Dynamical Systems HW 1

Matthew Salinger

September 2019

Problem 1

Let $P(x)$ be a polynomial with real coefficients. Determine the conditions for the vector field

$$
X=P(x) \frac{\partial}{\partial x}
$$

on the real line to be complete.

Solution

First we show that it is sufficient for $\operatorname{deg}(P(x)) \leq 1$. When the degree is 0 we have a constant vector field so that the flow is linear, existing for all time. So then let $P(x)=a x+b, a \neq 0$. Then

$$
\dot{x}=a x+b .
$$

We can easily see that $x=-\frac{b}{a}$ is the unique equilibrium solution. Now after separation of variables we get

$$
\begin{equation*}
x(t)=C e^{a t}-\frac{b}{a} . \tag{1}
\end{equation*}
$$

When $a<0$ the solution curves converge to the equilibrium $-\frac{b}{a}$ and when $a>0$ diverge away. Either way, $x(t)$ is defined for all $t \in \mathbb{R}$.

We start running into problems when $\operatorname{deg} P(x)>1$. For example, let $P(x)=$ $x(x-1)$. That is,

$$
\dot{x}=x(x-1) .
$$

After separation of variables we obtain the relation

$$
\begin{equation*}
\frac{x-1}{x}=C e^{t} \tag{2}
\end{equation*}
$$

where C is an arbitrary constant. The equilibria are located at $x=0$ (stable) and $x=1$ (unstable). In the limit as $t \rightarrow \infty$, the right hand side approaches $\pm \infty$ (depending on C) which implies that $x(t) \rightarrow 0$ from the right when the limit is
$-\infty$ and from the left when the limit is $+\infty$. Of course this tells us no more than we already know about solution curves with initial condition $x(0)<1$ (drawing the phase plot makes this easy to see). However, we made no assumption about the initial condition in equation (2) when taking the limit $t \rightarrow \infty$. Consequently, this shows that all the solution curves with initial condition $x(0)>1$ blowup in finite time, since if $\lim _{t \rightarrow \infty} x(t)$ existed, then such a solution curve would have to converge to 0 which requires passing through the equilibrium $x=1$, which is impossible.
We will see that $\operatorname{deg}(P(x))=0,1$ is also necessary for completeness.
Lemma 1 Suppose that $g(x)>f(x)>0$ for all $x \in \mathbb{R}$ and that $\dot{x}=f(x)$ and $\dot{y}=g(y)$ are two differntial equations on the real line so that $x(0)=y(0)$. Then for all $t \geq 0$, we have $y(t) \geq x(t)$.

Proof
Let $h(t)=y(t)-x(t)$. Now $h(0)=0$ and $h^{\prime}(0)>0$ implies that, at least for some possibly short time, $y(t)$ is larger than $x(t)$. If, contrary to the claim of the lemma, $x(t)$ is ever larger than $y(t)$, then there is some time T at which $h(T)=0$ and $h^{\prime}(T) \leq 0$. In other words $x(T)=y(T)=z \in \mathbb{R}$ and $h^{\prime}(T)=$ $g(y(T))-f(x(T))=g(z)-f(z) \leq 0$, a contradiction. Therefore no such time exists, and $y(t) \geq x(t)$ for all $t \geq 0$.

Proposition 2 The vector field $X= \pm x^{n+1} \frac{\partial}{\partial x}, n \geq-1$ is complete if and only if n is -1 or 0 .

Proof
We already proved that $n=-1,0$ is sufficient. To prove it is necessary suppose that $n \geq 1$ and suppose that

$$
\dot{x}=x^{n+1}
$$

Since this holds for all t,

$$
\int_{0}^{t} \frac{\dot{x}(s)}{x^{n+1}(s)} d s=t
$$

or

$$
-\frac{1}{n} x^{-n}+\frac{1}{n} x_{0}^{-n}=t
$$

where $x_{0}:=x(0)$.
After some rearrangement we get

$$
\begin{equation*}
x^{n}=\frac{x_{0}^{n}}{1-n x_{0}^{n} t} \tag{3}
\end{equation*}
$$

The right hand side blows up at $t=\frac{1}{n x_{0}^{n}}$, so $x(t)$ cannot be defined for all t. Note that the larger x_{0} is, the quicker the blowup. In the case that $X=-x^{n+1} \frac{\partial}{\partial x}$, we obtain the expression

$$
\begin{equation*}
x^{n}=\frac{x_{0}^{n}}{1+n x_{0}^{n} t} \tag{4}
\end{equation*}
$$

which clearly has a blowup at $t=-\frac{1}{n x_{0}^{n}}$.

This is almost enough to show that $\operatorname{deg}(P(x))>1$ has finite time blowups. To see why, suppose that $P(x)$ has degree $n>1$ and with positive leading coefficient. Then for some $c \in(0,1)$ and sufficiently large positive integer N, $x>N$ implies that $P(x)>c x^{n}$. Therefore if the initial condition is taken to be large enough, e.g. $x_{0}>N$, it follows that for $t \geq 0$,

$$
\begin{equation*}
\dot{x}(t)>c x(t)^{n} \tag{5}
\end{equation*}
$$

By proposition $2, \dot{y}(t)=c y(t)^{n}$ is not complete, so apply lemma 1 to deduce that $x(t)$ is not complete. If the leading coefficient is negative, then for N sufficiently large, $x<-N$ implies that

$$
P(x)<-c x^{n}
$$

That is,

$$
\cdot x(t)<-c x^{n}(t)
$$

and again apply the proposition and lemma.

