p such that

V “
B

Bx1

in a coordinate neighborhood of p. More precisely, if M has dimension n (so that

Σ and Σ1 are pn ´ 1q-dimensional manifolds), there exists an open subset rU Ă M

containing p and a diffeomorphism rf : rU ÝÑ rfprUq Ă Rn such that for any q “
rf´1px1, . . . , xnq P rU ,

Vpqq “
B

Bx1
.
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Of course this neighborhood rU can be arranged to be small enough so that the times

of return T and T 1, and hence the Poincaré maps Ψ and Ψ1, are well-defined on ΣXU

and Σ1 X U , respectively. Moreover, it can be arranged that it is “literally” small

enough, i.e. rfprUq has closure contained in some ball of finite radius in Rn.

Meanwhile, since c is an embedded curve in M , by the Tubular Neighborhood The-

orem, c has a tubular neighborhood. Moreover, since c is compact , for some small

enough ε ą 0, c has a tubular neighborhood in M which is the diffeomorphic image

of the (open) ε-neighborhood

tpx, vq P Npcq : }v} ă εu

of the normal bundle Npcq Ă TM of c. Finally, let U be the (open) intersection of

this tubular neighborhood with rU and f : U ÝÑ fpUq be the diffeomorphism which

is the restriction of rf on U .

Since Σ ´& c and Σ1 ´& c, we still have O :“ ΣXU and O1 :“ Σ1XU transverse to
B

Bx1
in

U . Thus, by the Implicit Function Theorem, one can arrange O and O1 small enough

so that there exist functions σ and σ1 (with appropriate domains Ă tx1 “ 0u, as will

be implied as follows) such that O and O1 are the graphs of σ and σ1, respectively,

i.e.

fpOq “ tpx1, x2, . . . , xnq P U : x1 “ σpx2, . . . , xnqu

fpO1q “ tpx1, x2, . . . , xnq P U : x1 “ σ1px2, . . . , xnqu

Finally, define the vector field W : U ÝÑ TU as follows: If q P U has coordinates

fpqq “ px1
q , x

2
q , . . . , x

n
q q P Rn,

Wpqq “ pσ1 ´ σqpx2
q , . . . , x

n
q q
B

Bx1

Just to be clear, the function σ1 ´ σ is well-defined; this subtraction occurs in R,

since σ, σ1 have images both subsets of R (the “x1-axis” in Rn, i.e. the time axis

of the flow of V). Essentially, this expression gives the time (i.e. value of t “ x1)

that it takes for a point on O to reach a (unique, since they’re both graphs) point

on O1 when following the flow of V (along exactly the direction of increasing x1).

Indeed, the “absolute” times for being at the points q “ fpx1
q , x

2
0, . . . , x

n
0 q P O and

q1 “ fpx1
q1 , x2

0, . . . , x
n
0 q P O1 on the same integral curve tx2 “ x2

0, . . . , x
n “ xn0u (it’s a

“line” when viewed using the straightening coordinates) of V are precisely

x1 “ σpx2
0, . . . , x

n
0 q and x1 “ σ1px2

0, . . . , x
n
0 q,
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respectively. Thus, the time it takes to go from q to q1 along the aforementioned

integral curve of V is exactly the difference of these two absolute times.

Claim: The time-1 flow of W gives a diffeomorphism O ÝÑ O1.

Indeed, first let q P U and fpqq “ px1
q , x

2
q , . . . , x

n
q q. Let us solve the initial-value prob-

lem 9x “Wpf´1pxqq (happening in Rn) with initial condition 9xp0q “ px1
q , x

2
q , . . . , x

n
q q.

The ODE is equivalent to

9x1 “ pσ1 ´ σqpx2, . . . , xnq

9x2 “ 0
...

9xn “ 0

Of course the solutions of the second up to the n-th equations are constant functions;

invoking the initial condition gives

x2ptq “ x2
q

...

xnptq “ xnq

which also consequently leads to

9x1 “ pσ1 ´ σqpx2
q , . . . , x

n
q q.

Note that the right hand side here is constant. The solution to this last (actually,

first) equation, satisfying the initial condition, is then clearly

x1ptq “ x1
q ` tpσ

1 ´ σqpx2
q , . . . , x

n
q q,

That is, if tϑtutPJ Ă DiffpMq is the flow of W, then

ϑtpqq “ f´1
`

x1
q ` tpσ

1 ´ σqpx2
q , . . . , x

n
q q, x

2
q , . . . , x

n
q

˘

(1)

Now, if q P O, then x1
q “ σpx2

q , . . . , x
n
q q, and so we can write

x1ptq “ p1´ tqσpx2
q , . . . , x

n
q q ` tσ

1px2
q , . . . , x

n
q q

That is, the unique solution to our initial value problem is

xptq “
`

p1´ tqσpx2
q , . . . , x

n
q q ` tσ

1px2
q , . . . , x

n
q q, x

2
q , . . . , x

n
q

˘
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That is,

fpϑtpqqq “
`

p1´ tqσpx2
q , . . . , x

n
q q ` tσ

1px2
q , . . . , x

n
q q, x

2
q , . . . , x

n
q

˘

In particular, we have

ϑ0pqq “ f´1
`

σpx2
q , . . . , x

n
q q, x

2
q , . . . , x

n
q

˘

“ f´1
`

x1
q , x

2
q , . . . , x

n
q

˘

“ q,

as of course is expected, and more importantly,

ϑ1pqq “ f´1
`

σ1px2
q , . . . , x

n
q q, x

2
q , . . . , x

n
q

˘

P O1.

Thus, indeed, the time-1 flow is a map ϑ1 : O ÝÑ O1. Moreover, it is smooth and

injective, as flows are diffeomorphisms. Finally, it is surjective and hence is an actual

diffeomorphism of O with O1: Indeed, given any q1 P O1, if

fpq1q “ px1
q1 , x2

q1 , . . . , xnq1q “ pσ1px2
q1 , . . . , xnq1q, x2

q1 , . . . , xnq1q,

choose q “ f´1pσpx2
q1 , . . . , xnq1q, x2

q1 , . . . , xnq1q P O. Then,

ϑ1pqq “ f´1
`

σ1px2
q1 , . . . , xnq1q, x2

q1 , . . . , xnq1

˘

“ q1

For sanity’s sake, we explain in words what ϑ1 does: At the level of the straightening

coordinates, ϑ1 simply replaces the x1-coordinate, which originally makes the point

lie in O Ă Σ, by the unique proper value such that the image lies in O1 Ă Σ1.

Visually, every integral curve of W intersects O and O1 uniquely at some points q

and q1, respectively. Along this integral curve, the coordinates x2, . . . , xn are constant.

Now, applying ϑ1 to q is tantamount to replacing the x1-coordinate of q (which is

σpx2, . . . , xnq on the integral curve) by the x1-coordinate of q1 (which is σ1px2, . . . , xnq

on the integral curve). The inverse does the reverse replacement. As a special

important case, since p lies on both O and O1, the values of σ and σ1 at p are

the same, and hence ϑ1ppq “ p.

Therefore, ϑ1 is a diffeomorphism of a neighborhood of p in Σ with a neighborhood

of p in Σ1. Finally, define

Φ “ ϑ1 : O ÝÑ O1.

Before finally showing local conjugacy, we make an important observation: How are

the flows ϕt and ϑt of the vector fields V and W related? We observed earlier that the

x1-coordinate can be thought of as the time-coordinate, the coordinate along the flow
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of the original vector field. Since W is just a rescaling of V “
B

Bx1
(not constantly

over U), the time coordinate, we expect that the orbits (as actual goemetric curves,

i.e. images of parametrizations, not as parametrized curves, i.e. the parametrizations

themselves) of the two vector fields are the same, except when the rescaling is by a

factor of 0 (W has “more” critical points than V; precisely, it has the extra critical

points O XO1 where the graphs intersect, i.e. σ and σ1 coincide as functions). One

of them is just a “faster” (or reverse) flow of the other. Indeed, if q P U , with

fpqq “ px1
q , x

2
q , . . . , x

n
q q, we clearly have (since, in the straightening coordinates, V is

just the constant vector field p1, 0, . . . , 0q)

ϕtpqq “ f´1px1
q ` t, x

2
q , . . . , x

n
q q

and hence, from (1),

ϑtpqq “ f´1
`

x1
q ` tpσ

1 ´ σqpx2
q , . . . , x

n
q q, x

2
q , . . . , x

n
q

˘

“ ϕtpσ1´σqpx2
q ,...,x

n
q q
pqq

Now we show local conjugacy. First, let

q “ f´1px1
q , x

2
q , . . . , x

n
q q P O and Ψpqq “ f´1px1

Ψpqq, x
2
Ψpqq, . . . , x

n
Ψpqqq P O

1.

Then Φpqq “ ϑ1pqq is the first point on O1 hit by the orbit of the flow of ˘V when

started at q. (Here, the sign coincides with the sign of pσ1 ´ σqpx2
q , . . . , x

n
q q. If it is

positive, we follow the direction of V; if it is negative, we go in the opposite direction

along the orbit. If it turns out to be zero, we have q P O XO1, and we simply don’t

move. In any case, we have to follow the direction which brings us from Σ to Σ1,

along the orbit.) And then, Ψ1pΦpqqq is the first point on O1 hit by the orbit of the

flow of V when started at Φpqq. The crucial point is that these two orbits are exactly

the same, for otherwise there would be two integral curves of V passing through the

common point Φpqq, contradicting uniqueness of the integral curve through a given

point. Call this orbit γ1; arrange it so that γ1p0q “ q. Meanwhile, Ψpqq is the first

distinct point on O hit by the orbit of the flow of V when started at q. And then,

ΦppΨpqqq is the first point on O1 hit by the orbit of the flow of ˘V when started at

Ψpqq (similarly, the sign coincides with the sign of pσ1´σqpx2
Ψpqq, . . . , x

n
Ψpqqq). By the

same argument previously, the two orbits coincide; call it γ2, and arrange it so that

γ2p0q “ q. Now both γ1 and γ2 are integral curves of the same vector field V with

the same initial condition, and hence again by uniqueness, γ1 “ γ2. So, in summary,
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the point Ψ1pΦpqqq is obtained by moving along γ1, starting at q in the direction that

brings us fastest to a point on O1 (to get Φpqq), and then from there move along γ1

in the (original) direction of V until we return to O1. Now, we have chosen the O
and O1 small enough so that the latter return process will always result in hitting

both of them. In particular, it will hit O, and this will be the first time γ1 “ γ2 hits

O again, i.e. it is the point Ψpqq. Finally then, the last point Ψ1pΦpqqq must be the

first point on O1 reached by moving from Ψpqq along γ1 “ γ2 (whether forward or

backward in time). That is, Ψ1pΦpqqq “ ΦpΨpqqq.

More precisely, we can see in coordinates that γ1 “ γ2 as follows:

pΨ1 ˝ Φqpqq “ pΨ1 ˝ ϑ1qpqq

“ ϕT 1pϑ1pqqq ˝ ϕpσ1´σqpx2
q ,...,x

n
q q
pqq

“ ϕT 1pϑ1pqqq`pσ1´σqpx2
q ,...,x

n
q q
pqq

“ f´1px1
q ` T

1pϑ1pqqq ` pσ
1 ´ σqpx2

q , . . . , x
n
q q, x

2
q , . . . , x

n
q q

and

pΦ ˝Ψqpqq “ pϑ1 ˝Ψqpqq

“ ϕpσ1´σqpx2
Ψpqq

,...,xn
Ψpqq

q ˝ ϕT pqqpqq

“ ϕpσ1´σqpx2
Ψpqq

,...,xn
Ψpqq

q`T pqqpqq

“ f´1px1
q ` pσ

1 ´ σqpx2
Ψpqq, . . . , x

n
Ψpqqq ` T pqq, x

2
q , . . . , x

n
q q

And so we see that the two points are on the same integral curve indeed. Now, the

fact that they are the same point is then equivalent to the equation

T 1pϑ1pqqq ` pσ
1 ´ σqpx2

q , . . . , x
n
q q “ pσ

1 ´ σqpx2
Ψpqq, . . . , x

n
Ψpqqq ` T pqq.

which, in words, simply says that, using the flow ϕt, it takes the same time t to map

q to pΨ1 ˝ Φqpqq and to pΦ ˝Ψqpqq.
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2. Suppose that the unit circle is a periodic orbit for some smooth vector field V on

R2. The line segment Σ joining p1 ´ ε, 0q to p1 ` ε, 0q is a slice of this orbit, and

so defines a Poincaré section. Use the interval p´ε, εq to coordinatize this slice by

sending x ÞÑ p1`x, 0q. Prove that it is not possible for the map x ÞÑ ´x to represent

the Poincaré map associated to Σ.

Proof. Let tφtutPI Ă DiffpR2q be the flow of the vector field V : R2 ÝÑ R2, for some

interval I containing 0. Let q “ 1` x P Σ be sufficiently close to (and distinct from)

1, with 0 ă |x| ă ε. Then q is in either the interior or the exterior of the unit circle.

Let γ : r0, bq ÝÑ R2 (0 ă b ď `8) be the orbit of the flow starting at q, i.e.

γptq “ φtpqq, 0 ď t ă b.

If Ψ : pΣ, pq ÝÑ pΣ, pq denotes the Poincaré map associated to the section Σ, then

Ψpqq “ φτpqqpqq “ γpτpqqq,

where τpqq is the minimal t ą 0 such that φtpqq P Σ. Note that Imagepγq cannot

intersect the orbit c; otherwise, there would be at least two distinct integral curves

through the point of intersection (c and γ), contradicting the uniqueness of solutions

to 9x “ Vpxq. Thus, Imagepγq Ă R2 ´ c.

Moreover γ, being an integral curve of V, is at least continuous. Thus, since r0, bq

is connected, the actual curve Imagepγq Ă R2 must be connected. Note that the

unit circle c is a Jordan (i.e. simple closed) curve, and so by the Jordan Separation

Theorem, R2´c is disconnected, with the interior and exterior of the unit circle being

the two connected components. Thus, if q “ γp0q is in the interior of c, i.e. x ă 0,

then Imagepγq is entirely contained in the interior of c. Likewise, if q “ γp0q is in the

exterior of c, i.e. x ą 0, then Imagepγq is entirely contained in the exterior of c.

Finally, aiming for a contradiction, assume instead that the map (at the level of

coordinates)
p´ε, εq ÝÝÝÝÑ p´ε, εq

x ÞÝÑ ´x

represents the Poincaré map Ψ. More precisely, Ψ : pΣ, pq ÝÑ pΣ, pq factors as

pΣ, pq ÝÝÝÝÑ p´ε, εq ÝÝÝÝÑ p´ε, εq ÝÝÝÝÑ pΣ, pq

1` x ÞÝÑ x ÞÝÑ ´x ÞÝÑ 1´ x
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Then, if q “ 1` x is in the exterior of c, x ą 0 and so Ψpqq “ 1´ x is in the interior

of c. Likewise, if q “ 1` x is in the interior of c, x ą 0 and so Ψpqq “ 1´ x is in the

exterior of c. In either case, Imagepγq is not entirely contained in the interior nor the

exterior of c. Contradiction.

6 the map x ÞÝÑ ´x cannot represent the Poincaré map for pΣ, pq.
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